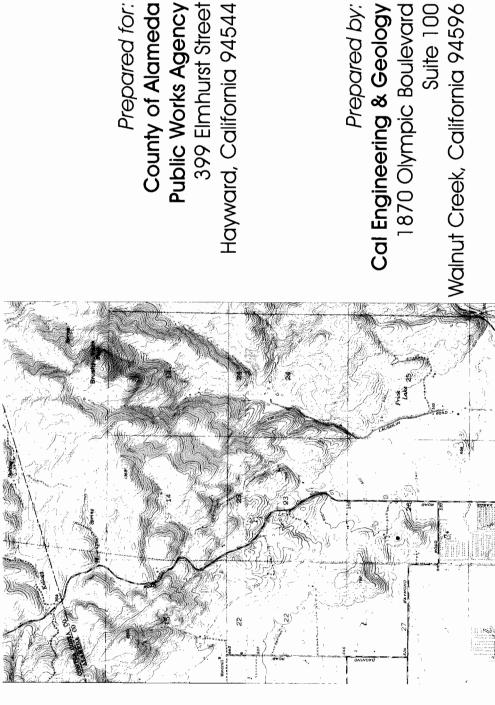
To all readers:

Subject: **DISCLAIMER** – Compact Disc (CD) Version of "Geotechnical Design and Materials Report: Vasco Road Safety Improvements in Alameda County from MP 3.4 to 4.3"


This CD/electronic version of this report is provided as a courtesy.

The County of Alameda Public Works Agency does not guarantee the completeness of the CD/electronic version of this report. During the scanning/copying process of this report, certain files may have been omitted or the clarity of the documents may have been affected.

It shall be the responsibility of the reader to review the actual report for any missing documents not included in the CD and to review those documents which may not be legible in this electronic version. If there are missing documents in the electronic version, please notify us.

Actual copies of the report are available for review at the Alameda County Public Works Building - Maps & Files Room, 2nd Floor, 399 Elmhurst Street, Hayward, CA. (510) 670-5560.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3 GEOTECHNICAL DESIGN AND MATERIALS REPORT

County of Alameda Public Works Agency 399 Elmhurst Street Hayward, California 94544 Prepared for:

Cal Engineering & Geology 1870 Olympic Boulevard Suite 100 Prepared by:

TO: Mr. Moses Tsang

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

FROM: Phillip Gregory, P.E., G.E.

DATE: 18 January 2002

PROJECT: Vasco Road Safety Improvements MP 3.4 - MP 4.3

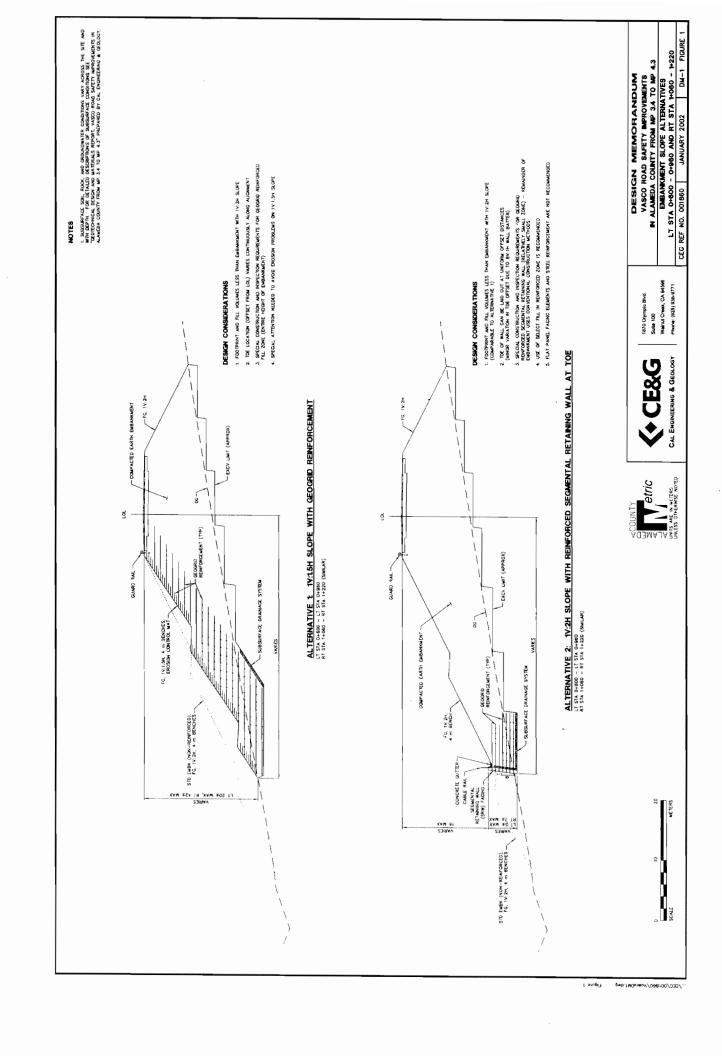
W.O. No. R23265

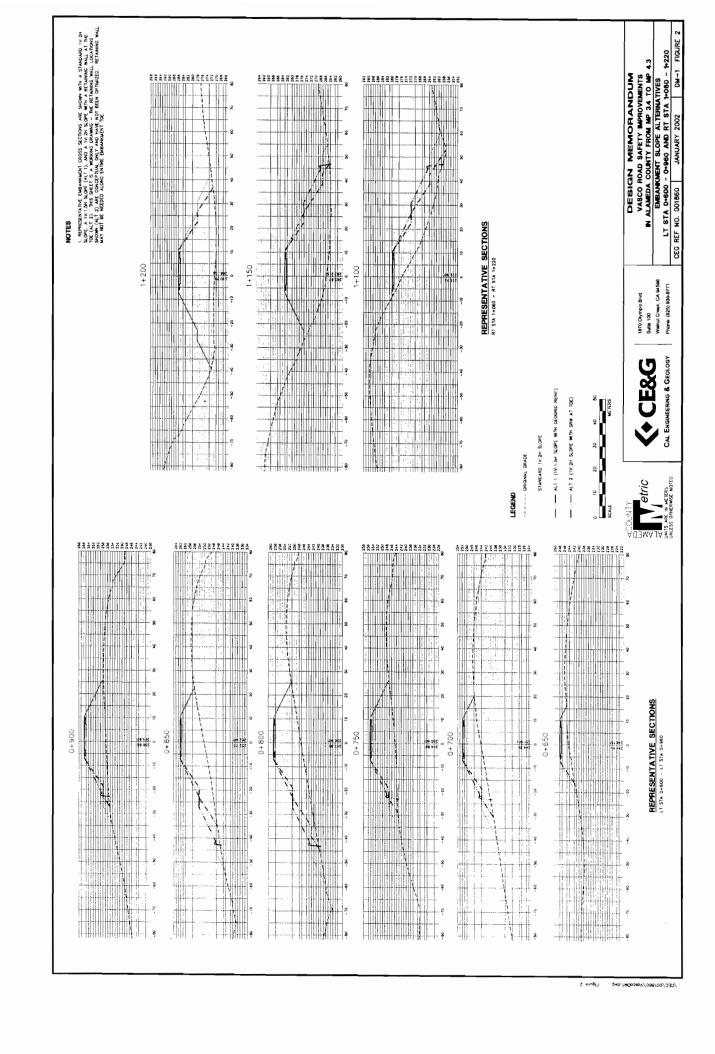
SUBJECT: Design Memorandum No. 1

Embankment Slope Alternatives Lt Sta 0+600 to Lt Sta 0+960 Rt Sta 1+060 to Rt Sta 1+220

This design memorandum addresses geotechnical issues related to the configuration of two of the roadway embankments along the proposed realignment of Vasco Road MP 3.4 - MP 4.3. Specifically, we have reviewed possible alternative configurations for the left side slope of the embankment from station 0+600 to station 0+960 and for the right side slope from station 1+060 to station 1+220. The primary design objective of the alternative side slope configurations is to minimize encroachment on potentially environmentally sensitive areas compared to the encroachment anticipated from embankments constructed with conventional 1V:2H side slopes.

We have developed two viable design alternatives which would reduce the embankment encroachment on adjacent property. One alternative is to construct steeper embankment side slopes (1V:1.5H) by incorporating geogrid reinforcement into the embankments. The second alternative is to construct retaining walls at the toes of the embankments. A segmental retaining wall (SRW) with geogrid reinforcement is an appropriate retaining wall system for this application. Typical sections and design considerations for the two embankment slope alternatives are shown on the attached Figure 1. Figure 2 shows the two alternative configurations, as well as a conventional 1V:2H slope, overlaid on a number of embankment sections along the proposed alignment.


Both of the design alternatives presented are feasible with regard to geotechnical considerations. Alternative 2 (1V:2H slope with an SRW at the toe) appears to have a number of advantages over Alternative 1 (1V:1.5H reinforced slope) with regard to construction productivity. Construction of


the geogrid reinforced zones and, in the case of Alternative 2, installation of the precast SRW facing units will require special construction methods and inspections. For Alternative 2, the geogrid reinforced SRW is a relatively small portion of the work and could be completed in advance of the conventional embankment construction. However, Alternative 1 requires the placement of geogrid reinforcement in the slope face for the entire height of the embankment, lowering overall productivity. Another advantage of Alternative 2 is that the 1V:2H embankment slopes above the retaining walls would have less potential for erosion than the 1V:1.5H slopes of the geogrid reinforced embankments. If the steeper embankment slopes are constructed, features should be included in the design to account for the increased erosion potential.

If Alternative 2 is chosen, we recommend that the retaining walls be situated at locations along the embankment toe which will not lead to excessive wall heights. As with most retaining wall types, construction complexities and costs increase dramatically as SRW heights increase. Based on our review of the embankment section for the proposed Vasco Road realignment, it appears that the desired benefit of reduced embankment encroachment can be realized while maintaining moderate wall heights of about 5 m on the left embankment slope from station 0+600 to station 0+960 and about 7 m on the right embankment slope from station 1+060 to station 1+220.

Once the preferred embankment slope alternative is selected and embankment sections are developed by the County, we will prepare design details and complete stability analysis of critical configurations. Preliminary values for design parameters provided in the project geotechnical design and materials report¹ will be used for design. It is not anticipated that additional subsurface investigation will be needed for the design of either of the embankment slope alternatives presented in this memorandum. Prior to completion of the final design, the planned embankment configuration and wall heights (if applicable), foundation conditions, and anticipated embankment fill materials will be reviewed for consistency with the preliminary design assumptions.

¹Table 8-3: Earth Retaining Structure Design Parameters, "Geotechnical Design and Materials Report, Vasco Road Safety Improvements in Alameda County from MP 3.4 to MP 4.3," prepared by Cal Engineering & Geology, draft dated 8 August 2001.

TO: Mr. Moses Tsang

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

FROM: Phillip Gregory, P.E., G.E.

DATE: 18 January 2002

PROJECT: Vasco Road Safety Improvements MP 3.4 - MP 4.3

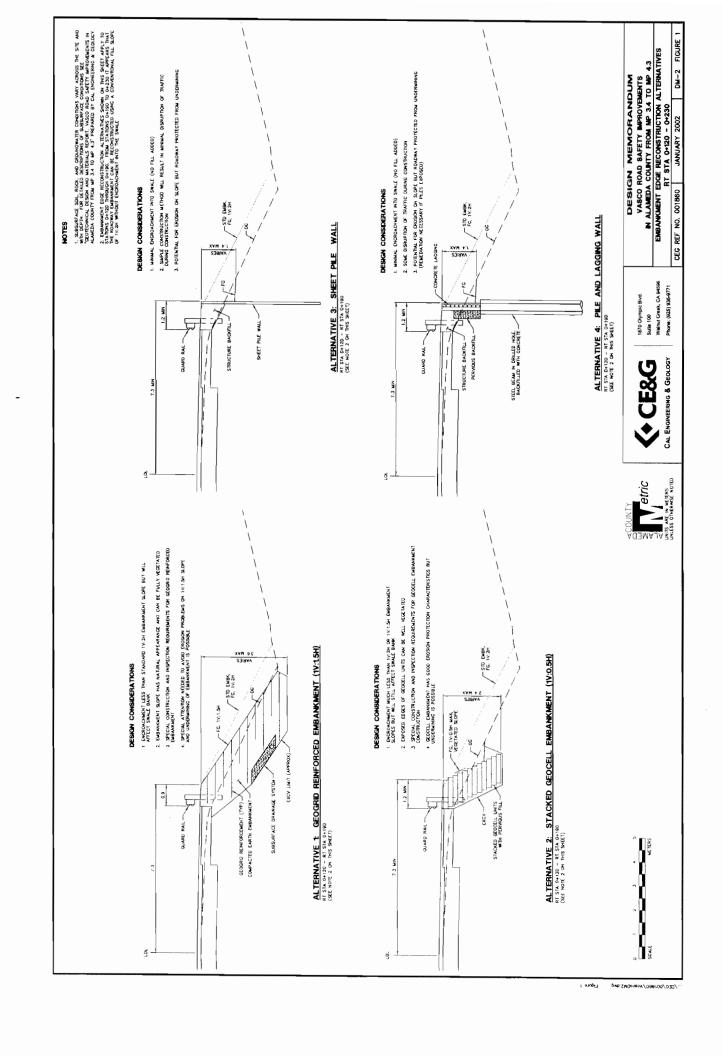
W.O. No. R23265

SUBJECT: Design Memorandum No. 2

Embankment Edge Reconstruction Rt Sta 0+120 to Rt Sta 0+230

This design memorandum addresses geotechnical issues related to the proposed edge reconstruction of the roadway embankment at the south conform area (approximately from station 0+120 to station 0+230) of the proposed realignment of Vasco Road MP 3.4 - MP 4.3. In this location the edge of the embankment adjacent to the northbound shoulder will require only minor widening and reconstruction. However, if a conventional 1V:2H side slope is used the new embankment will encroach into an existing drainage swale which runs approximately parallel to the existing roadway embankment. We have reviewed the geotechnical issues related to this proposed embankment edge reconstruction and have prepared the following summary and design recommendations.

With a conventional 1V:2H side slope the embankment toe would encroach into the invert or bank of the swale from about station 0+120 to station 0+190. From about station 1+190 to station 1+230 it appears that the roadway embankment could be reconstructed with a conventional 1V:2H side slope without any encroachment into the swale.


We have identified several viable design alternatives which would reduce the impact of the embankment edge reconstruction on the existing swale. Two alternatives involve constructing a steeper embankment side slope by incorporating either geogrid reinforcement (1V:1.5H) or stacked geocell units (1V:0.5H) into the embankment face. Two alternatives involve installing retaining walls to support the roadway shoulder and thus minimize the extent of the embankment reconstruction required. Typical sections and design considerations are shown on the attached figure.

All of the design alternatives presented are feasible with regard to geotechnical considerations. The

choice of the most desirable system should take into account other factors such as cost, construction access, maintenance requirements, environmental impacts, and aesthetics. Considering all these factors the sheet pile wall alternative appears to have some advantages over the other systems. In particular, since traffic is to be maintained during construction and clearance is limited, the expedience of sheet pile installation and minimal required excavation of the shoulder area are significant advantages associated with this alternative. In addition, the sheet pile wall system appears to have the least environmental impact.

Once the preferred embankment edge system is selected by the County, we will develop design details and complete stability analysis. Preliminary values for design parameters provided in the project geotechnical design and materials report¹ will be used initially. However, prior to completion of the final design, subsurface conditions along the embankment edge should be more fully investigated. The nature of the system selected will influence the scope of this subsurface investigation.

¹Table 8-3: Earth Retaining Structure Design Parameters, "Geotechnical Design and Materials Report, Vasco Road Safety Improvements in Alameda County from MP 3.4 to MP 4.3," prepared by Cal Engineering & Geology, draft dated 8 August 2001.

TO: Mr. Moses Tsang

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

FROM: Phillip Gregory, P.E., G.E.

DATE: 18 January 2002

PROJECT: Vasco Road Safety Improvements MP 3.4 - MP 4.3

W.O. No. R23265

SUBJECT: Design Memorandum No. 3

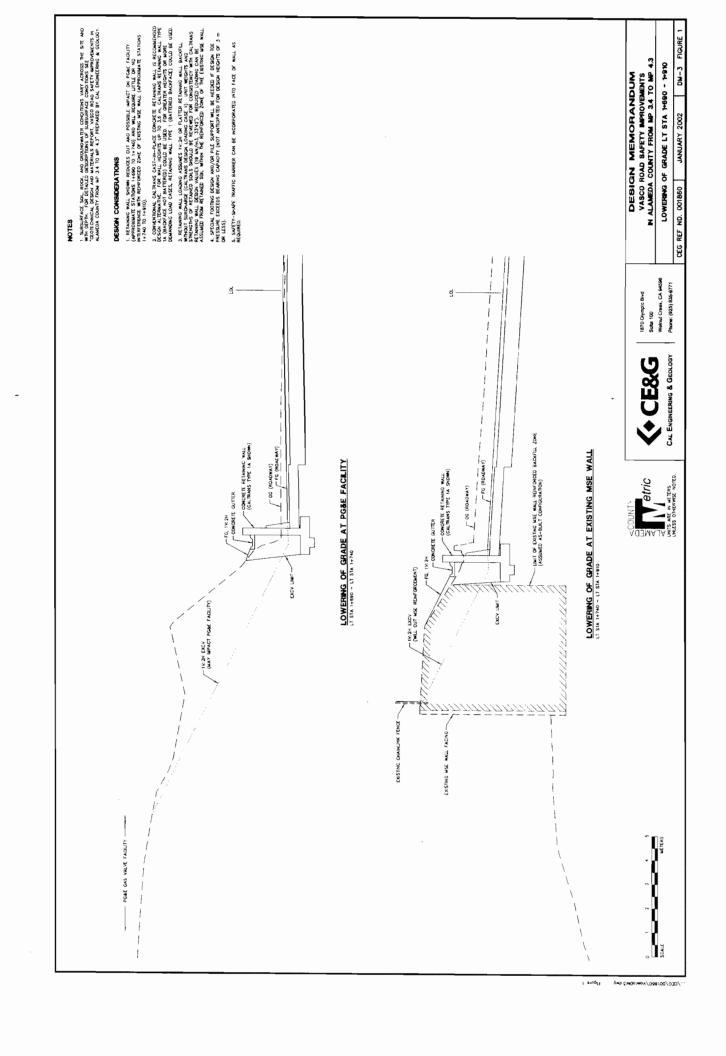
Lowering of Grade

Lt Sta 1+690 to Lt Sta 1+910

This design memorandum addresses geotechnical issues related to a proposed lowering of the existing roadway grade at the north conform area (approximately from station 1+690 to station 1+910) of the proposed realignment of Vasco Road MP 3.4 - MP 4.3. The new roadway profile is up to 1 m lower than the existing grade. If conventional 1V:2H slopes are used, the cuts may encroach on a PG&E gas valve facility located within 14 m of the southbound shoulder in the vicinity of stations 1+690 to 1+740. In addition, in the vicinity of stations 1+740 to 1+910, the cuts would encroach into the reinforced backfill zone of an existing MSE wall which is part of an earth berm located adjacent to the southbound shoulder. Typical sections are shown in the attached figure. We have reviewed the geotechnical issues related to this proposed grade lowering and have prepared the following summary and design recommendations.

Portions of the existing cut adjacent to the southbound shoulder from stations 1+690 to 1+740 are in rock and are near vertical. However, the quality of material varies and in one area the cut apparently failed and has been stabilized with sacked concrete. We recommend that an earth-retaining structure be constructed from about stations 1+690 to 1+740 in order to lower the roadway grade without requiring additional significant encroachment into the PG&E facility area. A conventional cast-in-place concrete retaining wall would be an appropriate type of structure for this location.

The proposed lowering of the roadway grade from stations 1+740 to 1+910 will affect an existing earth berm located adjacent to the southbound shoulder of the roadway. The earth berm, which begins at about station 1+740 and extends to the north well beyond the project limits, is apparently intended to help protect the Los Vaqueros Reservoir watershed. The earth berm was constructed with a mechanically stabilized embankment (MSE) wall which faces away from Vasco Road. The


precast concrete MSE wall facing has a height (including the embedded portion) of up to 6.5 m and is located approximately 8 m or more from the edge of the existing pavement. On the Vasco Road side, the berm has a short concrete retaining wall (traffic barrier) with a sloping backfill. As shown in the original construction plans, the MSE wall has a reinforced (mechanically stabilized) backfill zone that extends up to 5.5 m behind the wall facing. Based on our review of the cross sections for the proposed roadway cuts and the as-built plans of the MSE retaining wall, we conclude that excavation into the reinforced backfill zone of the existing MSE wall will adversely affect the performance of the wall by exposing the soil reinforcement thereby reducing its effective embedment length.

We recommend that a retaining wall be constructed adjacent to the lowered roadway from about stations 1+740 to 1+910 to achieve the required grade lowering without affecting the reinforced backfill zone of the MSE wall. From the cross sections reviewed, it appears that the height of the wall would not exceed 2.0 m. A variety of wall types could be used, however we feel that a conventional cast-in-place concrete retaining wall would be the most appropriate alternative.

Based on the anticipated wall heights and the backfill and toe configurations, it appears that a standard Caltrans Type 1A retaining wall design could be utilized for both of the applications described above (stations 1+690 to 1+740 and stations 1+740 to 1+910). For wall heights over 3.6 m or backfill steeper than 1V:2H, a Type 1 retaining wall (battered backface) could be used. Additional design considerations are noted on the attached figure.

Preliminary values for retaining wall design parameters are provided in the project geotechnical design and materials report¹. Prior to completion of the retaining wall final design, subsurface conditions along the wall alignment should be investigated to verify and document the properties of the foundation and retained soils. All soil properties as well as the final retaining wall and backfill geometry should be reviewed for consistency with those assumed in the standard Caltrans wall design. If actual site conditions vary significantly from those assumed, the standard wall design should be modified as required.

¹Table 8-3: Earth Retaining Structure Design Parameters, "Geotechnical Design and Materials Report, Vasco Road Safety Improvements in Alameda County from MP 3.4 to MP 4.3," prepared by Cal Engineering & Geology, draft dated 8 August 2001.

TO: Mr. Moses Tsang

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

FROM: Phillip Gregory, P.E., G.E.

DATE: 5 March 2003

PROJECT: Vasco Road Safety Improvements MP 3.4 - MP 4.3

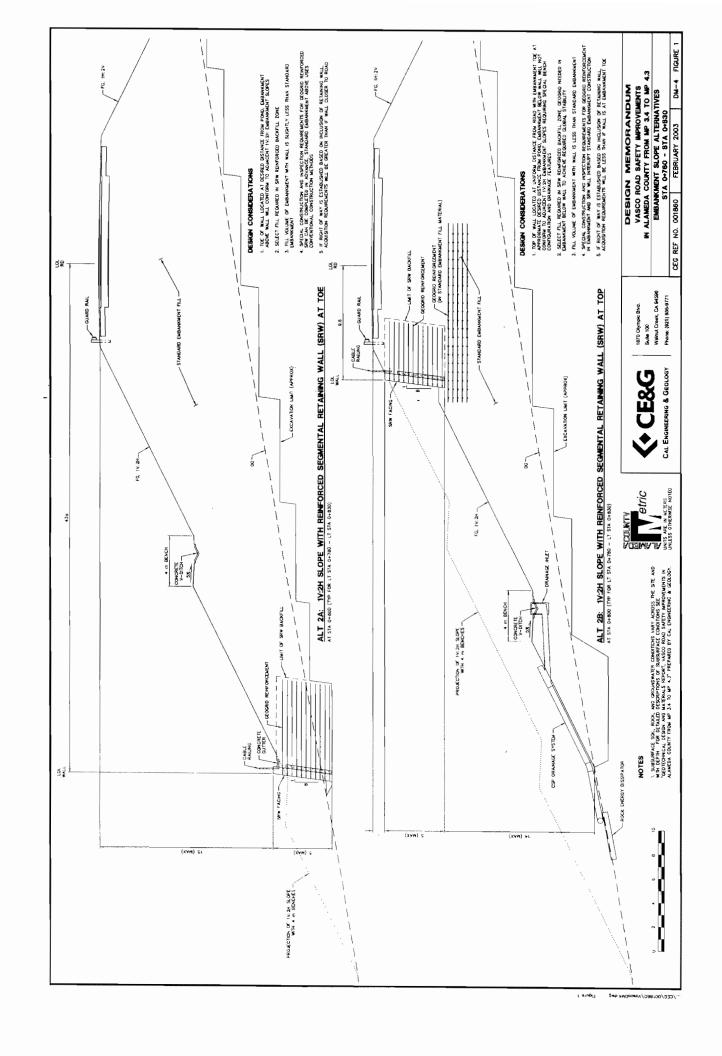
W.O. No. R23265

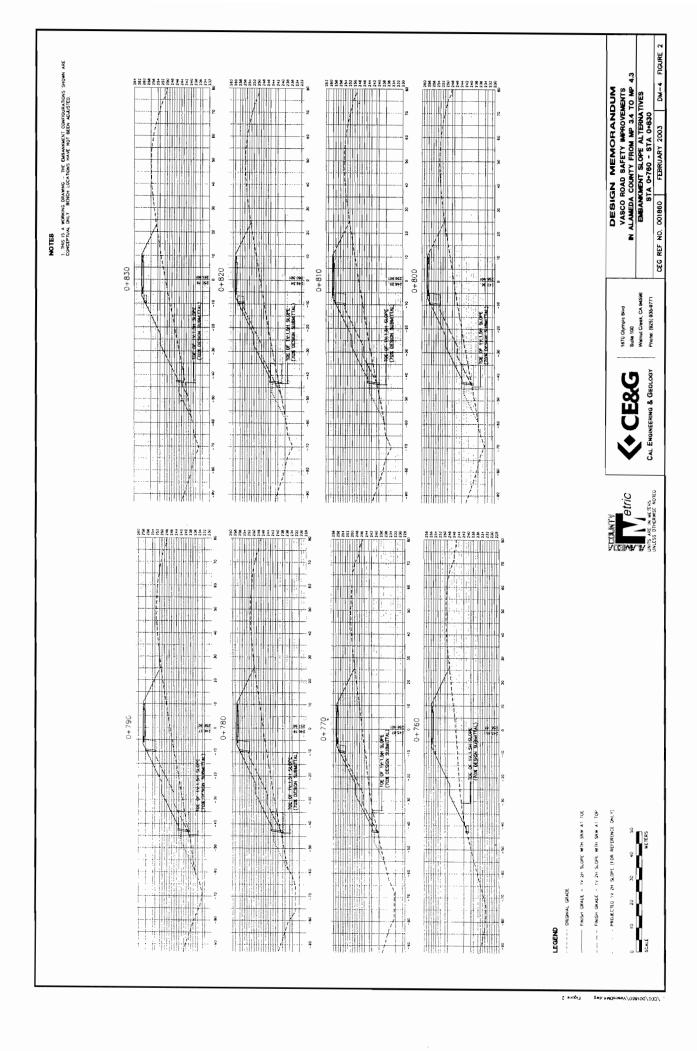
SUBJECT: Design Memorandum No. 4

Embankment / Retaining Wall Alternatives Sta 0+760 - Sta 0+830 (Pond Location)

This design memorandum is a follow up to our previous Design Memorandum No. 1, dated 18 January 2002, which presented general alternatives for minimizing encroachment on adjacent property of the roadway embankments for the proposed Vasco Road realignment. At your request, we have prepared this design memorandum which further develops variations on one of these alternatives for the specific purpose of reducing the encroachment of the embankment on an existing pond area located approximately 65 m to the left of the proposed road layout line in the vicinity of station 0+770.

One of the design alternatives (Alternative 2) presented in Design Memorandum No. 1 involves constructing a moderate height retaining wall at the toe of the embankment and a conventional 1V:2H side slope above. We suggested that a segmental retaining wall (SRW) with geogrid reinforcement would be an appropriate retaining wall system for this application. A variation on this alternative is to configure the embankment such that the retaining wall is situated at or near the top of the embankment adjacent to the roadway with the lower portion of the embankment constructed with a conventional 1V:2H side slope. A typical section with design considerations for this variation is shown as Alternative 2B on the attached Figure 1 along with Alternative 2 from Design Memorandum No. I (now labeled Alternative 2A). Figure 2 shows Alternative 2A and 2B embankment/wall configurations overlaid on affected cross sections along the proposed alignment.


Both Design Alternatives 2A and 2B are feasible with regard to geotechnical considerations. As with our previous recommendations involving SRW construction, we recommend that the embankment slope and retaining wall be configured such that wall height is not excessive. For both alternatives a maximum wall height of 5 m is recommended. With either design alternative, the inclusion of a wall of this height will allow the embankment or wall toe to be in approximately the same location as the 1V:1.5H embankment toe location presented in the County's 70% design submittal.


Incorporating a retaining wall in the embankment configuration will affect the stability of the overall embankment. Preliminary slope stability analyses for representative critical cross sections of the roadway embankment (without retaining walls) were completed as part of the project geotechnical design and materials report. The static safety factor determined for a 20 m high 1V:2H embankment at station 0+800 was determined to be 1.57. Using the same assumed embankment material parameters and assumed parameters for select fill behind the wall, the stability of the two alternative embankment/wall configurations were analyzed. Our analysis indicates that, in both cases, the recommended minimum static safety factor of 1.5 could be achieved if select fill is used in the SRW reinforced zone and, in the case of Alternative 2B, additional geogrid is incorporated in the embankment to compensate for the adverse geometry of locating the wall on the top of the slope.

If the retaining wall is constructed at the toe of the embankment (Alternative 2A), and an embankment bench is not situated immediately upslope, a concrete gutter located behind the wall may be desirable to prevent flow over the wall face. If the retaining wall is constructed near the top of the slope (Alternative 2B) no special surface drainage features would be required at the wall unless runoff from the road is concentrated. Alternative 2B requires special features for dealing with surface drainage on the embankment below the wall. Since the embankment surface will not conform to the adjacent embankment slopes and benches, the runoff collected on the isolated bench below the wall will need to be conveyed to the embankment toe with a special drainage system such as a drainage inlet and corrugated steel pipe downdrain as shown on Figure 1.

Key considerations concerning special construction sequencing, finish embankment grades, and right of way acquisition for the two design alternatives are summarized on Figure 1. Once the preferred embankment/wall configuration is selected by the County, we will prepare design details for the retaining wall and embankment and complete the stability analysis of critical configurations.

¹Section 8.3.1 and Table 8-2: Summary of Embankment Stability Analysis Results, "Geotechnical Design and Materials Report, Vasco Road Safety Improvements in Alameda County from MP 3.4 to MP 4.3," prepared by Cal Engineering & Geology, draft dated 8 August 2001.

1870 Olympic Blvd. Suite 100 Walnut Creek California 94596

Tel:925.935.9771 Fax:925.935.9773 www.caleng.com

TO:

Mr. James Chu

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

FROM:

Phillip Gregory, P.E., G.E.

DATE:

27 June 2007

PROJECT:

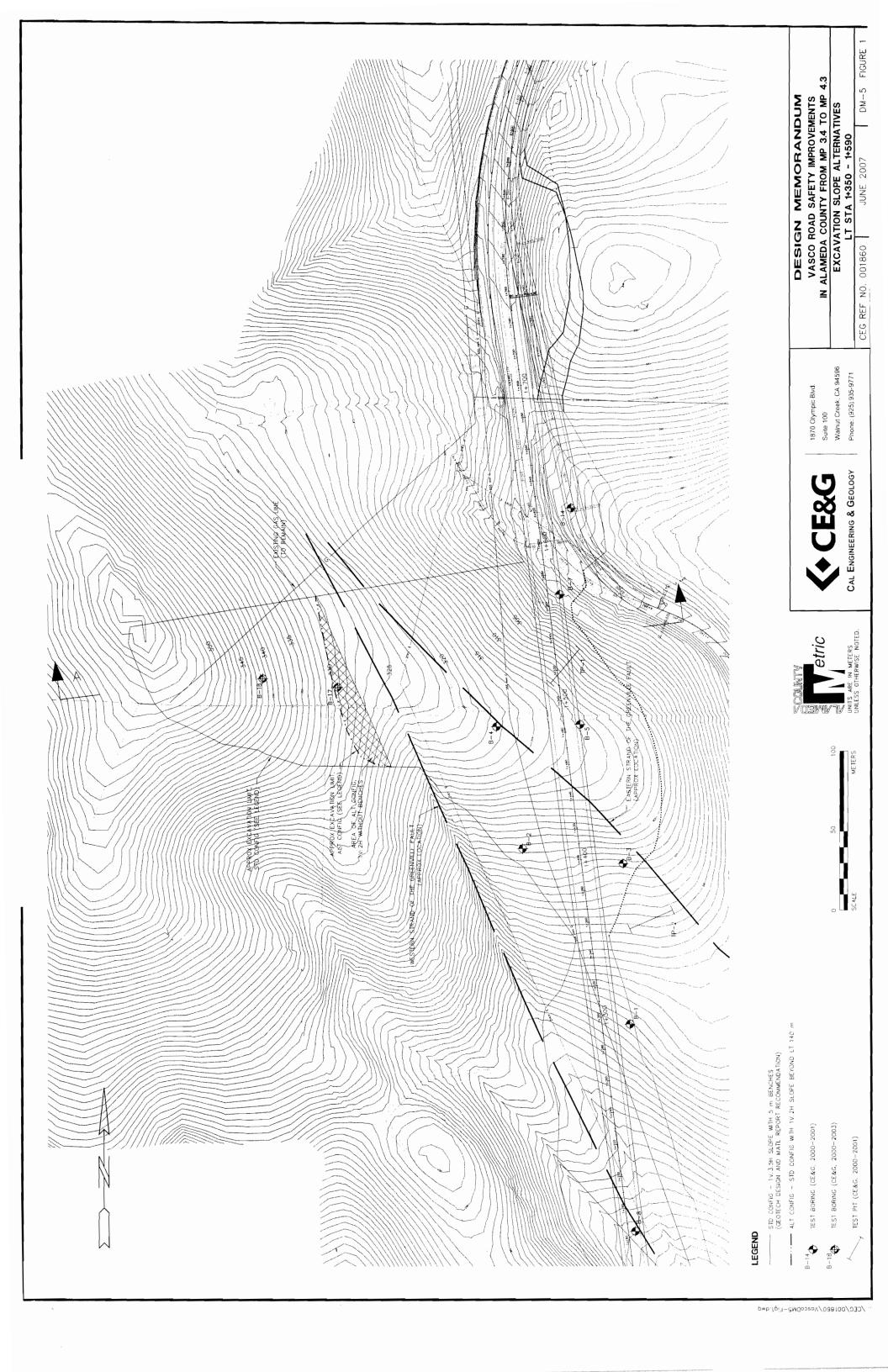
Vasco Road Safety Improvements MP 3.4 - MP 4.3

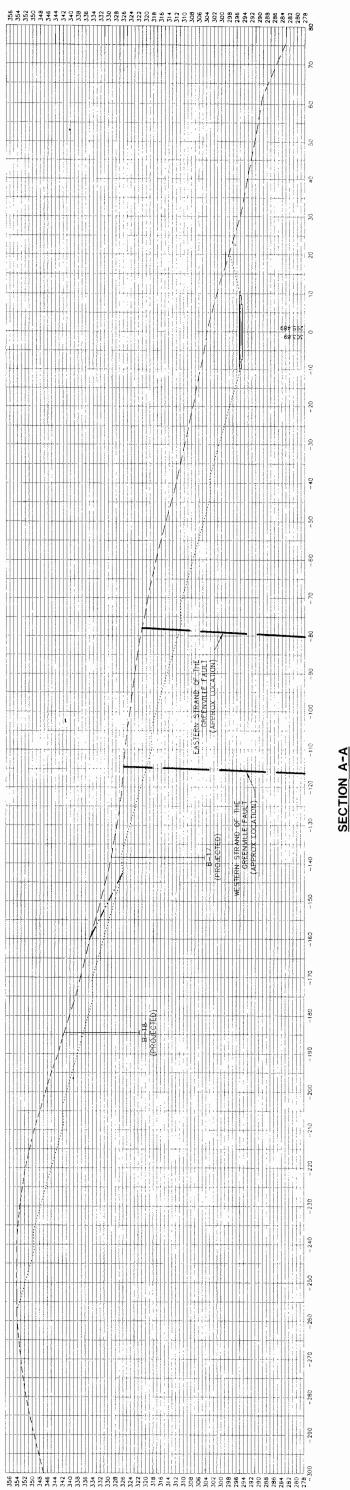
W.O. No. R23265

SUBJECT:

Design Memorandum No. 5

Revised Excavation Recommendations


Sta 1+350 - Sta 1+590



This design memorandum is a follow up to our Geotechnical Report, dated October 2002, which presented excavation recommendations for cut slope configurations in Panoche Formation material in section 12.1.2.1. It was recommended that excavations made through this material should be designed at a relatively gentle inclination of 1V:3.5H. This recommendation resulted in a very large excavation between stations 1+350 and 1+590. Cal Engineering & Geology was retained to conduct a further study to determine if better materials exist on the west side of the Greenville fault, allowing for a steeper inclination of the cut slope and a corresponding reduction in excavation quantities.

A subsurface investigation was conducted to characterize the soils on the west side of the Greenville fault in January 2003. Two exploratory borings were excavated on the slope to depths of 20.0 and 25.0 meters. The locations of the borings are shown in Figure 1. The material obtained from the borings generally consisted of grey and orange, moderately hard, sandstone and claystone. The boring logs are attached as Sheet C11 of C11. The material encountered in the borings are in contrast to the materials found on the east side of the Greenville fault in which moderatly soft claystone was encountered in the borings to the depths explored as presented in our Geotechnical Report.

Steepening of the cut slope on the west side of the Greenville fault to 1V:2H is feasible with regard to geotechnical considerations. The steepened slope is shown in Figure 2. As with our previous recommendations involving cut slopes, the slope should be constructed from the top downslope to reduce the potential for slope instability and to facilitate geologic mapping of the excavation as it is made.

AT STA 1+540 (REPRESENTATIVE FOR STA 1+350 - STA 1+590)

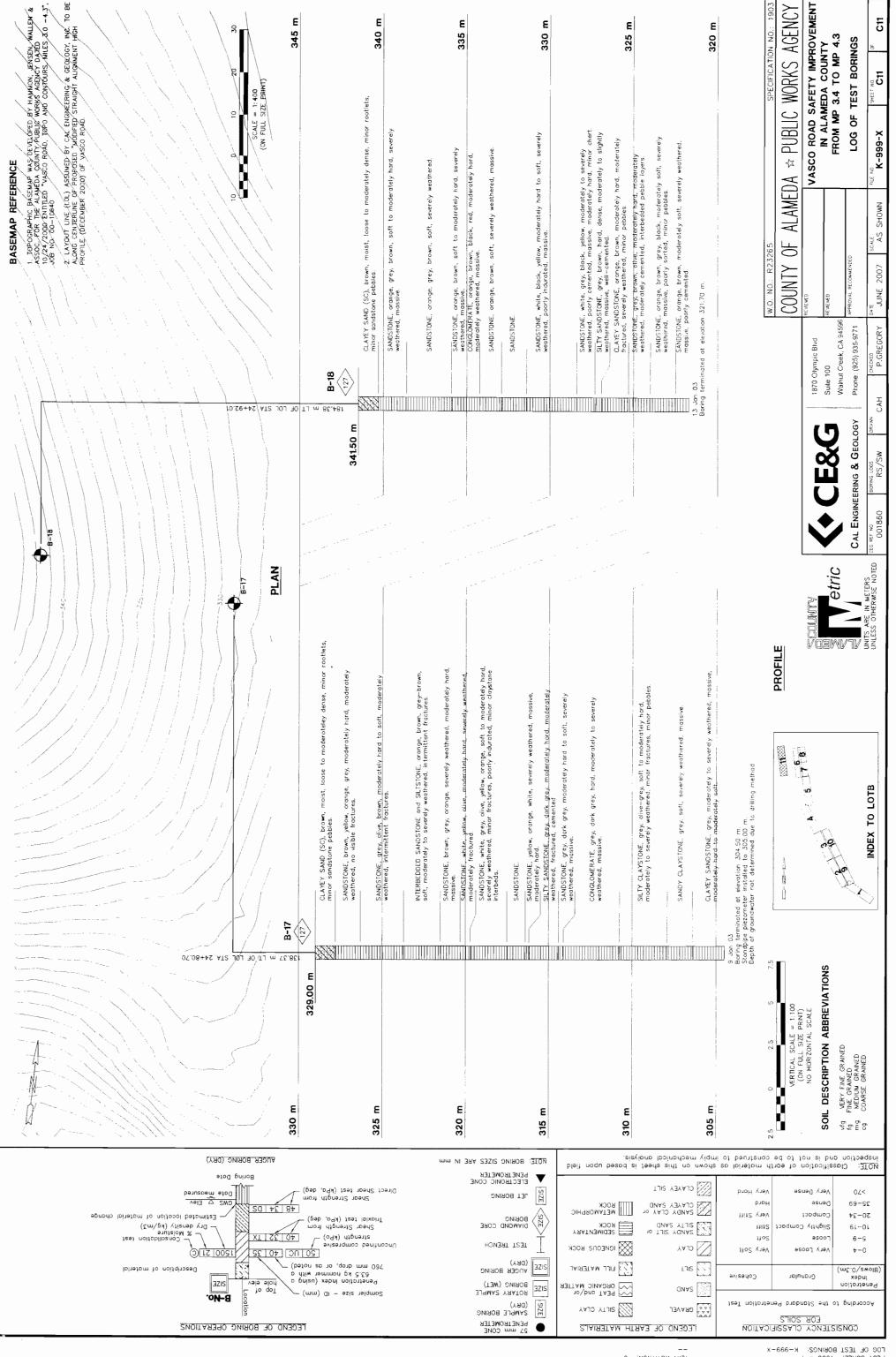
COUNTY ETTIC

Walnut Creek, CA 94596 Phone: (925) 935-9771 1870 Olympic Blvd. Suite 100 CAL ENGINEERING & GEOLOGY **♦**CE&G

VASCO ROAD SAFETY IMPROVEMENTS
IN ALAMEDA COUNTY FROM MP 3.4 TO MP 4.3
EXCAVATION SLOPE ALTERNATIVES
LT STA 1+350 - 1+590 DESIGN MEMORANDUM

DM-5 FIGURE 2

JUNE 2007


CEG REF NO. 001860

ALT CONFIG - STD CONFIG WITH IV 2H SLOPE BEYOND LT 140 m.

..... STD CONFIG = 1V 3.5H SLOPE WITH 5 IN BENCHES (GEOTECH DESIGN AND MATL REPORT RECOMMENDATION.)

- ORIGINAL GRADE

LEGEND

TO:

Mr. Phillip Fung

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

fax (510) 782-1939

FROM:

Phillip Gregory, P.E., G.E.

DATE:

5 May 2003

PROJECT: Vasco Road Safety Improvements MP 3.4 - MP 4.3

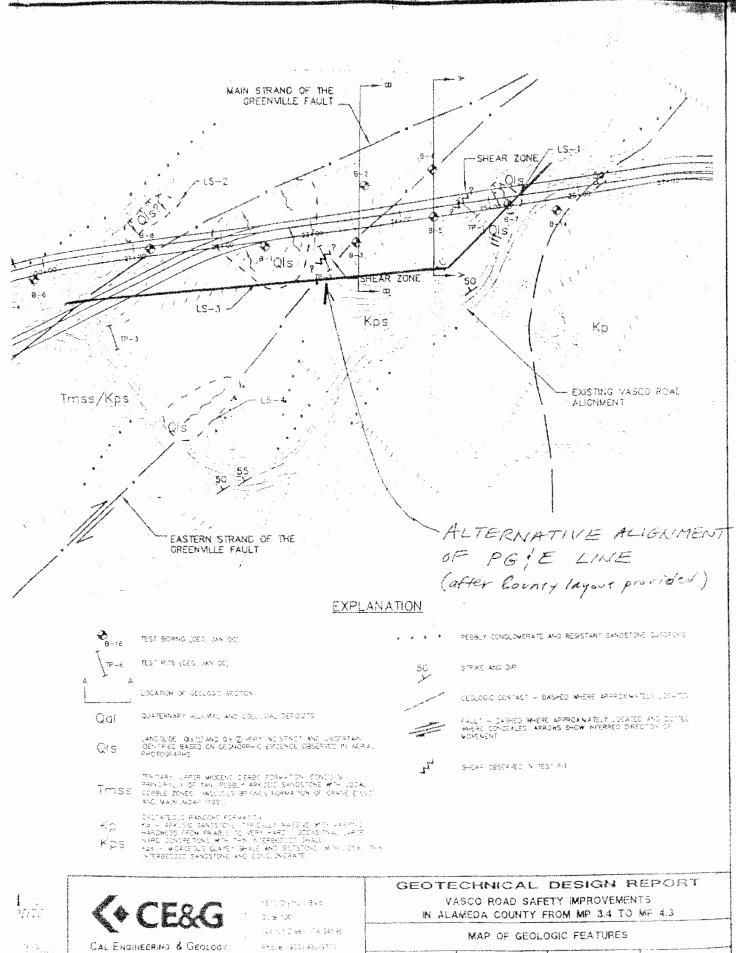
W.O. No. R23265

SUBJECT: Design Memorandum No. 6

Alternative Alignment of PG&E Re-routing

This design memorandum addresses geotechnical issues related to the County's proposed alternative alignment of the re-routing of PG&E's gas line. The approximate location of the proposed alternative re-route is shown on the attached annotated copy of Figure 4-3 of the project geotechnical report.

As indicated on the annotated figure, the proposed alternative re-routing results in the following geotechnical and/or geologic constraints:


- 1) The northern portion of the re-routed line would cross identified landslide LS-1.
- 2) The north-south segment of the re-routed line would cross two identified strands of the Greenville Fault (as does the existing line).
- 3) The central part of the north-south segment of the re-routed line would cross the upper portions of the identified landslide LS-3.

From a geotechnical point of view, these constraints are not insurmountable and can be mitigated as follows:

- 1) The majority of landslide LS-1 will be removed by design cut for the road. This excavation work can be completed prior to the road work in order to accommodate installation of the rerouted PG&E line.
- 2) The re-routing of the PG&E line will necessarily cross two strands of the fault, as the current line does. This hazard can be mitigated by designing the pipeline to address the anticipated displacement along the fault.

3) Landslide LS-3 can be avoided by locating the re-routed line approximately 25 - 30 meters south of the location shown on the attached figure. It should be noted that this will also allow for the possibility of adjusting (flattening) the design east cut slope between Sta 1+360 and Sta 1+560, if it is necessary to balance the project grading.

We conclude that the County's proposed alternative alignment for the re-routing of the PG&E line is feasible from a geotechnical standpoint if the above described mitigation measures are implemented. It is also our opinion that from a geotechnical perspective the constraints and associated risks for the proposed alternative are not significantly different from and are comparable to those of the currently proposed alignment. It should be noted that the final design of the proposed alternative alignment is subject to additional studies similar to any which have been or will be completed by PG&E for the currently planned alignment.

235

Service of the servic

CAL ENGINEERING & GEOLOGY

JOB NO R23265 SPEC NO. 1903

JUNE 2001

FIGURE 4-3

1870 Olympic Blvd. Suite 100 Walnut Creek California 94506

Tel:925.935.9771 Fax:925.935.9773 www.caleng.com

TO: Mr. Phillip Fung

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

fax (510) 782-1939

FROM: Phillip Gregory, P.E., G.E.

DATE: 9 June 2004

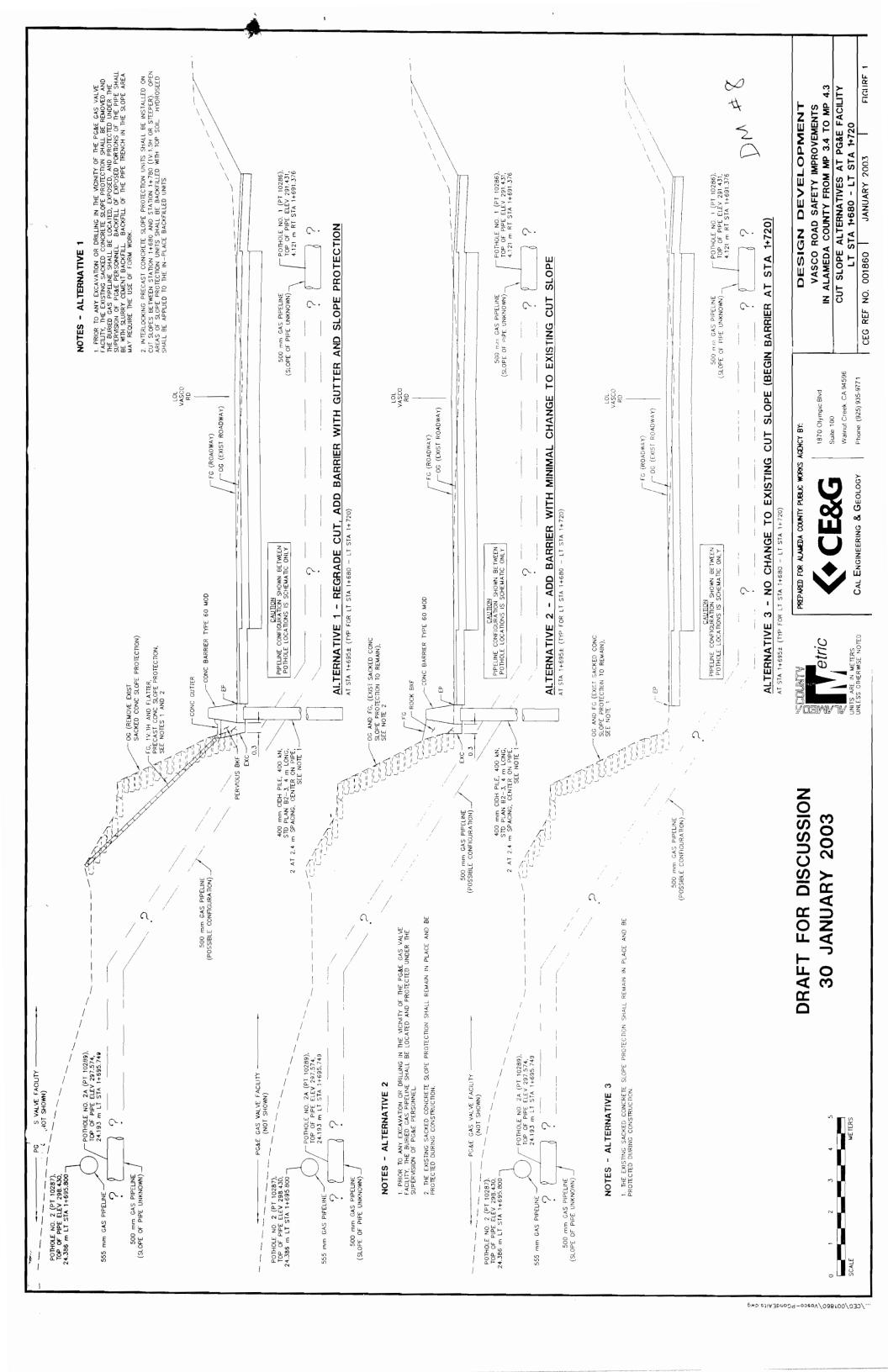
revised 16 June 2004

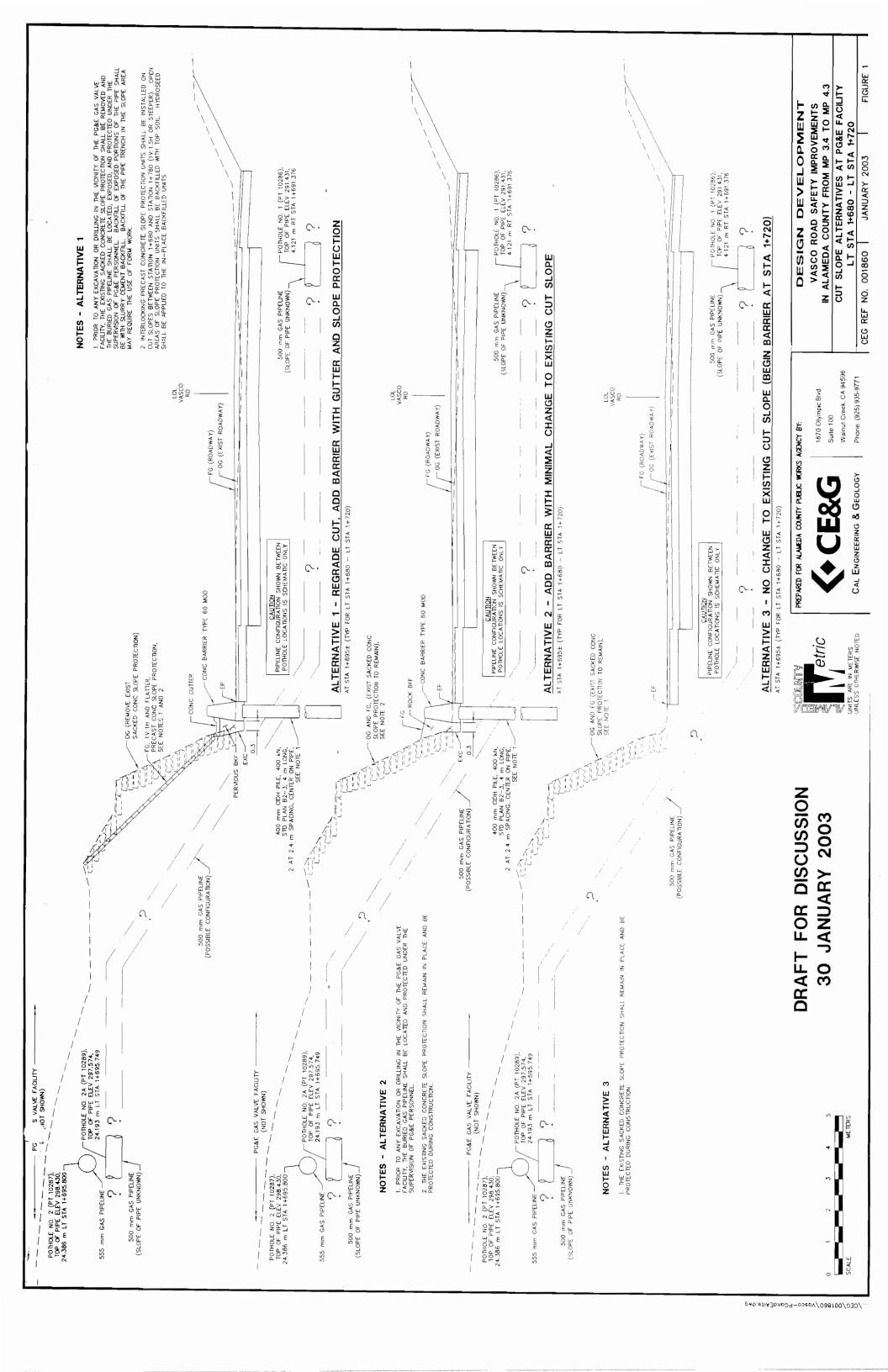
PROJECT: Vasco Road Safety Improvements MP 3.4 - MP 4.3

W.O. No. R23265

SUBJECT: Design Memorandum No. 7

PG&E Gas Line Relocation Cut/Fill Recommendations


This design memorandum presents recommendations for temporary and permanent cut and fill slopes for the proposed PG&E gas line relocation associated with Vasco Road Safety Improvements MP 3.4 - MP 4.3. We reviewed material that you provided including the proposed pipeline alignment plan and cross sections as well as PG&E construction access requirements. We understand that cuts and fills will be required to construct a temporary work strip for pipeline installation and that a permanent narrower access road will remain along the alignment.


Temporary Cut and Fill Slopes:

We recommend that temporary cut and fill slopes necessary for construction access be 1V:1H or flatter.

Permanent Cut and Fill Slopes:

We recommend that permanent cut slopes less than 5 m tall be 1V:1.5H or flatter. Permanent cut slopes greater than 5 m tall and permanent fill slopes should be 1V:2H or flatter. At locations where cut slopes are higher than approximately 10 m or where there is a significant drainage area above the cut, we recommend that a diversion ditch be constructed at or near the top of the cut slope to minimize erosion.

REGISTERE)

No. Geo GE 2193

No Civil C 40728

119 Filbert Street Oakland, California 94607

Tel:510.451.2350 Fax:510.451.1735 www.caleng.com

TO:

Mr. James Chu

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

FROM:

Phillip Gregory, P.E., G.E.

DATE:

21 August 2007

PROJECT:

Vasco Road Safety Improvements MP 3.4 - MP 4

W.O. No. R23265

SUBJECT:

Design Memorandum No. 9

North Extension Grading Recommendations Permanent and Temporary Cut Slopes

As requested we have prepared this design memorandum to present the results of our observations and geologic mapping of the north extension of the Vasco Road Safety Improvement Project. Specifically, we were asked to provide grading recommendations regarding permanent and temporary cut slopes. This area was out of the scope covered in our Geotechnical Report dated October 2002.

General

Our observations and geologic mapping of the existing cuts on the east side of the north end of the project (Sta 1+700 to 2+450 from plans dated 22 May 2007) revealed that weathering of the outer 6 to 18 inches has occurred and minor localized soil slope sloughing has resulted. The weathering appears to primarily be a result of animal burrowing activity (bioturbation) and plant growth. The cuts were made approximatly 10 years ago to facilitate the realignment of Vasco Road as part of the Contra Costa Water District's construction of the Los Vaqueros Reservoir. Overall, the performance of the existing 1V:2H cut slopes appears to have been reasonably good and it appears that little or no maintenance has been required in the 10 plus years since the cut was made.

Permanent Cut Slopes

Based on these observations of the performance of existing 1V:2H cut slopes on the north end of the project, it is our opinion that in order to have low-maintenance performance similar to the existing cut slopes, the new permanent cut slopes on the east side should be limited to no steeper than 1V:2H. In our opinion, benches are not needed for slopes less than 15 meters tall, but consideration should be given to including a concrete barrier and concrete gutter at the base of the cut similar to that current at the site.

If it is acceptable to the County to have increased surface erosion and/or sloughing and increased long-term maintenance, then in our opinion, the inclination of the cut slope could be increased to 1V:1.75 while still maintaining reasonable global stability and serviceability. This will be subject to verification by an engineering geologist when the cut is initially made. The cut should be made from the top down to allow for verification of the bedding by the engineering geologist before the entire cut is completed. If it is decided to make the cuts at this steeper inclination, then a barrier and gutter should be installed at the base of the cut.

Temporary Cut Slopes

Temporary cut slopes (ones that would remain open for approximately two years or less) in this area can be made up to 1V:1.25H but should be mapped by an engineering geologist to confirm the absence of adverse bedding which may be a possibility in some areas.

1870 Olympic Blvd. Suite 100 Walnut Creek California 94596

Tel:925.935.9771 Fax:925.935.9773 www.caleng.com

15 December 2006 File: 001860

Mr. Bond Ng County of Alameda Public Works Agency 399 Elmhurst Street Hayward, California 94544

Re: Geologic and Geotechnical Data
PG&E Gas Line Relocation
Near Roadway Station 25+00
Vasco Road Safety Improvements MP 3.4 to MP 4.3
Alameda County, California

DM #11

Dear Mr. Ng:

At your request, we are providing to you the attached data for use by others for the purpose of evaluating the relocation of a portion of the existing PG&E gas line by Horizontal Directional Drilling. It has been proposed to relocate about 125 m of existing 555 mm PG&E gas line by directional drilling a new alignment in a southeasterly direction from the connection tie in around roadway Station 25+00. We understand the approximate proposed gas line elevation near Station 25+00 is about 291 meters.

The attached geologic and geotechnical data listed below was extracted from existing reports and subsurface evaluations completed by Cal Engineering & Geology, Inc., for the Vasco Road Safety Improvement project.

- ♦ Executive Summary presented in the Geotechnical Design and Materials Report;
- ♦ Regional Geology and Seismicity Section of the Geotechnical Design and Materials Report;
- ♦ Geotechnical Conditions Section of the Geotechnical Design and Materials Report;
- Rippability Section of the Geotechnical Design and Materials Report;
- ♦ Appendix E Seismic Refraction Survey of the Geotechnical Design and Materials Report;
- Figure 4-A, Map of Geologic Features;
- ♦ Figure 4-4, Geologic Cross-Sections A-A' and B-B';
- ♦ Log of Test Pit TP-1; and
- ♦ Sheets C7 and C8, Logs of Test Borings.

Using Figure 4-3 as reference, the gas line will be relocated from about Boring B-7 (near Station 25+00) in a southeasterly direction for about 125 m. Borings B-5 (Sheet C7), B-7 (Sheet C8), and boring B-14 (Sheet C8) are representative borings in the general vicinity of the directional drilling alignment. Because boring B-7 is close to the relocation alignment, we plotted the approximate proposed elevation of the realigned gas line on boring log B-7.

Appendix E presents results of seismic refraction survey lines completed near the PG&E gas line realignment project. The survey line locations are shown on Drawing No. 2 in the Seismic Refraction Survey report. That drawing can be cross-referenced to Figure 4-3 by lining up the broad U-shaped alignment of the existing Vasco Road.

Based on our review of the enclosed data, installation of the realigned gas line by horizontal directional drilling methods is reasonable from a geologic and geotechnical engineering point of view. Given the proposed elevation of the realigned gas line and the size of the gas pipe to be installed by horizontal directional drilling, consideration should be given to deepening the gas line in order to design a bore path that is located entirely within the sandstone/siltstone/claystone deposits of the Kps formation and not the clays that overlie the parent bedrock.

We trust this provides the information you need. Please call if you have any questions or need additional information.

Respectfully,

CAL ENGINEERING & GEOLOGY, INC.

Norman Joyal Associate Engineer

Attachments

1870 Olympic Blvd. Suite 100 Walnut Creek California 94506

Tel:925.935.9771 Fax:925.935.9773 www.caleng.com

DRAFT

TO: Mr. Bond Ng

County of Alameda Public Works Agency

399 Elmhurst Street

Hayward, California 94544

fax (510) 782-1939

FROM: Phillip Gregory, P.E., G.E.

DATE: 12 Oct 2006

PROJECT: Vasco Road Safety Improvements MP 3.4 - MP 4.3

W.O. No. R23265

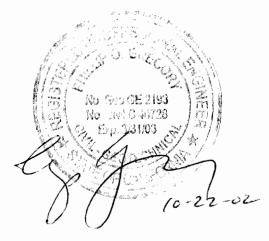
SUBJECT: Design Memorandum No. 10

Review of 90% Plans

PG&E Gas Line Relocation Grading Plans

This design memorandum presents our review comments regarding the grading 90% grading plan prepared for the PG&E relocation. Our comments are as follows:

- 1. The grading plans do not include an overall plan of the realignment grading plan that shows the north and south connections and the existing road etc. Such a plan at an appropriate scale would be very useful.
- 2. Except for the Title Sheet, there are no north arrows on the individual plan sections for the layout line, grading, or profiles. These should be added.
- 3. The contractor staging areas identified need to have a note that indicates that the grading design in these areas are the responsibility of the contractor and that a submittal is needed.
- 4. The stationing on the proposed Vasco Road realignment is only included on the plan and profile sheets and not on the grading plan sheets or construction line layout sheets. It would be useful to have the Vasco Road stationing on these other sheets as well.
- 5. The stationing shown on the Cross Sections sheets does not correspond to the stationing on the construction line layout sheets, the grading plan sheets, or the plan and profile sheets. This should be corrected.
- 6. At the north connect, the alignment crosses landslide LS-1. The landslide will be removed when the road is constructed by a design cut. It does not appear to be completely removed by the grading for the gas line. If the road cut will not be made at when the gas line grading is done, this area may need to be stabilized until the final cuts are made.


- 7. The typical section on Sheet 4 shows concrete ditch at the top of a cut slope. There are several areas on the grading plans which show ditches/benches at mid-slope of the cuts. Are concrete ditches to be constructed here as well?
- 8. The culvert detail on Sheet 3 could be on Sheet 4.
- 9. The four sections on Sheet 4 are all indicated to be for Line 114. It is unclear where each of the different sections apply.

GEOTECHNICAL DESIGN AND MATERIALS REPORT Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Prepared for:
County of Alameda
Public Works Agency
399 Elmhurst Street
Hayward, California 94544

Prepared by:
Cal Engineering & Geology
1870 Olympic Boulevard
Suite 100
Walnut Creek, California 94596

GEOTECHNICAL DESIGN AND MATERIALS REPORT VASCO ROAD SAFETY IMPROVEMENTS IN ALAMEDA COUNTY FROM MP 3.4 TO MP 4.3

TABLE OF CONTENTS

EX	ECUTIVI	E SUMMARY	E-1						
	EXIST	TING CONDITIONS AND PROPOSED ALIGNMENT	E-1						
	GEOL	LOGIC CONDITIONS	E-2						
	EVALUATIONS								
		Earthwork Balance	E-3						
		Material Properties	E-3						
		Dynamic Analyses	E-4						
		Stability Analyses	E-4						
		Rippability							
Grading and Compaction									
	RECOMMENDATIONS								
		Excavations	E-6						
		Embankments	E-6						
		Earth Retaining Structures	E-7						
		Culverts	E-7						
		Pavements	E-7						
	ADDI	TIONAL WORK	E-8						
1.0	INTROI	DUCTION	. 1-1						
2.0		NG FACILITIES AND PROPOSED IMPROVEMENTS							
	2.1	EXISTING FACILITIES							
	2.2	PROPOSED IMPROVEMENTS							
	2.3	PRELIMINARY PREFERRED ALTERNATIVE	. 2-3						
3.0	PERTIN	ENT REPORTS AND INVESTIGATIONS	. 3-1						
	DITT. (01.0	NAY GEOGRAPHY							
4.0		CAL SETTING							
	4.1	CLIMATE							
	4.2	TOPOGRAPHY AND DRAINAGE							
	4.3	MAN-MADE AND NATURAL FEATURES OF ENGINEERING A							
		CONSTRUCTION SIGNIFICANCE							
	4.4	REGIONAL GEOLOGY AND SEISMICITY							
		4.4.1 Geologic Setting	. 4-3						

GEOTECHNICAL DESIGN AND MATERIALS REPORT VASCO ROAD SAFETY IMPROVEMENTS IN ALAMEDA COUNTY FROM MP 3.4 TO MP 4.3

TABLE OF CONTENTS (Continued)

		4.4.2	Seismic Setting	4
	4.5	SOIL S	SURVEY MAPPING 4-6	5
5.0	FIELD F	EXPLOR	RATION	1
	5.1		URFACE EXPLORATION	
		5.1.1	Drilling and Sampling 5-2	2
		5.1.2	Trenches	
	5.2	GEOL	OGIC MAPPING5-3	3
	5.3	GEOP:	HYSICAL STUDIES	3
	5.4	INSTR	RUMENTATION 5-4	4
6.0	GEOTE	CHNIC	AL TESTING	1
	6.1	IN SIT	'U TESTING 6-1	1
	6.2	LABO	RATORY TESTING 6-1	1
		6.2.1	Index Properties	1
		6.2.2	Strength Properties	1
		6.2.3	Compaction and Consolidation	2
		6.2.4	Durability and Corrosive Properties 6-2	2
		6.2.5	Resistance Testing 6-2	2
7.0	GEOTE	CHNIC	AL CONDITIONS	1
	7.1	SITE (GEOLOGY	1
		7.1.1	Lithology 7-1	1
			7.1.1.1 Cierbo Formation (Tmss)	1
			7.1.1.2 Panoche Formation (Kp, Kps)	2
		7.1.2	Structure	2
		7.1.3	Landslides	3
		7.1.4	Rock Mass Strength 7-4	4
	7.2	SUBS	URFACE SOIL CONDITIONS	7
	7.3	WATE	ER	7
		7.3.1	Surface Water	7
		7.3.2	Groundwater	7
	7.4	PROJI	ECT SEISMICITY 7-8	8
		7.4.1	Project Area Faulting and Ground Rupture	8

GEOTECHNICAL DESIGN AND MATERIALS REPORT VASCO ROAD SAFETY IMPROVEMENTS IN ALAMEDA COUNTY FROM MP 3.4 TO MP 4.3

TABLE OF CONTENTS (Continued)

		7.4.2	Seismic Sources and Site Ground Motion	7-9		
8.0	GEOTE	CHNIC	AL ANALYSIS AND DESIGN	8-1		
	8.1	DYNA	AMIC ANALYSIS	8-1		
	8.2	CUTS	AND EXCAVATIONS	8-2		
		8.2.1	Stability Analysis	8-2		
			8.2.1.1 Stability Analysis Methods			
			8.2.1.2 Material Properties Assumed for Analysis	8-3		
			8.2.1.3 Groundwater Conditions Assumed for Analysis			
			8.2.1.4 Results of Analysis			
			8.2.1.5 Unstable Areas Uncovered During Excavation			
		8.2.2	Rippability			
		8.2.3	Grading Factors			
		8.2.4	Rebound/Swell of Excavation			
		8.2.5	Weathering of Cuts			
8.3			ANKMENTS			
		8.3.1	Stability Analyses			
			8.3.1.1 Analysis Methods			
			8.3.1.2 Material Properties Assumed for Stability Analysis			
			8.3.1.3 Groundwater Conditions Assumed for Stability Analysis			
			8.3.1.4 Results of Stability Analysis			
		8.3.2	Post-Construction Embankment Movements			
	8.4	EARTH RETAINING STRUCTURES				
	8.5		ERTS			
		8.5.1	Culvert Foundations			
		8.5.2	Culvert Materials			
			8.5.2.1 Corrosion Testing and Analysis			
			8.5.2.2 Service Life Analysis			
	8.6		OR STRUCTURE FOUNDATIONS			
	8.7		EMENTS			
		8.7.1	Basement Soil R-Value Testing and Results			
		8.7.2	Lime Treated Basement Soil			
		8.7.3	Recommended Pavement Type	. 8-16		
		874	Structural Section Design	8-17		

		8.7.4.1 Design R-value and Traffic Index	8-17
		8.7.4.2 Drainage Considerations	8-17
		8.7.4.3 Pavement Section Analysis	
9.0]	MATER	UAL SOURCES	. 9-1
10.0	MATE	RIAL DISPOSAL	. 10-1
11.0	CONST	TRUCTION CONSIDERATIONS	. 11-1
	11.1	CONSTRUCTION ADVISORIES	. 11-1
		11.1.1 Water in Excavations	. 11-1
		11.1.2 Sheared and Weak Rock	. 11-1
		11.1.3 Existing Fill Embankments	
	11.2	CONSTRUCTION CONSIDERATIONS THAT INFLUENCE DESIGN	. 11-2
		11.2.1 Excavation Configuration	. 11-2
		11.2.1.1 Drainage and Maintenance Terraces	
		11.2.1.2 Horizontal Drains	. 11-3
		11.2.2 Order of Work - Excavations	. 11-3
		11.2.3 Existing Utilities	
		11.2.4 Encroachment into Undesirable Areas	
		11.2.5 Underdrains for Fills Across Drainages	
		11.2.6 Balance of Project Grading	
	11.3	CONSTRUCTION CONSIDERATIONS THAT INFLUENCE SPECIFICAT	
		11.3.1 Order of Work - Excavation	
		11.3.2 Balance of Project Grading	
		11.3.3 Earth Retaining Structures	
		11.3.4 Corrosive Soils	
	11.4	CONSTRUCTION MONITORING AND INSTRUMENTATION	
		11.4.1 Monitoring of Groundwater Levels	
		11.4.2 Mapping of Excavation Slopes	
	11.5	HAZARDOUS WASTE CONSIDERATIONS	
	11.6	DIFFERING SITE CONDITIONS	. 11-7

12 0 DECON	MMENDATIONS AND SPECIFICATIONS
12.0 RECON	EXCAVATION RECOMMENDATIONS
12.1	12-1 12.1.1 Order of Work
	12.1.1 Order of work
	12.1.2.1 Panoche Formation and Highly Sheared Areas 12-1
	12.1.2.1 Falloche Formation and Highly Sheared Areas 12-1 12.1.2.2 Cierbo Formation Materials
	12.1.2.2 Cleroo Formation Materials
	12.1.3 Fiorizontal Dialis
	12.1.4 Stability Fills
	12.1.5 Temporary Excavations
12.2	EMBANKMENT RECOMMENDATIONS
12.3	EARTH RETAINING STRUCTURES
12.4	CULVERTS
12.5	PAVEMENTS
12.6	SERVICES DURING FINAL DESIGN AND CONSTRUCTION 12-4
	12.6.1 Design Consultations
	12.6.2 Construction Monitoring
12.7	NOTIFICATION AND LIMITATIONS
13.0 REFER	ENCES
Tables	
Table 4-1	Summary of Active and Potentially Active Faults Within 100 Kilometers of the Project
Table 6-1	Summary of Laboratory Tests Performed
Table 6-2	Summary of Moisture-Density Test Results
Table 6-3	Summary of Atterberg Limits Test Results
Table 6-4	Summary of Shear Strength Test Results
Table 6-5	Summary of Unconfined Compressive Strength Test Results
Table 6-6	Summary of Compaction and Consolidation Test Results
Table 6-7	Summary of Durability and Corrosion Test Results
Table 7-1	The Rock Mass Rating System
Table 7-2	Summary of Rock Mass Strength Information
Table 8-1	Summary of Cut Slope Stability Analysis Results

Table 8-2	Summary of Embankment Stability Analysis Results
Table 8-3	Preliminary Earth Retaining Structure Design Parameters
Table 8-4	Summary of Corrosion Test Results
Table 9-1	Summary of Material Sources
Table 12-1	Summary of Cut and Fill Slope Recommendations
Table 12-2	Recommended Alternative for Culvert and DrainAlternatives
Figures	
Figure 1-1	Location Map
Figure 1-2	Project Vicinity Map
Figure 2-1	Preliminary Alignments
Figure 4-1	Made-Made Features of Significance to Project
Figure 4-2	Regional Geologic Map
Figure 4-3	Site Geologic Map
Figure 4-4	Geologic Cross Sections A-A' and B-B'
Figure 4-5	Regional Faults
Figure 6-1	Plot of Dry Density and Moisture Content vs Elevation
Figure 6-2	Plot of Atterberg Limits Test Results
Figure 6-3	Plot of Unconfined Compressive Strength vs Depth
Figure 7-1	Regional Slope Stability
Figure 7-2	Geomorphic Features Attributed to the Greenville Fault and the 1980 Greenville
	Fault Earthquake
Figure 8-1	Range in Shear Strength Properties Evaluated by Different Methods

Appendices	
Appendix A	Project Study Report
Appendix B	Profile Grade Sheets
Appendix C	Logs of Test Borings
Appendix D	Trench Logs
Appendix E	Geophysical Data
Appendix F	Laboratory Test Data
Appendix G	Corrosion Test Reports
Appendix H	Photographs
Appendix I	Slope Stability Calculations
Appendix J	Culvert Criteria Analyses
Appendix K	Pavement Design
Appendix L	Correspondence

EXECUTIVE SUMMARY

The following Geotechnical Design and Materials Report was prepared for the County of Alameda Public Works Agency to support design of the proposed realignment of a 1.61 km segment of Vasco Road between mileposts 3.4 and 4.3. The proposed improvements include new roadway alignment and grade, widened shoulders, and added passing lanes to mitigate tight curves, inadequate site distance, and narrow shoulders that do not meet current highway standards. The purpose of this report is to document subsurface geotechnical conditions, provide an assessment of anticipated site conditions as they pertain to the project, and to recommend design and construction criteria for the roadway portions of the project. This report also establishes a geotechnical baseline that may be used to evaluate changed conditions that may be encountered during construction.

The information and recommendations presented in the report were developed based on pre-existing information relevant to the project, site surface and subsurface investigations, laboratory testing, and engineering analyses. Prior to completion of this report, a draft report was prepared and submitted to the Alameda County Public Works Agency for review. Alameda County, in turn, retained DCM/Joyal Engineering to provide third party peer-review of the draft report. As described in the correspondence included in Appendix L, the DCM/Joyal Engineering review comments and suggestions have been incorporated in this document. Summary information regarding site conditions and engineering recommendations is presented below.

EXISTING CONDITIONS AND PROPOSED ALIGNMENT

The project area is characterized by rolling hills that are covered by grasslands, scattered chaparral vegetation, and scattered oaks. Elevations in the project area range from about 310 m on the hilltops at the northern end of the area to about 200 m in the drainage swale located at the southern end of the project. Surface drainage along the existing roadway and in the project area occurs primarily in ephemeral drainages and small intermittent streams. Water in the drainages flows generally from north to south.

The existing alignment of Vasco Road in the project area winds around the shoulder of a hill and is located adjacent to two natural drainage swales. Man-made features along the roadway and in the project area include buried high pressure gas lines, overhead electric transmission lines, and a mechanically stabilized embankment. The roadway is approximately 7 m wide and has narrow shoulders. The roadway climbs from an elevation of about 230 m at the southern end of the project

001860.001 E-1

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

area to an elevation of about 290 m at the northern end where the roadway conforms to earlier Vasco Road improvements that were associated with construction of the Los Vaqueros Reservoir. There are no major connector roads, cross streets, or traffic control facilities in the project area.

The preliminary preferred alignment for the project removes the curve around the natural hillside and approximately balances cut and fill quantities. The alignment results in excavations for the proposed alignment up to 28 m below original grade and embankments up to 23 m above original grade at the alignment centerline.

GEOLOGIC CONDITIONS

Geologic materials along the proposed route include recent alluvial deposits, landslide deposits, and clastic sedimentary rocks of the Cierbo and Panoche Formations. The Cierbo Formation occurs in the project area and consists principally of arkosic sandstone and conglomerate. The Cretaceous Panoche Formation consists of two relatively well-defined units that are located in the project area, including: (i) an arkosic sandstone and conglomerate unit that contains large concretions and minor shale units; and (ii) micaceous claystone with minor sandstone layers. As observed in the test trenches and in the cores and bore holes advanced for this investigation, both geologic formations in the alignment area are pervasively fractured and shattered and most bedding and discontinuity surfaces were observed to be smooth, planar, and occasionally polished and slickensided.

Numerous active and potentially active faults are located in the region and two traces or strands of the active Greenville fault cross the project area (one of the strands intersects the proposed alignment). Minor discontinuous surface rupture associated with the Greenville fault was observed during the 1980 Livermore earthquake sequence and consisted of about 2 cm of right-lateral slip and 3 cm to 4 cm of dip slip on the eastern strand at its intersection of Vasco Road and about 2 cm of right-lateral slip on the main strand of the fault at Vasco Road. Based on these observations, future surface rupture may occur during the operational life of the roadway and should be anticipated. Although the main strand and eastern strand of the fault are relatively well defined, potential future ground rupture could occur on either side of the mapped fault traces because the fault likely occurs as a "zone" rather than as singular linear features.

001860,001 E-2

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

EVALUATIONS

Earthwork Balance

Information provided by Alameda County indicates earthwork quantities for the project are approximately balanced. As a result, additional soil borrow requirements for embankment construction are not anticipated. However, if the final grading plan for the project indicates a fill shortage, one or more of the cut slopes may be flattened to provide any additional extra embankment material that might be needed. If required, it is also possible that adjacent undeveloped areas currently used for ranching could be used as borrow sources. However, investigation the adjacent undeveloped areas was not part of the current investigation and would be required prior to designating these areas as potential borrow sources.

Material Properties

Material properties for use in stability analyses and to support the development of design recommendations were evaluated based on field data, laboratory test results, observations of nearby cut slope performance, and published information. Based on these data, an average unit weight of 1,890 kg/m³ and an average in-situ moisture content of 18 percent were assumed representative of the cut slope geologic materials. Shear strength properties for analysis of cut slopes in the Panoche Formation between the main and eastern strands of the Greenville fault assumed residual strength conditions and included a cohesion intercept of 2.39 kPa and a friction angle of 20 degrees. These values are generally consistent with the estimated rock mass strength of the material and with the mid range residual strength values estimated using the results of laboratory testing and the Stark and Eids (1998) correlations that relate plasticity and percent clay with residual strength.

Embankment stability analyses also assumed an average unit weight of 1,890 kg/m³ and an average in-situ moisture content of 18 percent were representative of the compacted embankment fill materials which will be generated from the project excavations. The shear strength properties for analysis of embankments were estimated based on laboratory tests performed on samples recovered from the borings and on published ranges of shear strengths for compacted soils similar to those which will be generated from the excavations at the site. Based on these data, strength properties assumed for analysis of the embankment materials included a cohesion intercept of 7.2 kPa and a friction angle of 26 degrees.

001860.001 E-3

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Dynamic Analyses

Potential ground motions associated with an earthquake on one of the major faults in the project area were evaluated based on consideration of the high peak horizontal ground accelerations associated with an earthquake on the adjacent Greenville fault and the relatively lower peak horizontal ground accelerations associated with higher magnitude, more distant earthquakes on the San Andreas fault. The results of these analyses indicate that the earthquake-induced acceleration hazard at the project is dominated by an earthquake on the Greenville fault zone which could result in a project peak horizontal ground acceleration of 0.50g associated with a magnitude 5.9 maximum probable earthquake to about 0.77g associated with a maximum credible earthquake of magnitude 6.9. The analyses also indicate that relatively larger magnitude, far field events on the Hayward, San Andreas, and Calaveras faults could result in maximum median value site peak horizontal ground accelerations on the order of 0.1g to 0.2 for their respective maximum probable and maximum credible earthquakes. By way of comparison, using probablistic methods, the U.S. Geological Survey Seismic Hazard Mapping Project calculates a site peak horizontal ground acceleration of 0.50g has a 10 percent probability of being exceeded in 50 years.

Stability Analyses

For most slopes excavated in competent and intact bedrock, the most probable mode of failure is usually sliding of discrete rock blocks or wedges along discontinuity surfaces. For the proposed Vasco Road realignment, however, the project is located within a fault zone and site observations suggest the rock mass in this area is not characterized by well-defined and/or regular discontinuity sets that would control the stability of cut slopes. As a result, cut slope stability analyses were based on limit equilibrium methods assuming the rock mass strength summarized above and assuming a large number of circular and non-circular (wedge and block shaped) potential failure surfaces. Seismic stability analyses were initially performed using pseudostatic methods. Dynamic deformation analyses were performed for cases where the pseudostatic safety factor was less than 1.2 (these deformation analyses considered potential displacement of the cut slopes and embankments under near-field [Greenville fault] and far-field [San Andreas fault] earthquakes).

The results of the cut slope stability analyses indicated deep surface static safety factors that ranged from about 1.4 to 1.6 for the different conditions that were analyzed. The analyses further indicated shallower surface sliding safety factors that range from about 1.7 to 1.9. Dynamic deformation analyses indicated potential seismic displacements within acceptable limits (less than 30 cm) for the slope conditions that were evaluated. The results of embankment stability analyses indicate static

001860.001 E-4

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

safety factors that range from about 1.5 to 1.7. Seismic deformation assessments indicated potential seismic displacements were within acceptable limits for the embankment slope conditions that were evaluated.

Rippability

The results of a seismic refraction survey indicated three seismic layers could be distinguished below the refraction lines, including: an upper layer between about 2.1 m to 7.9 m thick that had a P-wave velocity ranging between 335 and 396 meters per second (mps); an intermediate layer ranging from about 2.1 m to 7.9 m below the ground surface with a P-wave velocity that ranged from 1,067 to 1,615 mps; and a deeper layer distinguished by P-wave velocities that ranged from 2,103 to 2,774 mps, and that occurred at depths below about 14.3 m to 11.0 m below the ground surface. The 20th edition of the Caterpillar Performance Handbook for the D9N Tractor indicates the first two seismic layers should be rippable with the right combination of tractor and ripper. The results also suggest that the third seismic layer may only be marginally rippable to nonrippable in some locations.

Grading and Compaction

The results of the density and moisture testing completed on samples removed from the areas where excavations are planned indicate an average in situ dry densities of 1,723 kg/m³. Compaction tests on bulk materials obtained from the exploratory test trenches indicated an average maximum dry density of 1,748 kg/m³. If the excavated materials are placed at average relative compaction of 92.5 percent, the excavated material will have a net shrinkage of about 2 percent (these calculations were based on a very small sampling of material, and as a result, may not be representative).

Free swell tests completed on core samples of the claystone indicated bedrock heave following deep excavation could be significant if it does not occur in a relatively uniform manner. As a result, inspection of the excavation and alignment subgrade during construction is important to evaluate whether the claystone is interbedded with low or non-expansive bedrock that, in turn, could lead to abrupt changes in the roadbed profile.

001860 001 E-5

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

RECOMMENDATIONS

Excavations

All excavations (permanent and temporary) should be required to proceed from the top of the cut down to the design toe of the cut and under no circumstance should the excavations be allowed to proceed from the toe to top by excavating a temporary cut that is steeper than the recommended permanent inclination. Excavations made through Panoche Formation materials, or otherwise between the two traces of the Greenville fault, should be designed at a relatively gentle inclination of 1V (vertical):3.5H (horizontal) or flatter. Excavations made in Cierbo Formation materials and other more competent materials can generally be designed at 1V:2H inclinations (horizontal drains should not be necessary in the Cierbo Formation cuts). Based on the conditions observed during this investigation, stability (buttress) fills may be required in localized areas where very weak rock which is subject to failure is exposed by the design excavation.

For the areas where the cuts are greater than 10 m deep, 70 m long horizontal drains spaced at approximately 10 m horizontally should be installed at the base of the cut (just above the roadway) and on each of the drainage and maintenance benches constructed at 8 m vertical intervals on the slope. The horizontal drains should generally be constructed as specified in the Caltrans Standard Specifications, although the actual locations, lengths, and spacing of the horizontal drains may be modified by the Geotechnical Engineer or Engineering Geologist during construction of the excavations.

Embankments

Subsurface exploration, laboratory testing, and stability analyses support embankment design in general accordance with the Caltrans Highway Design Manual (with the exception of the limited special design considerations that are presented in Section 12 of the report). Settlement of the embankments will result from consolidation and compression of colluvial and alluvial foundation soils which are left in place and from consolidation and secondary compression of the embankment fill itself. However, the potential for consolidation and compression of the foundation soils can be reduced and virtually eliminated by removal of shallow soils prior to placement of embankment fills. Compression of the embankment fills will occur almost entirely during construction and can be addressed as the fill is placed. Nonetheless, because the embankment thicknesses will vary along the roadway, some differential settlement of the embankments should be anticipated. Post-construction differential movement of the embankments can be mitigated by placing less expansive

001860.001 E-6

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

soils in the uppermost portions of the embankments and/or by controlling the relative compaction and moisture content of different zones of the embankment.

Earth Retaining Structures

No permanent earth retaining structures are currently planned as part of this project. However, one or more permanent earth retaining structures may eventually be required to limit the lateral extent of one or more of the embankments. In general, any of the following different types of earth retaining structures could effectively be used in the specific sections of embankment where a permanent composite slope steeper that 1V:2H is required: conventional retaining walls such as Caltrans standard cantilever reinforced concrete retaining walls; gravity retaining systems such as Caltrans standard cribwalls or binwalls; proprietary mechanically stabilized embankments; reinforced soil slopes; or properly designed variations or combinations of systems.

Culverts

Culverts planned for this project are anticipated to be 1 m in diameter or smaller. As a result, no special culvert foundation recommendations are necessary. However, the results of laboratory testing indicate that the soil and bedrock at the site are generally acidic and are corrosive to very corrosive to steel and concrete. As a result, culvert steel and concrete should be sulfate and acid resistant (soil chloride test results indicate chloride resistant materials should not be necessary). As an alternative to steel and concrete, plastic culvert pipe may be considered for use on the project to address the aggressive soil conditions.

Pavements

The results of the geotechnical investigation and laboratory testing indicate a pavement structural section consisting of flexible asphalt concrete pavement should be used for the entire length of the alignment. Rigid Portland cement concrete pavement is not recommended due to the variable quality and corrosivity of the basement soil, the likely occurrence of minor differential movement between the cut and fill portions of the alignment, and the presence of several active fault traces that cross the alignment. An asphalt-treated permeable base layer should be placed immediately below the asphalt concrete pavement to intercept surface water seeping through the structural section. In the event adverse groundwater or drainage conditions are encountered that could saturate and soften the subgrade, a prime coat may be applied to limit erosion of fines from the underlying material.

001860 001 E-7

un.			

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

ADDITIONAL WORK

Based on Alameda County comments, some additional geotechnical investigation and evaluation is anticipated prior to finalizing design of the new alignment. This work will likely include: completion of additional exploratory borings at two locations where the County is considering constructing retaining walls; and completion of an additional boring near the top of the planned 1V:3.5H cut slope where representative data are sparse or lacking. The results of the additional investigations will be summarized in design memoranda that will supplement this report.

001860 001 E-8

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

1.0 INTRODUCTION

Vasco Road is an existing north-to-south arterial that runs between Tesla Road in Alameda County and Camino Diablo Road in Contra Costa County. The road is part of the Metropolitan Transportation System and is also defined as a route of regional significance by Contra Costa County. In 1996, a 20.9 km portion of Vasco Road in Contra Costa County was relocated and improved as a result of the construction of Los Vaqueros Reservoir. The relocated segment from 0.8 km south of the County line to Camino Diablo Road in Brentwood was constructed to current highway standards. The remaining 4.8 km segment in Alameda County does not meet these standards because it has tight curves, inadequate site distance, and narrow shoulders.

As a result of these poor roadway geometrics in Alameda County, public transit does not serve this corridor. Accordingly, improvements to the Alameda County portion of the roadway have been proposed to provide all users of Vasco Road with a safer facility. These improvements include new roadway alignment and grade, widened shoulders, and added passing lanes along an approximately 1.61 km segment of the road within unincorporated Alameda County between milepost (MP) 3.4 and MP 4.3. The location and vicinity of the proposed project are shown in Figure 1-1.

The following Geotechnical Design and Materials Report (GDMR) was prepared for the County of Alameda Public Works Agency to support design of the proposed realignment. The GDMR follows the general format and guidance presented in the Caltrans October 2, 1995 draft document Geotechnical Design Reports - Purpose, Development, and Application. Information and recommendations presented in the report were developed based on:

- Review of published data and information relevant to the project and project area;
- Review of unpublished information relevant to the project and project area;
- Site reconnaissance and geologic mapping;

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

- Subsurface exploration including continuous rock coring, soil boring, and test trenches along the proposed realignment;
- Geophysical testing along the proposed realignment project;
- Laboratory testing of samples recovered from the site corings, borings, and test trenches; and
- Engineering evaluations.

The purpose of the GDMR is to document subsurface geotechnical conditions, provide analyses of anticipated site conditions as they pertain to the project described herein, and to recommend design and construction criteria for the roadway portions of the project. This report also establishes a geotechnical baseline that may be used to assess changed conditions that may be encountered during construction. The GDMR is intended for use by the project roadway design engineer, construction personnel, bidders, and contractors.

001860.001 1-2

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

2.0 EXISTING FACILITIES AND PROPOSED IMPROVEMENTS

2.1 EXISTING FACILITIES

The existing alignment of Vasco Road in the project area is shown in Figure 2-1. As shown in this figure, the existing roadway winds around the shoulder of an existing hill and is located adjacent to two natural drainage swales. Presently, the land along the existing roadway is used for livestock grazing and several landslides are located in the natural slopes adjacent to the project. As described in Section 4.3, man-made features along the roadway and in the project area include buried high pressure gas lines, overhead electric transmission lines, and a mechanically stabilized embankment.

The roadway is approximately 7 m wide and has narrow shoulders. The roadway climbs from an elevation of about 230 m at the southern end of the project area to an elevation of about 290 m at the northern end where the roadway conforms to earlier Vasco Road improvements that were associated with construction of the Los Vaqueros Reservoir. There are no major connector roads, cross streets, or traffic control facilities in the project area. An unpaved ranch road is accessed from the western side of Vasco Road near the southern end of the project area and another unpaved ranch road is accessed from the eastern side of the road near the northern end of the project.

The are no major cut slopes adjacent to Vasco Road in the proposed project area. One small cut slope with a maximum height of several meters and an inclination on the order of 1V:2H (vertical: horizontal) is located adjacent to the western shoulder of the current roadway near the midpoint of the project. This cut was excavated in sandstone and site observations do not show evidence of instability or excessive erosion associated with the cut.

At the north end of the project area there is artificial fill which supports the east half of the existing roadway. The fill appears to have slumped previously and there appears to have been a landslide repair in one area. However, maintenance and operations personnel from the County's road

001860.001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

department are unaware of any previous remedial grading work which may have been completed in this section of the road.

2.2 PROPOSED IMPROVEMENTS

A 1998 Project Study Report (PSR) to support construction of the proposed project was developed by Alameda County in cooperation with Contra Costa County, the Contra Costa County Transportation Authority, and the Cities of Livermore, Brentwood, and Antioch. The PSR is included in Appendix A, and as shown, identified and defined three potential alternatives for the roadway improvements, including:

- (1) Straight Alignment Basic Profile (Alternative 1). The alignment of this alternative is generally straight between conform points that connect to the existing pavement with a R-396 m curve and four percent superelevation at each end. Because the profile of this alternative does not fit the existing grade of the newly constructed Vasco Road, about 305 m of the new road may need to be reconstructed. However, this profile would meet existing grade at the south end conform and would provide flexibility for the next phase of the project. The maximum height of cut for this profile would be about 30.5 m and earthwork for this project would require about 420,000 cubic meters (m³) of roadway excavation.
- (2) Straight Alignment High Profile (Alternative 2). This alternative is similar to Alternative 1 except that it has a higher profile. As a result, the maximum height of cut is only about 24 m and earthwork is estimated to be about 265,000 m³. Alternative 2 will require about 610 additional meters to conform at the south end, although only about 180 m of new road reconstruction would be required at the north end of the alignment.

001860.001 2-2

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

(3) Reverse Curves Alignment (Alternative 3). The profile of Alternative 3 is the same as the profile for Alternative 1. However, the alignment of Alternative 3 is for the most part winding, with R-366 m double reverse curves between conform points. Superelevations of four percent are required throughout most of the project and the maximum grade is eight percent. This alternative may require about 305 m of new road reconstruction and the maximum height of cut is about 26 m. Alternative 3 would require about 235,000 m³ of roadway excavation.

The typical roadway section for each of these alternatives includes two 3.7 m lanes with 2.4 m shoulders, 1V:2H side slopes, and minimum 3.0 m distance between the catch point and the right of way fence line. The straight alignment basic profile and straight alignment high profile are shown in Figure 2-1. The reverse curves alignment is only shown in Appendix A because it was eliminated from consideration by the County prior to initiating the work associated with this GDMR.

2.3 PRELIMINARY PREFERRED ALTERNATIVE

The preliminary preferred alignment (approximately 20 percent design level) for the project is shown in Figure 2-1. (Note that the stationing shown in this figure and report may not correspond with the most recent stationing shown on project plans due to stationing changes made by the County during the completion of the GDMR). This alignment is generally intermediate between the basic profile and the high profile alignment. The alignment results in excavations for the proposed alignment up to 28 m below original grade and embankments up to 23 m above original grade at the alignment centerline. It is our understanding that the preliminary preferred alternative approximately balances cut and fill quantities without regard to bulking or shrinkage factors. The final roadway section and adjacent cut slopes may be modified based on information included in the GDMR.

001860.001 2-3

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

3.0 PERTINENT REPORTS AND INVESTIGATIONS

Several project-specific reports and relevant investigations for nearby facilities were available for review as part of this project. In addition, stereo-paired aerial photographs were evaluated to better characterize site geomorphic features related to landsliding and fault activity. Principal documents and aerial photographs that were reviewed included:

- The 1998 PSR to support construction of the proposed project that was developed by Alameda County in cooperation with Contra Costa County, the Contra Costa County Transportation Authority, and the Cities of Livermore, Brentwood, and Antioch. The PSR is included in Appendix A.
- Woodward-Clyde Consultants (1992) Materials Report, Vasco Road Relocation, Contra Costa and Alameda Counties, California; unpublished report prepared for the Contra Costa Water District Los Vaqueros Project, January 6.
- Woodward-Clyde Consultants (1992) Foundations Report, Vasco Road Relocation, Contra Costa and Alameda Counties, California; unpublished report prepared for the Contra Costa Water District Los Vaqueros Project, January 22.
- Pacific Aerial Surveys photographs AV-253-33-29, AV-253-33-30, and AV-253-33-31 dated May 22, 1957 at a scale of 1:12,000 and photographs AV-6100-135-26, AV-6100-135-27, and AV-6100-135-28 dated August 17, 1998 at a scale of 1:12,000.

In addition to these documents, a number of published soils, geologic, and geotechnical data sources were used to support the information, conclusions, and recommendations presented in this report. As applicable, these data sources are referenced throughout this report (a reference list follows the main body of text).

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

4.0 PHYSICAL SETTING

4.1 CLIMATE

The region of the proposed realignment project has a Mediterranean climate characterized by mild to moderately cold and wet winters, and hot, dry summers. Winds in the area are generally controlled by marine circulation into the Central Valley (located east of the area) and may be very strong in the regional area.

Average daily temperatures typically range from lows of about 4° C in December and January to highs on the order of 24° C to 27° C in July. Temperature extremes in the area range from highs of about 43° C typically occurring from July to September, to lows on the order of -4° C that typically occur in December or January. In general, sub-freezing temperatures occur in short episodes of several days duration. As a result, freeze-thaw conditions are not expected to have a significant influence on the long-term performance of soil or rock materials in the area.

The mean annual precipitation in the area ranges from approximately 25 cm in the valley areas to 51 cm at the higher elevations. Intermittent wet cycles of one to two years duration are known to occur in which rainfall levels can approach twice the mean annual levels.

4.2 TOPOGRAPHY AND DRAINAGE

The topography of the project area is shown in Figure 2-1 and topography in the regional area is shown in Figure 4-2. The topography is characterized by rolling hills covered predominantly by grasslands and scattered chaparral vegetation. Scattered oaks are located throughout the area. Elevations in the project area range from about 310 m on the hilltops at the northern end of the area to about 200 m in the drainage swale located at the southern end of the project.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Surface drainage along the existing roadway and in the project area occurs primarily in ephemeral drainages and small intermittent streams. In the project area, these drainages have developed along approximate traces of the Greenville fault. Water in the drainages flows generally from north to south.

4.3 MAN-MADE AND NATURAL FEATURES OF ENGINEERING AND CONSTRUCTION SIGNIFICANCE

The land along the existing roadway and in the project area is used for livestock grazing and is largely undeveloped. However, several man-made features will affect the project during construction. These features are shown in Figure 4-1 and include:

- A buried Pacific Gas and Electric Company (PG&E) 55.9 cm gas line that is located within and parallels much of the proposed project alignment;
- A buried PG&E 91.4 cm gas line that intersects the proposed alignment near its southern end:
- A buried PG&E 50.8 cm gas line that connects the 55.9 cm and 91.4 cm gas line at the northern end of the project;
- Overhead electric transmission lines that intersect the alignment at the southern end of the project and that trend along the western and eastern edges of the alignment;
- Artificial fill that is present along the east half of the existing road where the new alignment will conform to the existing road on the north end;
- A mechanically stabilized embankment (MSE) retaining wall along the west side of the north end of the project conform area; and
- A livestock pond located west of the alignment at the southern end of the project.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

In addition to these features, several unpaved roads used to access ranch property intersect exiting Vasco Road in the project area.

4.4 REGIONAL GEOLOGY AND SEISMICITY

4.4.1 Geologic Setting

The regional geologic setting in the vicinity of the road alignment consists of several formations from Tertiary to Cretaceous in age that have been uplifted and tilted during the formation of the Mount Diablo anticline and the associated Mount Diablo piercement. A regional geologic map is presented in Figure 4-2 and geologic conditions in the vicinity of the road alignment are shown in Figures 4-3 and 4-4 (detailed geologic information along the proposed road alignment is presented in Section 7).

As shown in Figure 4-2, geologic materials along the proposed route include recent alluvial deposits, landslide deposits, and clastic sedimentary rocks of the Cierbo, Neroly, and Panoche Formations. General characteristics of these units (from youngest to oldest) include:

- Recent Alluvium/Colluvium (Qal/Qc). Recent alluvial and colluvial deposits exist throughout the area in the valleys, canyons, and washes. The alluvium typically consists of interbedded clay and silt, with lesser amounts of sand.
- Landslide Deposits (Qls). Landslides occur in the area as shallow debris slides and as deeper rotational or block features that have developed in the bedrock. The shallow deposits usually consist of clay, silt, and highly weathered bedrock. The deeper deposits typically include the upper soil horizons and variably weathered, sheared, and fractured blocks of the parent bedrock material.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

- Cierbo and Neroly Formations (Tmss). Within the regional area, the Tertiary age Cierbo and Neroly Formations typically consist of blue to gray pebbly sandstone, pebble conglomerate, arkosic sandstone, and nonmarine and brackish marine claystone, siltstone, and sandstone. The Cierbo Formation occurs in the project area and consists principally of arkosic sandstone and conglomerate.
- Panoche Formation (Kp, Kps). The Cretaceous Panoche Formation consists of two relatively well-defined units that are located in the project area, including: (i) an arkosic sandstone and conglomerate unit that contains large concretions and minor shale units; and (ii) micaceous claystone with minor sandstone layers.

4.4.2 Seismic Setting

The San Francisco Bay region is located in an area of high seismicity and has a documented history of strong earthquakes. Numerous active and potentially active faults are located in the region and one active fault (the Greenville fault) crosses the project area (Figure 4-5 and Table 4-1). Most of the regional faults are related to the San Andreas fault system and approximately parallel the northwesterly structural trend of the region. Major regional systems within about 100 km of the project area include the northern San Andreas fault zone, the Hayward fault zone, the Calaveras fault zone, the Healdsburg-Rodgers Creek fault zone, the Concord-Green Valley fault zone, and the Greenville fault zone. The most significant of these faults include:

• Concord Fault. The Concord fault is located about 26 km from the site and forms the abrupt and linear eastern boundary between the Ygnacio Valley alluvium and the bedrock of the Diablo Range. This fault may represent a northward extension of the Calaveras fault based on similarities in relative motion and offset (Minch and Turner, 1979; Sharp, 1973). The Concord fault is considered active based on a historic 5.4 Richter magnitude earthquake attributed to the fault, evidence of right-lateral tectonic creep (Pampeyan, 1979; Helley and Herd, 1977), geomorphic features

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

indicative of faulting, and microseismic events along the trace of the fault (Contra Costa County Planning Department, 1975).

- Green Valley Fault. The active Green Valley Fault is located about 44 km from the site and is believed to be an en echelon extension of the Concord fault. The fault trace is well-marked by very fresh topographic features such as aligned saddles and notches, linear depressions, springs, sags, and well-defined shutter ridges (Helley and Herd, 1977). According to Pampeyan (1979), several areas of tectonic creep are associated with the Green Valley fault.
- **Greenville Fault**. The active Greenville fault intersects the project site. The Greenville fault is an approximately 94 km long, 1 km wide zone of right-lateral strike-slip faults. The realignment project lies along the 34 km long central Marsh Creek segment of the fault. Surface rupture of this portion of the fault was noted in the realignment area following the January 24, 1980 magnitude 5.8 and January 26, 1980 magnitude 5.2 earthquakes that occurred on the Greenville fault (Bonilla et al., 1980).
- San Andreas Fault. At its closest point, the active San Andreas fault is located approximately 61 km west of the site and marks the boundary of the American and Pacific plates of the earth's crust. The fault extends from Mexico to northern California and exhibits geomorphic evidence of recent faulting along much of its length. The San Andreas fault has generated two great historical earthquakes with magnitudes greater than 8 (the 1857 Fort Tejon and the 1906 San Francisco earthquakes).
- **Hayward Fault**. The Hayward fault is located about 29 km west of the site and strikes in a northwesterly direction from southern Santa Clara County to San Pablo. The Hayward fault is active based on tectonic creep along portions of the fault zone and on two historic earthquakes with magnitudes on the order of 6-1/2. These

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

earthquakes occurred in 1836 and 1868 and are believed to have been associated with surface rupture along the trace of the fault.

- Calaveras Fault. The active Calaveras fault is located approximately 19 km from the site. A strong historic earthquake occurred on the fault in 1861. The magnitude of this earthquake was on the order of 6-1/2 and was associated with surface rupture along the fault trace (Pampeyan, 1979).
- Healdsburg-Rodgers Creek Fault. The Healdsburg-Rodgers Creek fault is a geologically active fault occurring along the west side of the Sonoma Mountains and is located approximately 65 km from the site. The Healdsburg-Rodgers Creek fault is generally parallel to the San Andreas system and is reported by Hart et al (1983) to offset late Cenozoic units and Holocene alluvium, with inferred right-lateral strikeslip movement. In addition to geomorphic evidence, historic seismicity has been reported for the Santa Rosa area.

4.5 SOIL SURVEY MAPPING

Soils in the project area are included in the Altamont-Diablo Association (Welch et al., 1996) that consists of about 25 percent Altamont soils, about 25 percent Diablo soils, about 30 percent Linne soils, and about 20 percent Los Osos, Pescadero, and Solano soils. The Altamont, Diablo, and Linne soils formed in material that weathered from interbedded sedimentary rock. They are generally moderately fine to fine textured, neutral to mildly alkaline, and very hard. The Welch et al. (1996) soil survey maps indicate the project area is underlain primarily by Altamont clay. The representative profile for this soil includes:

• From 0 to 71 cm is a dark-brown clay with a strong to moderate prismatic structure that breaks to a strong to moderate blocky structure. This soil horizon is very hard when dry, very firm when moist, sticky and very plastic when wet, and is neutral to mildly alkaline.

...

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

- From 71 to 94 cm, the soil is a finely mottled dark-brown and dark yellowish-brown clay with a few whitish lime films and nodules. The soil exhibits a weak prismatic structure that breaks to a moderate blocky structure that is very hard when dry, very firm when moist, sticky and very plastic when wet, and is mildly alkaline.
- From 94 to 127 cm, the soil is a yellowish-brown silty clay with many whitish lime segregations and nodules. This horizon shows a weak blocky structure that is very hard when dry, very firm when moist, plastic and sticky when wet, and is moderately alkaline.
- Soil at depths greater than 127 cm typically consists of shattered shale and finegrained sandstone.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

5.0 FIELD EXPLORATION

The field exploration program for the project included the following four phases of work:

- The first phase of field exploration was performed between September 20 and October 24, 2000 and included using global positioning satellite (GPS) equipment to mark the proposed centerlines of the preliminary alignment alternatives and the proposed test boring locations.
- The second phase of field exploration was performed between October 25, 2000 and December 19, 2000 and included advancing 16 continuous cores and exploratory borings to characterize the subsurface materials and to recover samples of soil and bedrock for laboratory testing. The locations of borings are shown in Figure 4-3 and the logs of borings are included in Appendix C. Photographs of the recovered cores are included in Appendix H.
- The third phase of the field exploration was performed between November 20, 2000 and December 19, 2000 and included excavating and logging six exploratory trenches to assess soil overburden depth, identify fracture zones, measure bedrock orientations, and recover samples for laboratory testing along the proposed alignments. Trench locations are shown in Figure 4-3 and the trench logs are included in Appendix D.
- The fourth phase of field exploration was performed between December 4, 2000 and January 9, 2001 and included completion of a seismic refraction survey to assess the depth and rippability of the subsurface materials along the proposed alignments. The results of the seismic refraction survey are included in Appendix E.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Information and data from these phases of work are included in the appendices to this report and summary information is presented below.

5.1 SUBSURFACE EXPLORATION

5.1.1 Drilling and Sampling

Test borings for this evaluation were advanced by PC Exploration, Inc. of Roseville, California using rotary wash, hollow stem auger, or solid stem auger drilling techniques. Upon completion of drilling activities, all borings with the exception of B-5 were backfilled to the ground surface with cement-bentonite grout. As described in Section 5.4, Boring B-5 was completed as a standpipe piezometer following completion.

All drilling operations were observed in the field by Cal Engineering & Geology personnel. Logging, classification, and storage of soil and bedrock samples was performed in general conformance with the guidelines and procedures presented in the Caltrans *Soil and Rock Logging Classification Manual - Field Guide* and the U.S. Bureau of Reclamation *Engineering Geology Field Manual*. Logs of the borings are included in Appendix C and Appendix H includes photographs of selected samples recovered during drilling operations.

Depending on boring location and type, samples were either collected continuously using HQ wireline core equipment or collected at selected intervals with a Modified California Sampler that was driven into the subsurface materials at the bottom of the boring using a 63.5 kg safety hammer with a free-fall of 762 mm. The blow counts required to embed the sampler in intervals of 152 mm (or less) were recorded on the field exploratory test boring logs included in Appendix C.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

5.1.2 Trenches

Six exploratory trenches were excavated by Williams Grading of Byron, California using a Hitachi 160LC excavator equipped with an approximately 0.8 m wide bucket. The trench depths ranged from about 1.5 m to 4.6 m below the ground surface and temporary shoring was installed as necessary to allow access to the trenches. Following wall cleaning, the trench walls were logged by Cal Engineering & Geology personnel and bulk samples of the excavated materials were collected for laboratory testing. Upon completion, the excavations were backfilled with the excavated materials. The backfill was generally placed in thin lifts and compacted with the bucket of the excavator, with the upper 0.5 m of backfill additionally compacted by track-walking with the excavator.

5.2 GEOLOGIC MAPPING

Surface geologic mapping was performed along the proposed alignments between October 2000 and December 2000. The geologic mapping was supplemented by evaluation of aerial photographs of the project area. The purpose of this work was to map geologic conditions exposed at the ground surface and to collect geologic structure information for use in evaluating the alternative alignments. However, because few bedrock outcrops were observed in the field and only very limited bedrock was exposed in road cuts along Vasco Road, only limited geologic information and data were collected during this effort. The geologic map for the site is presented in Figure 4-3. Geologic cross sections through the area with the highest anticipated cut slopes are shown in Figure 4-4.

5.3 GEOPHYSICAL STUDIES

A seismic refraction survey was performed between December 4, 2000 and January 9, 2001 by JR Associates of San Jose, California to assess bedrock depth and rippability along the proposed alignments (the JR Associates report is included in Appendix E). Data were collected along two seismic refraction lines that were about 244 m long and contained 24 geophones and three shot points. Shot points were at the beginning, middle, and end of each line. The locations of the seismic refraction lines are shown in Appendix E and in Figure 4-4. Seismic energy was created using small

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

charges consisting of 0.2 kg of ammonium-nitrate based explosives. Vibration monitoring was performed during the seismic survey to assess shot vibrations along the PG&E gas transmission line. As described in Appendix E, the vibration monitoring indicated peak particle velocities at the transmission line were on the order of 0.018 cm per second (cps) to 0.18 cps.

5.4 INSTRUMENTATION

Boring B-5 was converted to a 31.5 mm standpipe piezometer at the completion of drilling to evaluate the depth to groundwater along the alignment. The piezometer consisted of a 6 m section of slotted PVC pipe that was threaded to about 16.8 m of solid PVC casing. The piezometer was backfilled with clean, medium-grained sand to a depth of approximately 13 m below the ground surface. Bentonite pellets were placed on top of the sand to approximately 7.5 m below the ground surface, and the remainder of the boring was backfilled with cement-bentonite grout to the ground surface.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

6.0 GEOTECHNICAL TESTING

6.1 IN SITU TESTING

In situ geotechnical testing performed for this study included Standard Penetration Testing (SPT) during soil boring operations and the geophysical testing described in Section 5.3.

6.2 LABORATORY TESTING

Laboratory tests were performed on selected samples recovered from the borings. Table 6-1 summarizes the tests performed and the test sample locations. As summarized in this table, laboratory tests included R-value, compaction, unconsolidated-undrained triaxial shear, direct shear, unconfined compression, compression-swell, moisture-density, Atterberg limits, grain size, and corrosion testing. Complete laboratory tests results are presented in Appendix F and summary results are presented below.

6.2.1 Index Properties

Index property tests performed for this study included moisture-density, hydrometer, and Atterberg limits evaluations. The results of these tests are summarized in Table 6-2 and Table 6-3. The moisture-density data are plotted vs. sample depth in Figure 6-1. Atterberg limits test results are plotted in Figure 6-2.

6.2.2 Strength Properties

Shear strength tests performed for this evaluation included direct shear and unconsolidated-undrained triaxial tests. The results of these tests are summarized in Table 6-4. The results of unconfined compression tests are summarized in Table 6-5 and are plotted vs. depth in Figure 6-3.

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Tables 6-3 and 6-4 also summarize the inferred residual friction angle for six samples based on plasticity index and the percent of clay (soil finer than 0.005 mm) present in the sample.

6.2.3 Compaction and Consolidation

Compaction tests were performed on bulk samples recovered from the test pits and from a bulk sample composited from Borings B-3 and B-4. Limited consolidation tests were performed because most of the alignment will be constructed on excavated bedrock or fill placed on bedrock. However, two tests were performed to evaluate the swell properties of the materials. The results of the compaction and consolidation tests are summarized in Table 6-6.

6.2.4 Durability and Corrosive Properties

Slake tests were performed to evaluate native material durability and native material corrosive properties were evaluated based on pH, resistivity, electrical conductivity, sulfate, and chloride tests on samples recovered from the borings and test pits. The results of these tests are summarized in Table 6-7. The corrosion test results are included in Appendix G.

6.2.5 Resistance Testing

R-value tests were performed on selected samples recovered from the test pits to provide resistance information for pavement design. The results of these tests are included in Table 6-7 and the laboratory data sheets are included in Appendix F.

001860 001 6-2

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

7.0 GEOTECHNICAL CONDITIONS

7.1 SITE GEOLOGY

Geology of the project area is shown in Figures 4-2 and 4-3. Geologic formations exposed in the project include bedrock of the Panoche and Cierbo Formations. As shown in the geologic map, alluvium is present in the draw near the southern end of the alignment and several apparent landslides were observed in the project area. Lithologic and structural features of the different units are summarized below.

7.1.1 Lithology

7.1.1.1 Cierbo Formation (Tmss)

As described by Dibblee (1980), the Tertiary Upper Miocene age Cierbo Formation consists of blue to gray pebbly sandstone, nonmarine and brackish marine claystone, siltstone, sandstone, and pebble conglomerate, and arkosic sandstone. In the project area, the formation consists principally of arkosic sandstone and conglomerate. The Cierbo Formation is generally equivalent to the Briones Formation of Crane (1990) and Majmumdar (1991).

Where exposed in the test trenches, the Cierbo Formation typically consisted of mottled whitish-grey to orange-brown pebble conglomerate in a fine- to medium-grain sand matrix that was highly weathered, soft, and friable. Occasional round to subround cobbles were noted in some horizons. No discernable structure was noted in the test trenches and all trenches were dry. Tan to whitish-grey massive sandstone was observed less frequently than the conglomerate. The sandstone was generally fine- to medium-grain, highly weathered, soft, friable, and showed no discernable structure.

001860.001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Logs of borings typically describe the Cierbo Formation material as fine to medium-grained orange-brown sandstone with occasional pebbles. Several borings advanced through the Cierbo Formation encountered light brown to yellow-brown clay and claystone horizons.

7.1.1.2 Panoche Formation (Kp, Kps)

The Cretaceous Panoche Formation consists of two relatively well-defined units: (i) an arkosic sandstone and conglomerate unit that contains large concretions and minor shale units; and (ii) micaceous claystone with minor sandstone layers. The Panoche Formation present in the immediate vicinity of the alignment consisted primarily of the micaceous claystone with minor sandstone units (Kps in Figure 4-3). Near-surface material encountered in the test trenches included highly weathered, soft, and friable fine-grained sandstone and highly weathered interbedded siltstone, sandstone, and claystone. In all cases, the Panoche Formation materials exposed in the trenches were pervasively fractured and broke apart under a light hammer blow. Panoche Formation materials encountered in the borings were most frequently described as thinly bedded claystone, with lesser sandstone and siltstone horizons and interbeds.

7.1.2 Structure

Only very limited geologic structure could be observed at the ground surface and in the near surface test trenches. The near surface information indicated the geologic units east of the Greenville fault trend in a northwesterly direction and dip about 40 to 50 degrees to the west. Bedding dips measured on samples of Panoche Formation recovered from the core holes varied from about 20 to 70 degrees and averaged about 40 degrees (because oriented core drilling techniques were not used on this project, the strike of bedding could not be evaluated based on the boring samples). As shown in Figure 4-3, bedding did not appear to be continuous between drilling locations and it was not possible to correlate the different claystone and sandstone horizons across the site. As observed in the test trenches and in the cores and bore holes, both geologic formations in the alignment area were pervasively fractured and shattered, most likely due to tectonic shearing associated with the Greenville fault. In general, most bedding and discontinuity surfaces were smooth, planar, and

001860 001 7-2

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

occasionally polished and slickensided. Shear zones were identified in boring B-3 and in test trenches TP-1 and TP-2.

7.1.3 Landslides

Natural slope stability in the project area was evaluated based on site reconnaissance, review of published information, and review of aerial photographs of the site and surrounding area. Regional landslides occurring in natural slopes around the project area are shown in Figure 7-1. As shown in the site geologic map (Figure 4-3), several landslides not identified in Figure 7-1 were observed in the project area (for the purposes of this project, these landslides are identified as LS-1, LS-2, LS-3, and LS-4).

Landslide LS-1 intersects the northern end of the proposed alignment and appears to be a near-surface feature that developed in colluvium and the underlying weathered bedrock of the Panoche Formation clayey shale and siltstone unit (Kps). Boring B-7 was advanced through this landslide. Although the slide plane was not conclusively identified in this boring, the location of the landslide toe approximately at the existing roadway, the loss of circulation at shallow depths, and review of the core photographs for this boring suggest that the base of the landslide is on the order of 3 to 5 m below the ground surface at this location.

Landslide LS-2 developed in the Cierbo Formation (Tmss) and is located near the central portion of the project, west of the proposed alignment. This landslide appears to be an old feature (not recently active) based on its subdued geomorphic characteristics and lack of evidence of recent movement. The toe of this landslide probably occurred in the drainage that is coincident with the main strand of the Greenville fault. As currently defined, the proposed roadway alignments should not intersect this landslide and it is unlikely that the landslide will affect the roadway.

001860.001

¹ Figure 7-1 is a reproduction of a published regional landslide map and provides indication of local large-scale regional landslides mapped by others (Nilsen, 1975). As a result, this map is not intended to illustrate site-specific landslides mapped as part of this project.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

As shown in Figure 4-3, two landslides (LS-3 and LS-4) were tentatively located between the main and eastern strands of the Greenville fault. The presence of these landslides is questionable because definitive geomorphic evidence of landsliding was not apparent on the ground surface and clear evidence of sliding was not noted in the borings or test trenches in this area. However, evaluation of aerial photographs provides some indistinct evidence of past slides in this area. These slides, if present, are likely very old features that developed in the Panoche or Cierbo Formations and may represent zones of relatively weaker bedrock that may be encountered during the roadway realignment.

7.1.4 Rock Mass Strength

The strength of *intact rock* estimated by laboratory testing is frequently higher than the strength of a *rock mass* because of the discontinuities such as bedding planes and fractures within a rock mass body. Because the strength of the rock mass in the re-alignment area is probably lower than the strength of the intact rock, the rock mass strength may be more appropriate for use in stability analyses.² However, because of the large sample size required to be representative, it is difficult (if not impossible) to determine the shear strength of fractured rock masses by conventional testing methods. For this reason, empirical methods have been developed to estimate this property (these empirical methods have been widely used for rock mechanics applications in civil and mining projects).

Commonly used methods for the evaluation of rock mass shear strength have been developed by Hoek and Bray (1977), Hoek and Brown (1988, 1980), Bieniawski (1989), and Serafim and Pereira (1983). All of the methods used to assess the strength of the rock mass rely on the Geomechanics Classification System, or Rock Mass Rating System (RMR) shown in Table 7-1. As shown in this table, a number of different parameters are used to classify the rock mass including: the uniaxial

²This is because stability analyses using rock mass strengths will typically give lower factors of safety than stability analyses performed using the results of strength tests on intact rock (use of intact rock strength would be appropriate for rock masses without discontinuities).

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

compressive strength of the rock material; the rock quality designation (RQD) of the rock mass; the spacing and condition of discontinuities within the rock mass; groundwater conditions anticipated for the excavation; and the orientation of bedrock discontinuities with respect to the excavation orientation(s). Based on data collected during field and laboratory testing programs for the realignment project, the following properties were used to classify the rock mass:

- Uniaxial Compressive Strength of Rock Material. Data from laboratory testing performed on samples collected from borings advanced in the area of maximum cut indicate the unconfined compressive strength of the Panoche Formation claystone, siltstone, and sandstone varies from about 0.058 MPa to 1.51 MPa, with average values on the order of 0.350 MPa. Based on these data, uniaxial compressive strengths less than 1 MPa were judged to be representative of the overall rock mass in the project area.
- Rock Quality Designation (RQD). RQD data from the different borings advanced in the project area indicate RQD that varied from 0 to 100 percent and averaged about 77 percent.
- Spacing and Condition of Discontinuities Within the Rock Mass. Observations from the test pits and borings in the project area indicate the rock mass is generally highly fractured, with discontinuity spacing that varies from less than 2.5 cm to more than 1 meter in the greatest dimension. Although relatively massive beds of sandstone are present, site observations indicate these massive beds only occur locally. Discontinuity surfaces observed in the borings were frequently smooth and polished.
- Anticipated or Observed Groundwater Conditions. No groundwater was
 encountered in any of the test trenches at the time of logging. However, the
 piezometer installed in Boring B-5 indicates groundwater occurs above the bottom

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

of the proposed excavation. Accordingly, it is unlikely that the excavation would be completely dry and adverse groundwater conditions were assumed for this analysis.

Orientation of Discontinuities with Respect to the Proposed Excavation. The
orientation of the discontinuities with respect to the excavation will depend on the
orientation of the excavation. Because the orientation of excavated slopes in the realignment area will vary and the rock mass is highly fractured with a number of
possible kinematically unfavorable orientations, the discontinuity orientation factor
assumed for this evaluation was assumed to be fair.

Based on these assumptions and the RMR system shown in Table 7-1, the rock mass underlying the proposed expansion area is classified as poor (Class IV) to very poor (Class V) rock. Strength properties for these classifications are summarized below:

APPROXIMATE ROCK MASS STRENGTH PROPERTIES BASED ON ROCK MASS RATING					
STRENGTH COMPONENT	CLASS IV (Poor Rock)	CLASS V (Very Poor Rock)			
Cohesion of Rock Mass (kPa)	100 to 200	<100			
Friction Angle of Rock Mass (degrees)	15 to 25	<15			

Table 7-2 further breaks down rock quality data by boring for Borings B-2, B-3, B-4, and B-5 (the borings located in the area of maximum excavation). These data suggest that the overall rock mass strength in the area of maximum excavation increases to the north.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

7.2 SUBSURFACE SOIL CONDITIONS

The results of field boring and test trench excavations indicate soil in the project area is limited to a variably thick veneer of colluvial soil overlying weathered bedrock. The soil typically was on the order of less than 0.5 m to about 1.5 m thick. Where developed on Cierbo Formation bedrock, the soil typically consisted of dark grey to tan very fine-grained to medium-grained sandy clay with occasional to frequent pebbles and cobbles derived from the underlying bedrock. Where developed on Panoche Formation, the soil tends towards dark grey to black fine-grained sandy clay with occasional sandstone clasts. No borings or test trenches were advanced or excavated in the alluvium located east of the proposed alignment. The alluvium reportedly consists of interbedded clay and silt, with lesser amounts of sand.

7.3 WATER

7.3.1 Surface Water

Existing drainage facilities in and around the realignment area consist of lined and unlined ditches, asphalt-concrete berms adjacent to Vasco Road, and several small culverts which discharge onto the downslope ground surfaces. Drainage within the project area consists of incised channels that parallel the trend of the Greenville fault. These drainage channels merge into a single drainage approximately at Vasco Road. After passing under Vasco Road, this single drainage channel flows in a southwesterly direction along the eastern side of the road. Limited side slope erosion of the drainage channels was noted during the field work. Significant erosion or scour was not noted.

7.3.2 Groundwater

A detailed groundwater investigation was beyond the scope of this investigation. However, a standpipe piezometer was installed in Boring B-5. Water level measurements in this piezometer indicate groundwater occurred approximately 15.8 m below the ground surface on November 7, 2000 and about 17.1 m below the ground surface on January 8, 2001. The highest measured groundwater level is shown in Figure 4-4.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

7.4 PROJECT SEISMICITY

The seismic hazard analysis for this project included the following general steps:

- Identification of faulting in the project area;
- Identification of seismic sources capable of strong ground motions at the project site;
 and
- Evaluation of the intensity of the design ground motions at the project site.

7.4.1 Project Area Faulting and Ground Rupture

Faulting in the realignment project area was evaluated based on review of relevant publications, evaluation of aerial photographs, field reconnaissance, and subsurface investigation. As shown in the geologic map, the main strand and the eastern strand of the Greenville fault pass through the project area and intersect the proposed alignments at two locations. The Greenville fault is active and has been zoned by the California Division of Mines and Geology for Special Studies pursuant to the Alquist-Priolo Special Studies Zone Act. Regionally, as well as in the project area, the fault juxtaposes the Cretaceous Panoche Formation and the Miocene Cierbo Formation.

Minor discontinuous surface rupture was observed along the fault during the 1980 Livermore earthquake sequence (Bonilla et al.,1980) approximately at the locations shown in Figure 7-2 (this figure also shows geomorphic features associated with the fault in the project area). As shown, displacement was observed on both the main strand and eastern strand of the fault and consisted of about 2 cm of right-lateral slip and 3 cm to 4 cm of dip slip on the eastern strand at the intersection of Vasco Road and about 2 cm of right-lateral slip on the main strand of the fault at Vasco Road. Although the main strand and eastern strand of the fault are relatively well defined, potential future ground rupture could occur on either side of the mapped fault traces because the fault likely occurs as a "zone" rather than as singular linear features. For example, reasonably defined shear zones were

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

identified in test trenches TP-1 and TP-2 north and east of the mapped eastern strand of the fault that may represent zones of past movement. Based on these observations, future surface rupture may occur during the operational life of the roadway and should be considered during design of the roadway and during development of maintenance and operations plans.

7.4.2 Seismic Sources and Site Ground Motion

Seismic sources of possible significance to the project include the major faults within about 100 km of the site that are listed in Table 4-1. This table also lists the closest distance of the fault to the site and the maximum credible earthquake (MCE) and maximum probable earthquake (MPE) associated with each fault. Based on these data, a site-specific deterministic seismic analysis was performed to assess potential ground and bedrock motions associated with the MCE and MPE for the active faults. The peak bedrock accelerations were estimated based on site-to-source distance and MCE/MPE magnitudes using the Abrahamson and Silva (1997) acceleration attenuation equation that relates earthquake magnitude, fault style, source-to-site distance, and local site conditions to derive an estimate of peak acceleration.

The results of these analyses are summarized in Table 4-1 and indicate that the earthquake-induced acceleration hazard at the project is dominated by an earthquake on the Greenville fault zone which could result in a project PHGA of 0.50g associated with a MPE of magnitude 5.9 to about 0.77g associated with a MCE of magnitude 6.9. The analyses also indicate that relatively larger magnitude, far field events on the Hayward, San Andreas, and Calaveras faults could result in maximum median value site PHGAs on the order of 0.1g to 0.2 for their respective MPEs and MCEs. By way of comparison, using probablistic methods, the U.S. Geological Survey Seismic Hazard Mapping Project calculates a site PHGA of 0.50g has a 10 percent probability of being exceeded in 50 years.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

8.0 GEOTECHNICAL ANALYSIS AND DESIGN

8.1 DYNAMIC ANALYSIS

Seismic analyses for this project included pseudostatic and seismic deformation analyses of the cut slopes. Analysis procedures and results are presented in the Sections 8.2 and 8.3. Liquefaction analyses were not performed because loose, saturated sand deposits are not present in the project area.

Although MCE magnitudes are usually the regulatory design-basis earthquake in California for major bridges (e.g. toll bridges) and other critical facilities such as hospitals and large earth dams, the MCE is generally not used for other highway or earthwork structures (U.S. Department of Transportation, 1997). Additionally, use of probablistic map values by themselves are not sufficient because the maps and analyses do not provide information on the magnitude, distance, or duration of the earthquake associated with the acceleration values.³ As a result, these values are limited for geotechnical purposes because most geotechnical analyses use earthquake magnitude as a measure of duration. Accordingly, it is our opinion that dynamic analysis of project should be based on the PHGA associated with the MPE earthquake. Additionally, to encompass a representative suite of ground motions, we recommend that analyses consider the relatively high PHGAs associated with the low magnitude nearby events and the relatively lower PHGAs associated with higher magnitude, more distant events. Based on the data presented in Table 4-1, the following parameters are recommended for near-field, intermediate field, and far field events:

001860.001 8-1

³The acceleration values given by the U.S. Geological Survey Seismic Hazard Mapping Project are composed of contributions of earthquakes of different magnitudes at different distances from a given site.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

EVENT	FAULT	MPE MAGNITUDE	PHGA	DURATION4
Near Field	Greenville	5.9	0.50g	<5 sec
Intermediate Field	Calaveras	6.5	0.18g	8 sec
Far Field	San Andreas	7.4	0.08g	20 sec

8.2 CUTS AND EXCAVATIONS

8.2.1 Stability Analysis

8.2.1.1 Stability Analysis Methods

For most slopes excavated in competent and intact bedrock, the most probable mode of failure is usually sliding of discrete rock blocks or wedges along discontinuity surfaces. A slope that is kinematically stable is cut at such an angle that there is no freedom of movement along relatively weak surfaces such as bedding planes or the intersection of bedding planes or fractures. This type of analysis is appropriate for slopes where the rock mass is characterized by relatively well-defined and regular sets of discontinuities. For the proposed Vasco Road realignment, however, sufficient structural measurements could not be collected to provide a reliable and valid characterization of the rock mass discontinuities. Moreover, the project is located within a fault zone and site observations suggested that the rock mass in this area is not characterized by relatively well-defined and/or regular discontinuity sets. As a result, it was not possible to perform a kinematic assessment of the realignment area based on data from the field mapping and the test trenches.

Static stability of representative cross sections was evaluated based on limit equilibrium methods using the computer program GSLOPE (v. 4.07j). For the purposes of this project, three alternative slope configurations for the maximum height cut slope were analyzed, including:

⁴Based on duration vs earthquake magnitude curves (Dobry et al., 1978).

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

- (1) A composite cut slope that included a buttressed 1V:2.5H lower slope and an unbuttressed 1V:3.5H upper slope that included 50 m hydraugers (horizontal drains) extending into the cut;
- (2) An unbuttressed 1V:3.5H cut slope that included 50 m hydraugers extending into the cut:
- (3) An unbuttressed 1V:3.5H cut slope that included hydraugers extending 70 m into the cut.

The evaluations were based on Bishop's Modified Method of analysis and search routines were used to evaluate a large number of failure surfaces and identify the most critical surface for a given slope. Both circular and non-circular potential failure surfaces were considered. The GSLOPE computer output is included in Appendix I.

Pseudostatic stability analyses were based on a seismic coefficient of 0.15g and for cases where the pseudostatic safety factor was less than 1.2, seismic deformation analyses were performed using the generally accepted procedure described by Makdisi and Seed (1978). Because the amount of deformation calculated by the Makdisi and Seed method depends on the duration of ground shaking (which is related to the magnitude of the earthquake) as well as the peak horizontal ground acceleration associated with the earthquake, analyses were performed to assess potential displacements of the realignment cut slopes under the design near-field, intermediate-field, and far-field earthquakes.

8.2.1.2 Material Properties Assumed for Analysis

In situ unit weight and moisture content were evaluated based on the test data summarized in Table 6-1 and included in Appendix F. Based on these an average unit weight of 1,890 kg/m³ at an average in-situ moisture content of 18 percent were assumed representative of the cut slope geologic materials.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

The shear strength properties assumed for analysis of cut slopes within the Panoche Formation bedrock or for slopes excavated between the main and eastern strands of the Greenville fault were based on consideration of several different factors, including:

- Several 1V:2H cut slopes that were on the order of 45 m high and that were excavated in Panoche Formation bedrock on nearby properties reportedly failed very shortly after construction. Failure of these slopes shortly after construction indicates the bedrock is relatively weak and may be at or near its residual strength;
- The presence of active faulting, shear zones, and possible landslides within the area of the proposed maximum cut that indicate the bedrock in this area may have undergone previous displacement. This displacement may have resulted in reducing bedrock shear strength to values at or close to residual strength;
- The empirical evaluation of rock mass shear strength based on boring log observations and laboratory test results that was described in Section 7;
- Laboratory shear strength from tests performed on samples recovered from the borings; and
- Residual shear strength inferred from measured index properties for the cut slope geologic materials.

Shear strength properties are plotted in cross section in the area of maximum cut slope in Figure 4-4 and Figure 8-1 shows the range of shear strength properties evaluated by the different methods. Based on these figures and site observations, strength properties assumed for analysis of cut slopes in the Panoche Formation and in the area between the main and eastern strands of the Greenville fault include a cohesion intercept of 2.39 kPa and a friction angle of 20 degrees. These values are generally consistent with the estimated rock mass strength of the material and with the mid range

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

residual strength values estimated using the results of laboratory testing and the Stark and Eids (1998) correlations that relate plasticity and percent clay with residual strength.

8.2.1.3 Groundwater Conditions Assumed for Analysis

Groundwater conditions assumed for analysis were based on the data collected from the temporary piezometer that indicated at the time of the field exploration activity, groundwater occurred at a depth of about 16 m to 17 m below the ground surface. Because the site piezometric data are limited, groundwater elevations were varied during the analyses to evaluate changes increased groundwater levels may have on stability of the proposed cuts.

8.2.1.4 Results of Analysis

The results of analysis are summarized in Table 8-1 and indicate deep surface static safety factors that range from about 1.4 to 1.6 for the different conditions that were analyzed. The analyses further indicated shallower surface sliding safety factors that range from about 1.7 to 1.9. Displacement evaluations indicated potential seismic displacements were within generally acceptable limits for the three slope conditions that were considered.⁵

8.2.1.5 Unstable Areas Uncovered During Excavation

The subsurface exploration and testing program was intended to characterize the soil and rock along the proposed alignment. The stability analyses performed were based on this geologic characterization and the results of the analyses reflect the assumed geologic model. However, due

001860.001 8-5

⁵According to California Division of Mines and Geology (1997), calculated displacements of 0 to 10 cm are unlikely to correspond to serious movement and damange. In the 10 to 100 cm range, slope deformation may be sufficient to cause serious ground cracking or enough strength loss to result in continuing (post-seismic) failure. Determining whether displacements in this range can be accommodated requires judgement. Calculated displacements greater than 100 cm are very likely to correspond to damaging landslide movement, and such slopes should be considered unstable.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

to the complex geologic conditions at the site, it is possible localized areas of less stable bedrock which require remedial stabilization measures may be discovered during excavation of the planned cuts. In the event that localized problem areas are discovered, stability fills may need to be constructed. Recommendations for stability fills are presented in Section 11.

8.2.2 Rippability

The results of the seismic refraction survey (see Appendix E) suggested three seismic layers beneath the refraction lines could be distinguished by compressional (P) wave velocities. These layers included:

- Layer 1 was between 2.1 m to 7.9 m thick, included the ground surface, and had a P-wave velocity ranging between 335 and 396 meters per second (mps). The P-wave velocity indicated this layer consisted of dry to partially saturated colluvium and highly weathered bedrock.
- Layer 2 was distinguished by a P-wave velocity that ranged from 1,067 to 1,615 mps, suggestive of moderately weathered and/or fractured sandstone. The top of the second layer occurred at depths ranging from about 2.1 m to 7.9 m below the ground surface.
- Layer 3 was distinguished by P-wave velocities that ranged from 2,103 to 2,774 mps, indicative of moderately weathered and/or fractured sandstone to relatively unweathered sandstone. The top of the third layer occurred at depths from about 14.3 to 11.0 m below the ground surface.

Based on the 20th edition of the Caterpillar Performance Handbook for the D9N Tractor, the first two seismic layers should be rippable with the right combination of tractor and ripper. The results also suggest that the third seismic layer beneath line SL-2 (see Appendix E) also should be rippable with

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

the right combination of tractor and ripper. However, the third seismic layer beneath line SL-1 may only be marginally rippable to nonrippable.

8.2.3 Grading Factors

The results of the density and moisture testing completed on samples removed from the areas where excavations are planned indicate an average in situ dry densities of 1,723 kg/m3. Compaction tests on bulk materials obtained from the exploratory test trenches indicated an average maximum dry density of 1,748 kg/m3. If the excavated materials are placed at average relative compaction of 92.5 percent, the excavated material will have a net shrinkage of about 2 percent. It should be recognized that these calculations are based on a very small sampling of materials and are subject to relatively large variation.

8.2.4 Rebound/Swell of Excavation

The proposed maximum excavation depth of approximately 28 m at the roadway centerline will result in a significant reduction in overburden pressure on the Panoche Formation claystone. In addition, it is possible that the claystone could be exposed to more free water once the cut has been excavated. These changes in loading have the potential to cause elastic rebound and/or swelling of the bedrock. Because the majority of the elastic rebound should occur during construction and shortly following completion of the excavations, the finish grade of the roadway should be largely unaffected by rebound.

To assess the potential for bedrock heave of the claystone, free swell tests were completed on core samples of the claystone. The results of the tests indicated that the amount of swell that may occur at the 28 m cut is on the order of ½ to 2 percent. We estimate that this rebound will result in a net heave of the bottom of the excavation of between 100 and 400 mm. This amount of bedrock heave could be significant if it does not occur in a relatively uniform manner. As a result, inspection of the excavation and alignment subgrade during construction is important to evaluate whether the

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

claystone is interbedded with low or non-expansive bedrock that, in turn, could lead to abrupt changes in the roadbed profile.

8.2.5 Weathering of Cuts

The Cierbo and Panoche Formation materials encountered during our subsurface exploration are known to weather rapidly when exposed to air and water. Observation of highway cut slopes excavated into similarly aged sedimentary rock within Alameda and Contra Costa Counties suggests that the where exposed, siltstone and claystone units will weathered into soil-like material after only a few years. The potential for significant weathering of the exposed cut materials was evaluated by completing slake durability tests on selected samples. The test results confirm that significant weathering should be anticipated to occur after the cut slopes have been completed.

In our judgement, within 20 to 40 years, the weathering can be expected to degrade the outermost 1 to 1.5 m of the cuts. The effect of this degree of weathering was considered in the slope stability analyses by assuming that the bedrock acts as a soil-like material with poor shear strength characteristics. Despite the relatively flat inclination recommended for the cut slopes, it should still be anticipated that localized portions of the weathered materials will eventually fail as shallow (less than 1.5 m deep) erosional features or slumps. To improve the maintenance of the cut slopes after weathering has occurred, relatively wide drainage/maintenance terraces will be needed. Recommendations for these benches are provided in Section 11.

8.3 EMBANKMENTS

Subsurface exploration, laboratory testing, and stability analyses support embankment design in general accordance with the Caltrans Highway Design Manual (with the exception of the limited special design considerations that are presented in Section 12). The recommended special design considerations were based on the stability and settlement analyses methods described below.

001860,001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

8.3.1 Stability Analyses

8.3.1.1 Analysis Methods

Static and pseudostatic stability of representative cross sections were evaluated based on the methods described in Section 8.2.1.1. Proposed embankment configurations for three areas where the embankment height is at or near maximums were analyzed, including:

- (1) An approximately 20 m high, two sided 1V:2H sidehill embankment situated on relatively level Panoche Formation-derived materials;
- (2) An approximately 24 m high 1V:2H, two-sided sidehill embankment situated on moderately inclined Cierbo Formation materials; and
- (3) An approximately 24 m high 1V:2H, one-sided sidehill embankment situated on relatively steeply inclined Cierbo Formation materials.

The generalized cross-section developed for each configuration was prepared assuming that unsuitable colluvial/alluvial soils were removed from the foundation and that the embankment was keyed into competent underlying bedrock materials. In addition, it was assumed that the embankments would incorporate underdrain provisions. A discussion of the recommended special grading requirements are included in Section 11.

The evaluations were based on Bishop's Modified Method of analysis and search routines were used to evaluate a large number of failure surfaces and identify the most critical surface for a given slope. Both circular and non-circular potential failure surfaces were considered. The GSLOPE computer output is included in Appendix I.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

8.3.1.2 Material Properties Assumed for Stability Analysis

In situ unit weight and moisture content was evaluated based on the test data summarized in Table 6-1 and included in Appendix F. Based on these data, an average unit weight of 1,890 kg/m³ at an average in-situ moisture content of 18 percent were assumed representative of the compacted embankment fill materials which will be generated from the project excavations. The shear strength properties assumed for analysis of embankments constructed of compacted material from the project excavations were based on:

- Laboratory shear strength from tests performed on samples recovered from the borings; and
- Published ranges of shear strengths for compacted soils similar to those which will be generated from the excavations at the site.

Based on these figures and site observations, strength properties assumed for analysis of the embankment materials include a cohesion intercept of 7.2 kPa and a friction angle of 26 degrees. In areas where the embankment will be underlain by the weaker Panoche formation materials, the strength parameters discussed in Section 8.2.1.2 were assumed for those materials. In the areas where the embankments will overly the Cierbo formation materials, those materials were assumed to have the same shear strength as the embankment fill.

8.3.1.3 Groundwater Conditions Assumed for Stability Analysis

Groundwater conditions assumed for within the embankments were based on the construction of effective underdrains below the embankments. Groundwater conditions assumed for the foundation materials underlying the embankments were based on interpretation geologic conditions along different parts of the alignment. Because the site piezometric data are limited, groundwater elevations were varied during the analyses to evaluate impacts increased groundwater levels may have on the stability of the proposed embankments.

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

8.3.1.4 Results of Stability Analysis

The results of analysis are summarized in Table 8-2 and indicate static safety factors that range from about 1.5 to 1.6 for the different conditions that were analyzed. Pseudostatic safety factors were greater than 1.2 for all conditions analyzed and seismic displacement analyses were not necessary.

8.3.2 Post-Construction Embankment Movements

Settlement of the embankments will result from consolidation and compression of colluvial and alluvial foundation soils which are left in place, and from consolidation and secondary compression of the embankment fill itself. The potential for consolidation and compression of the foundation soils can be reduced and virtually eliminated by removal of shallow soils prior to placement of embankment fills. We estimate that removal of the colluvial/alluvial soils prior to embankment construction will limit settlement of the foundation materials underlying the embankments to less than 50 mm.

Compression of the embankment fills will occur almost entirely during construction and can be addressed as the fill is placed. During construction and for a considerable time thereafter, consolidation of the embankment fill will occur in the lower parts of the embankments. Conversely, post-construction heave of the embankment fills will occur in the upper parts of the embankments as the embankment gets wet and the expansive claystone/siltstone-derived fill swells. Because the embankment thickness will vary along the roadway, differential settlement of the embankments should be anticipated.

Post-construction differential movement of the embankments can be reduced to acceptable levels by placing the less expansive soils in the uppermost portions of the embankments and by controlling the relative compaction and moisture content of different zones of the embankment. Differential movements can be most effectively reduced by the use of select non-expansive fill materials in the uppermost 5 m of the embankments and by requiring greater relative compaction in the lowermost 5 m. However, the use of selected non-expansive fills will be difficult to effectively enforce during

001860,001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

construction and may also inadvertently cause the contractors to complete their work inefficiently. In lieu of requiring the use of select materials in the upper parts of the embankments, it is our opinion that post construction differential movements can be effectively reduced by using general embankment fill materials (i.e. non-select) and controlling the relative compaction and moisture contents at which the zones are placed. The following zoning and fill control measures are recommended:

EMBANKMENT LOCATION	RELATIVE COMPACTION*	MOISTURE CONTENT*
Uppermost 5m**	90% to 93%	+4% to +6% of optimum
Mid-embankment	90% or greater	+2% to +4% of optimum
Lowermost 5m	93% or greater	+2% to +6% of optimum

^{*}Caltrans 216 Test Method

8.4 EARTH RETAINING STRUCTURES

As of the date of this report, no permanent earth retaining structures are planned. However, as discussed in Section 12.2, one or more permanent earth retaining structures may eventually be required to limit the lateral extent of one or more of the embankments. It is also likely that temporary relocation of the road during construction of the improvements may require the construction of one or more temporary earth retention structures. It does not appear that any earth retention structures will be required along the cut sections of the project.

In general, any of the following different types of earth retaining structures could effectively be used in the specific sections of embankment where a permanent composite slope steeper that 1V:2H is required:

 Conventional retaining walls such as Caltrans standard cantilever reinforced concrete retaining walls;

8-12

^{**}excludes pavement structural section

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

- Gravity retaining systems such as Caltrans standard cribwalls or binwalls;
- Proprietary mechanically stabilized embankments (MSE) using pre-cast panel systems, segmental pre-cast concrete masonry units or welded wire facing elements;
- Reinforced soil slopes (RSS) using geosynthetic reinforcement placed within the embankment fill and a permanent erosion control system on the face of the slope; and
- A properly designed variation of two of the systems mentioned above.

Final design recommendations can be developed following selection of the preferred system(s). Caltrans design methods and standard plans can be used for conventional cantilever retaining walls and gravity walls. Design of MSE-type walls and reinforced soil slopes (RSS) structures should be done in conformance with the FHWA Demo 82 Guidelines (Elias and Christopher, 1996). For preliminary design of retaining systems, the parameters presented in Table 8-3 can be assumed. Once a specific earth retaining structure type has been selected and the locations and configuration determined, we can provide final design recommendations.

8.5 CULVERTS

8.5.1 Culvert Foundations

The planned culverts will generally be 1 m in diameter or smaller. As a result, no special culvert foundation recommendations will be necessary. However, as noted in the following sections, the soil chemistry at the site indicates that sulphate resistant concrete be used for all concrete foundations.

8-13

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

8.5.2 Culvert Materials

8.5.2.1 Corrosion Testing and Analysis

Thirteen soil and bedrock samples recovered from subsurface exploration operations were analyzed to estimate the degree of corrosivity to steel and concrete structures. The samples were tested by Environmental Technical Services (ETS) of Petaluma, California for pH, minimum resistivity, sulfate content, and chloride content in general conformance with procedures outlined California Test Methods 412, 422, 523, and 643. A discussion of the testing procedures and ETS's analyses of the results are presented in Appendix G. Descriptions of the samples tested and a summary of the test results are presented in Table 8-4.

The results of the corrosion tests indicate that the soil and bedrock are generally corrosive to steel and concrete, and that some of the material is very corrosive to steel and concrete. As shown in Table 6-7, the pH of the samples ranged from 3.05 to 7.05, the minimum resistivity values ranged from 909 to 4880 ohm-cm, the sulfate concentrations ranged from <1 to 1,860 ppm, and the chloride concentrations ranged from <1 to 42 ppm.

The very acidic pHs require the use of acid resistant steel and concrete. The low minimum resistivity values will require the use of corrosion resistant materials and/or special design considerations. The high level of sulfates require the use of sulfate resistant concrete and sulfate resistant reinforced concrete pipe (RCP). Chloride concentrations of all of the samples were well below the 500 ppm threshold level that would require the use of chloride resistant materials and/or design.

8.5.2.2 Service Life Analysis

Caltrans' software program CULVERT4, California Test Method 643, and Section 854 of the Caltrans Highway Design Manual (HDM) were used to estimate the maintenance-free service design life of corrugated steel pipe (CSP) and alternative culvert materials. The results of the analysis are included in Appendix G and summarized in Table 8-5.

001860.001 8-14

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

8.6 MINOR STRUCTURE FOUNDATIONS

The preliminary plans on which this report was based do not indicate any significant minor structure foundations for which geotechnical design is required. Geotechnical design analyses for minor structures may be provided in the future, as warranted.

8.7 PAVEMENTS

8.7.1 Basement Soil R-Value Testing and Results

Selected samples of soil and bedrock materials recovered during our subsurface exploration operations were tested to evaluate material resistance values (R-value) to support pavement design of the roadway. A total of three samples were tested by Cooper Testing Laboratories in Mountain View, California in accordance with the procedures presented in the California Test Method 301 (March 2000). The approximate locations of the samples and the results of the tests are summarized in the table below. The laboratory R-value test sheets are included in Appendix F. A description of the samples tested and a summary of the test results are presented below.

SUMMARY OF R-VALUE TEST RESULTS				
SAMPLE LOCATION	SAMPLE DESCRIPTION	R-VALUE	EXPANSION PRESSURE (MPa)	
TP-2 0.0 - 0.6m	Brown clayey sand (Panoche Formation)	25	0.86	
TP-4 0.0 - 0.6m	Brown silty sand, slightly clayey (weathered sandstone - Cierbo Formation)	55	0.14	
TP-5 0.0 - 0.6m	Brown clayey sand with gravel (Cierbo Formation)	23	0.00	

It should be noted that R-values of materials generated from the shale and claystone bedrock can be significantly lower than materials generated from the sandstone bedrock. Additional R-value tests

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

should be performed during construction to determine the representative R-value of the as-built basement soil along representative segments of the alignment and the pavement sections should be designed accordingly.

8.7.2 Lime Treated Basement Soil

When the basement soil has a very low R-value, lime treatment can reduce the structural section thickness and overall cost. An analysis of the effects of lime treatment on the on-site materials was outside the contracted scope of work. However, testing of samples of clayey soil and claystone mixed with 2 to 6 percent Type S hydrated lime for the earlier Vasco Road relocation project associated with the Los Vaqueros Reservoir (Woodward-Clyde, 1992) revealed a significant improvement in basement soil strength. Those results suggest that, if needed, lime treatment could be viable means of improving the resistance of the basement soil resistance. If lime treatment is considered during construction, a testing program using the actual basement soil should be performed to evaluate the actual percentage of lime required to allow reduction of the roadway structural section.

8.7.3 Recommended Pavement Type

Based upon the results of the geotechnical investigation and laboratory testing, we recommend that a pavement structural section consisting of flexible asphalt concrete pavement (ACP) be used for the entire length of the alignment. Considering the variable quality and corrosivity of the basement soil, the likely occurrence of minor differential movement between the cut and fill portions of the alignment, and the presence of several active fault traces that cross the alignment, it is our opinion that the use of rigid Portland cement concrete pavement (PCCP) would result in higher costs for both construction and maintenance when compared to ACP.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

8.7.4 Structural Section Design

8.7.4.1 Design R-value and Traffic Index

The design Traffic Index for the project, as indicated in the PSR, is 10.5. Given the relatively short length of the proposed alignment, in our design of preliminary pavement sections we have assumed a design R-value of 20 for the entire length of the realignment. Prior to final structural section design additional R-value tests should be performed during construction to determine the validity of the assumed R-value. If the results of the tests during construction indicate a lower R-value is appropriate, the pavement section design will have to be adjusted accordingly.

8.7.4.2 Drainage Considerations

The HDM recommends that as part of a subsurface drainage system, an asphalt treated permeable base (ATPB) layer be placed immediately below the ACP to intercept surface water seeping through the structural section. Due to the generally impermeable nature of the basement soils along the alignment, in accordance with the HDM, all pavement structural sections should include a drainage layer consisting of at least 75 mm of ATPB placed immediately below the ACP. The drainage layer should connect to a subsurface drainage system.

Where adverse groundwater or drainage conditions are encountered that may saturate and soften the basement soil, base, or subgrade, a prime coat should be applied to the surface of material on which the ATPB layer is placed to prevent erosion of fines from the underlying material.

8.7.4.3 Pavement Section Analysis

Caltrans' software program NEWCOM90 was used to analyze pavement section combinations and their relative costs. Structural section materials used in the analysis were plant-mixed Type A asphalt concrete (AC), Class 2 aggregate base (AB), and Class 2 aggregate subbase (AS). The Traffic Index was fixed at 10.5 and the R-value was varied between 5 and 50. The results of the

001860.001 8-17

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

analysis are presented in Appendix K. The estimated pavement section cost in \$/m² shown in the appendix tables are for relative cost comparisons only.⁶ The results of the analysis indicate that for the assumed design R-value of 20, the following structural section is the most cost effective based on the input unit costs:

- AC = 195 mm
- ATPB = 75 mm
- $\bullet \qquad AB = 105 \text{ mm}$
- AS = 225 mm

001860.001 8-18

⁶The actual cost of pavement section layers could vary substantially from the values indicated and should be estimated during design using current local costs and factors.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

9.0 MATERIAL SOURCES

Materials meeting the requirements for concrete, asphalt concrete, asphalt treated permeable base, aggregate base, aggregate subbase, permeable material, and selected material are available from several regional commercial quarries and plants in Alameda, Contra Costa, and San Joaquin counties. Commercial sources within 50 km of the project are listed in Table 9-1.

It is not anticipated that the project will be unbalanced and require borrow for construction of embankments. If the final grading balance indicates a fill shortage, one or more of the cut slopes may be flattened to provide any additional extra embankment material that might be needed. If required, it is also possible that adjacent undeveloped areas currently used for ranching could be used as borrow sources. However, investigation of the adjacent undeveloped areas was not part of the current investigation and would be required prior to designating the areas as potential borrow sources.

001860 001 9-1

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

10.0 MATERIAL DISPOSAL

As indicated in Section 9, the results of initial calculations indicate earthwork quantities approximately balance. As a result, significant off-site material disposal is likely to be unnecessary. However, in the event off-site disposal is necessary, the Vasco Road Sanitary Landfill is located less than 1 km from the project area. This Class II facility currently accepts clean soil, with disposal prices dependent on landfill soil requirements and availability at the time.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

11.0 CONSTRUCTION CONSIDERATIONS

11.1 CONSTRUCTION ADVISORIES

11.1.1 Water in Excavations

The proposed excavations are up to 25 m below the original ground along the centerline of the new alignment. At least one of the boring encountered free water within the depth of the design excavation. In addition, the presence of the Greenville fault increases the likelihood of a localized groundwater barrier(s) or traps within the planned excavations. Therefore, it should be anticipated that free groundwater may be encountered in some areas as the excavation is lowered. As described in Section 12, the groundwater should be controlled by the use of horizontal drains which are installed as the excavation drops. Until the drains are installed, free water that develops in the excavation should be controlled by the contractor using well points or alternative methods as appropriate for the encountered conditions.

11.1.2 Sheared and Weak Rock

The complex geology and presence of Greenville fault traces create the potential for localized adverse geologic conditions within the planned excavations for the project. Such conditions may require over-excavation and replacement with a stability fill. Because this type of operation may alter the method in which a contractor completes the grading, the contractor's bid should include a contingency for such a situation.

It should also be noted that for temporary excavations, some of the materials may have time-dependent strength. For example, a relatively moderately inclined (1V:2H) excavation made in similar geologic materials at the nearby landfill reportedly failed within several days after originally being cut. Therefore, the contractor should carefully plan out excavation activity so that inadvertent oversteepening of cut slopes does not occur.

001860.001 11-1

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

11.1.3 Existing Fill Embankments

Just south of the north end conform, there is an existing embankment fill along the east side of the road that shows evidence of past downslope creep or failure. This area of the existing road is the most likely location of a temporary relocation at the north end of the project. As a result, if the temporary connection requires placement of additional fill, it may be necessary to remove and replace some of the existing fill prior to placing any new fill.

11.2 CONSTRUCTION CONSIDERATIONS THAT INFLUENCE DESIGN

11.2.1 Excavation Configuration

Site observations, subsurface exploration, and laboratory testing indicate areas within the proposed excavations consist of highly fractured and sheared soil-like claystone with low shear strength. In addition, the limited groundwater data collected along the alignment as part of this study suggest it is likely the natural groundwater level is above the base of the design excavation in some areas. As a result of these factors, special design of the cut slopes for the road is necessary. Recommendations for design of the cuts along the length of the project are presented in Section 12.1.

11.2.1.1 Drainage and Maintenance Terraces

Weathering of the rock materials which will be exposed by the cuts will result in deterioration of the outermost 1.5 m of the slope. It should be anticipated that the weathered skin of the cut slope will eventually erode or slump down. The recommended 5 m width of the benches on large cut slopes reflect the anticipated result of the weathering.

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

11.2.1.2 Horizontal Drains

The presence of free ground water above the elevation of the planned excavation indicates that permanent dewatering of the lower portions of the slope should be planned and incorporated to the final design of the cut slopes.

11.2.2 Order of Work - Excavations

All excavations (permanent and temporary) should be required to proceed from the top of the cut down to the design toe of the cut. Under no circumstance should the excavations be allowed to proceed from the toe to top by excavating a temporary cut that is steeper than the recommended permanent inclination.

11.2.3 Existing Utilities

A large PG&E gas main exists along the design excavations. As currently configured, the excavations would expose the pipeline over a significant distance. Because there is no practical way to protect or support the gas line, the pipeline should be relocated. If the gas pipe line relocation consists of an overland route that is within or skirts the project cuts and fills, the physical location and the type of backfill material used needs to be given special consideration to avoid having the relocated pipeline contribute to an unstable condition.

11.2.4 Encroachment into Undesirable Areas

The presence of a stock pond located west of the site will require either removal of the stock pond and associated sediment therein or construction of an earth retaining structure as part of the planned embankment. Removal of the stock pond would likely expose areas of weak soil which would need to be removed and replaced, thus increasing the height of the embankment significantly. This situation can be avoided by use of an earth retaining structure.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

11.2.5 Underdrains for Fills Across Drainages

Some of the major fill embankments cross existing ephemeral drainages. Even after these areas are filled in, the tendency will still be for water to flow down into the old drainage beneath the embankment. Therefore, underdrains should be incorporated into the design of the embankments in these areas.

11.2.6 Balance of Project Grading

The planned configuration of excavations and embankments roughly balances. Grading factors indicates a net shrinkage factor of about two percent. However, those results were developed based on very limited compaction data and the in-place compaction of the embankment materials may differ from that used in the analysis, thereby causing the calculated factor to be inaccurate. The possibility of the project earthwork being unbalanced should be included in the special provisions and a contingency for this possibility should be included in contractor bids for the work.

If the project is long on excavation and results in net export, the extra material could either be hauled to the nearby Vasco Road Landfill (at a cost) for use as daily cover, or one of more embankment slopes could be flattened. To account for this possibility, a contingency for disposable of excess excavation material and a source for import fill should be developed. If the project falls short of material, then excavations can be flattened or material can be imported from offsite. Another possibility would be to develop an onsite borrow area that could also be used to generate fill.

The onsite solutions for excess fill or a fill shortage both will require that the embankments or excavations extend laterally beyond their design configuration. This means that additional right-of-way would need to be purchased. This possibility should be considered by the County when purchasing right-of-way.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

11.3 CONSTRUCTION CONSIDERATIONS THAT INFLUENCE SPECIFICATIONS

11.3.1 Order of Work - Excavation

The stability of the relatively weak bedrock materials in the area of the deepest planned excavation requires the order in which the excavation is made to be controlled. In addition, the installation of horizontal drains must take place as the excavation is progressing. The special provisions must carefully address the timing of these excavation conditions to reduce the potential for cut slope failure during construction.

11.3.2 Balance of Project Grading

See discussion in Section 11.2.6.

11.3.3 Earth Retaining Structures

If earth retaining structures are required along the embankment, special provisions will need to be provided for the type of earth retaining structure selected.

11.3.4 Corrosive Soils

The presence of corrosive and acid soils requires that the materials for various structures such as culvert, pavements, and minor structures account for these conditions. All concrete should be sulphate resistant and any steel structures should be properly designed to account for loss of steel due to corrosion.

001860 001 11-5

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

11.4 CONSTRUCTION MONITORING AND INSTRUMENTATION

11.4.1 Monitoring of Groundwater Levels

The elevations of groundwater across the site will likely vary due to fault traces and sheared bedrock. Consideration should be given to requiring the contractor install a series of standing head piezometers along the critical areas within and just outside of the larger excavations. The piezometers should provide information regarding the initial groundwater elevations and may be used to assess the effectiveness of horizontal drains which are installed at different elevations. The configuration and layout of the horizontal drains may also be evaluated and/or refined based on information from the piezometers.

11.4.2 Mapping of Excavation Slopes

As discussed above, it should be anticipated that conditions will vary within the excavations. Evaluation of the significance of the variations and/or differing conditions may be accomplished by mapping during excavation by the Engineering Geologist. The specifications should require that excavation slopes be limited in height until mapped and approved by the Engineering Geologist retained by the County for this purpose.

11.5 HAZARDOUS WASTE CONSIDERATIONS

There are not believed to be special hazardous waste considerations at this project site. However, this investigation did not evaluation the possibility for the presence of hazardous materials at the site, and as a result, a specific hazardous materials assessment is recommended before completing final plans and specifications for the project.

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

11.6 DIFFERING SITE CONDITIONS

The greatest potential for differing site conditions is the variable nature of the bedrock materials present across the site. Significant changes could warrant modification during construction of the configuration of the excavation. It is likely that the contractor will become aware of changes in bedrock excavation conditions before the inspector. As a result, it is important that the special provisions stress the importance of contractor reporting once a differing condition is suspected or has been encountered.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

12.0 RECOMMENDATIONS AND SPECIFICATIONS

12.1 EXCAVATION RECOMMENDATIONS

All excavation work should conform with Section 19 of the Caltrans Standard Specifications except as modified in accordance with the recommendations presented below.

12.1.1 Order of Work

All excavations (permanent and temporary) should be required to proceed from the top of the cut down to the design toe of the cut. Under no circumstance should the excavations be allowed to proceed from the toe to top by excavating a temporary cut that is steeper than the recommended permanent inclination (this requirement should be included in the Special Provisions). All excavations greater than 5 m deep should be mapped by the Engineering Geologist during construction and the geologist should confirm that the geologic conditions exposed in the excavation are consistent with the conditions assumed for analysis and design. Installation of horizontal drains should proceed coincident with excavation as specified in Section 68-2 of the Standard Specifications.

12.1.2 Cut Slope Configurations

Excavation design recommendations are presented in Table 12-1 and are summarized below.

12.1.2.1 Panoche Formation and Highly Sheared Areas

Excavations made through Panoche Formation materials, or that are otherwise located between the two traces of the Greenville fault, should be designed at a relatively gentle inclination of 1V:3.5H or flatter. Intermediate, 5 m wide drainage and maintenance benches spaced at about 8 m vertically

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

should be provided and horizontal drains should be constructed as recommended below or as determined during construction by the Engineering Geologist.

12.1.2.2 Cierbo Formation Materials

Excavations made in Cierbo Formation materials and other more competent materials can generally be designed at 1V:2H inclinations. Horizontal drainage is not anticipated to be necessary in the Cierbo Formation cuts, although some drainage provisions may ultimately be required based on observations made in the field during construction.

12.1.3 Horizontal Drains

In areas where free ground water will be encountered (generally in excavations greater than 10 m deep), horizontal drains should be installed as needed to reduce the potential for build-up of hydrostatic pressure within the rock mass. Therefore, the horizontal drains should be included in the bid schedule as a contingent bid item with a base amount evaluated pursuant to the configuration described below.

For the areas where the cuts are greater than 10 m deep, 70 m long horizontal drains spaced at approximately 10 m horizontally should be installed at the base of the cut (just above the roadway) and on each of the drainage/maintenance benches. The horizontal drains should be constructed as specified in Section 68-2 of the Standard Specifications although the actual locations, lengths, and spacing of the horizontal drains should be determined by the Geotechnical Engineer or Engineering Geologist during construction of the excavations. Water from the horizontal drains should discharge directly into concrete drainage swales located on the benches.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

12.1.4 Stability Fills

Stability (buttress) fills should be constructed in localized areas where very weak rock which is subject to failure is exposed by the design excavation. The need for and configuration of stability fills should be determined during construction by the Engineering Geologist. The stability fills should be measured and paid for as indicated in Section 19-2.04 "Slides and Slipouts," of the Standard Specifications.

12.1.5 Temporary Excavations

Any temporary excavations which are necessary for installation of utilities or other minor structures and which need to be steeper than the recommended permanent cut inclination should be designed by a registered civil engineer working for the contractor.

12.1.6 Erosion Control

Permanent erosion control measures should consist of appropriate vegetation which require little if any irrigation. Soil chemistry should be considered in the selection of plants and vegetation. Temporary erosion control should be designed to minimize rutting and rilling of the slope before maturation of the permanent vegetation and plants. The design of all temporary erosion control measures should be based on best management practices.

12.2 EMBANKMENT RECOMMENDATIONS

Embankment construction should conform with Section 19 of the Standard Specifications, except as modified in accordance with the recommendations presented in Table 12-1. Compaction specifications for embankment fill should be as shown in the table included in Section 8.3.2.

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

12.3 EARTH RETAINING STRUCTURES

Any one of several types of earth retaining structure could be used on the project. Selection should be based on the required geometry, location, and parameters provided in Table 8-3. The Geotechnical Engineer should be consulted during design regardless of the type of structure selected or proposed.

12.4 CULVERTS

Based on the tests performed for this project, acid-resistant, corrosion-resistant, and sulfate-resistant concrete and steel should be required for construction (recommendations for 50-year service life culvert and drain material alternatives are presented in Table 12-2). Additional corrosivity tests should be completed as part of final design following identification of final culvert and/or concrete structure locations. Alternatively, plastic culvert pipe may be considered for use on the project due to the aggressive soil conditions.

12.5 PAVEMENTS

Recommended pavement structural sections are discussed in Section 8.7. As indicated in this section, Type A asphalt concrete pavement should be used on the project. Aggregate base and aggregate subbase should be Class 2 and treated permeable base should be asphalt treated.

12.6 SERVICES DURING FINAL DESIGN AND CONSTRUCTION

12.6.1 Design Consultations

Cal Engineering & Geology should be provided the opportunity to review those portions of the plans and special provisions that pertain to earthwork and related operations and items of work to determine whether they are consistent with the recommendations of this report. It is the County's responsibility to provide plans and specification documents for our review prior to their issuance for

001860.001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

construction bidding purposes. In the event Cal Engineering & Geology is not retained for review, we assume no liability for the misrepresentation of our conclusions and recommendations.

12.6.2 Construction Monitoring

It is recommended that Cal Engineering & Geology be retained to observe the excavation, earthwork, and foundation phases of work to determine that the subsurface conditions are compatible with those used in our analysis and design.

12.7 NOTIFICATION AND LIMITATIONS

The conclusions and recommendations presented in this report are based on the information provided regarding the proposed construction, and the results of the geologic mapping, subsurface exploration, and testing, combined with interpolation of the subsurface conditions between boring and trench locations. This information notwithstanding, the nature and extent of subsurface variations between borings may not become evident until construction. If variations are encountered during construction, Cal Engineering & Geology should be notified promptly so that conditions can be reviewed and recommendations reconsidered, as appropriate.

This report was prepared based on preliminary design information which is subject to change during the design process. At approximately the 90 percent design level, Cal Engineering & Geology should review the design assumptions made in this report and prepare addenda or memoranda as appropriate. Any modifications included in these addenda or memoranda should be carefully reviewed by the project designers to make sure that any conclusions or recommendations that are modified are accounted for in the final design of the project.

This report presents the results of a geotechnical and geologic investigation only and should not be construed as an environmental audit or study. The conclusions and recommendations contained in this report are valid only for the project described in this report. We have employed accepted geotechnical engineering procedures, and our professional opinions and conclusions are made in

001860.001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

accordance with generally accepted geotechnical engineering principles and practices. This standard is in lieu of all other warranties, either expressed or implied.

001860.001 12-6

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

13.0 REFERENCES

Abrahamson, N.A. and W.J. Silva, 1995, Spectral Attenuation Equation Notes, AEG 1996 Seismic Hazards Short Course Notes.

Abrahamson, N.A. and W. Silva, 1995, A Consistent Set of Ground Motion Attenuation Relations Including Data From the 1994 Northridge Earthquake [abstract],;Seismological Research Letters, Vol. 66, No. 2, p. 23.

Abrahamson, N.A. and W.J. Silva, 1997, Emperical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes; Seismological Research Letters, Vol. 68, No. 1, pp. 94-127.

Bonilla, M.G., Lienkaemper, J.J. and J.C. Tinsley, 1980, Surface Faulting Near Livermore, California Associated with the January 1980 Earthquakes; U.S. Geological Survey Open File Report 80-523.

Bortugno, E.J., R.D. McJunkin and D.L. Wagner, 1985, Geologic Map of the San Francisco-San Jose Quadrangle, California: Calif. Div. Mines and Geol., scale 1:250,000.

Brabb, E.E., H.D. Sonneman, and J.R. Switzer, 1971, *Preliminary Geologic Map of the Mt. Diablo-Byron Area, Contra Costa, Alameda, and San Joaquin Counties, California*, U.S. Geol. Survey Open File Report.

California Division of Mines and Geology, 1982, State of California, Special Studies Zones, Byron Hot Springs Official Map; Scale 1:24,000.

California Division of Mines and Geology and U.S. Geological Survey (1996) *Probabilistic Seismic Hazard Assessment of the State of California*; <u>DMG Open-File Report 96-08</u>, California Division for Mines and Geology, Sacramento, California, 33 p (plus appendices).

001860 001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

California Division of Mines and Geology, 1997, *Guidelines for Evaluating and Mitigating Seismic Hazards in California*; Division of Mines and Geology Special Publication 117, 74 p.

California Division of Mines and Geology, 1998, Maps of Known Active Fault and Near-Source Zones in California and Adjacent Portions of Nevada - to be used with the 1997 Uniform Building Code; International Conference of Building Officials.

Campbell, K.W. and Y. Borzognia, 1994, Near-Source Attenuation of Peak Horizontal Acceleration From Worldwide Accelerograms Recorded from 1957 to 1993; Proceedings, Fifth U.S. National Conference on Earthquake Engineering, Vol. III, Earthquake Engineering Research Institute, pp. 283-292.

Crane, R., 1995, *Geology of the Byron Hot Springs Quadrangle*; privately published at H&L Hendry in Concord, California, in conjunction with the release of the Northern California Geological Society's Geology of the Mt. Diablo Region Guidebook.

Elias, V. and B.R. Christopher, 1996, *Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, Design & Construction Guidelines*, Federal Highway Administration Publication No. FHWA-96-071.

Federal Highway Administration, 1997, Design Guidance: Geotechnical Earthquake Engineering for Highways, Volume I - Design Principles; U.S. Department of Transportation Geotechnical Engineering Circular No. 3., May.

Hart, E.W.,1981, Recently Active Strands of the Greenville Fault, Alameda, Contra Costa, and Santa Clara Counties, California; California Division of Mines and Geology Open File Report 81-8 SF, scale 1:24,000.

001860.001 13-2

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Helley, E.J., Lajoie, K.R. and D.B. Burke, 1972, *Geologic Map of Late Cenozoic Deposits, Alameda County, California*; U.S. Geological Survey Miscellaneous Field Studies Map MF-429, scale 1:62,500.

Idriss, I.M., 1994, Procedures for Selecting Earthquake Ground Motions at Rock Sites; Report prepared for the National Institute of Standards and Technology, Gaithersburg, Maryland, by the Center for Geotechnical Modeling, Department of Civil & Environmental Engineering, University of California, Davis, California, Report No. NIST GCR 93-625.

Jennings, C.W., 1992, Preliminary Fault Activity Map of California, Calif. Div. Mines and Geol., Open-File Report 92-03.

Jennings, C.W., 1994, Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions; California Divisions of Mines and Geology Geologic Data Map No. 6.

Majmundar, H.H., 1991, Landslide Hazards in the Tassajara and Byron Hot Springs 7-1/2' Quadrangles, Alameda and Contra Costa Counties, California; California Division of Mines and Geology Open File Report 92-05, 3 plates, scale 1:24,000.

Makdisi F.I. and H.B. Seed, 1978, Simplified Procedure for Estimated Dam and Embankment Earthquake-Induced Deformation; Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT7, pp. 849-867.

Nilsen, T. H., 1975 Preliminary Photointerpretation Map of Landslide and Other Surficial Deposits of the Byron Hot Springs 7-1/2' Minute Quadrangle, Contra Costa and Alameda Counties, California; U.S. Geological Survey Open File Map 75-277-9, scale 1:24,000.

Sadigh, K., Egan, J., and R. Youngs, 1987, Predictive Ground Motion Equations: reported in Joyner, W.B. and D.M. Boore, 1988, Measurement, Characterization, and Prediction of Strong Ground

001860.001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

Motion, in: Von Thun, J.L. ed., Earthquake Engineering and Soil Dynamics II, Recent Advances in Ground Motion Evaluation, American Society of Civil Engineers Geotechnical Special Publication No. 20, pp. 43-102.

Sadigh, K., Chang, C.-Y., Makdisi, F., and Egan, J., 1989, Attenuation Relationships for Horizontal Peak Ground Acceleration and Response Spectral Acceleration for Rock Sites (abstract); Seismological Research Letters, vol. 60, p. 19.

Slemmons, D.B. and D.H. Chung, 1982, Maximum Credible Earthquakes for the Calaveras and Hayward Fault Zones, California, Proceedings of the Conference of Earthquake Hazards in the Eastern San Francisco Bay Area. Prepared by the California Division of Mines and Geology, pp. 115-124.

The Working Group on Northern California Earthquake Potential, 1996, *Database of Potential Sources for Earthquakes Larger Than Magnitude 6 in Northern California*; U.S. Geological Survey Open-File Report 96-705.

U.S. Department of the Interior Bureau of Reclamation, 1999, Engineering Geology Field Manual.

Welch, L.E., Huff, R.C., Dierking, R.A., Cook, T.D., Bates, L.A. and W.F. Andrews (1996) *Soil Survey, Alameda Area, California*; United States Department of Agriculture Soil Conservation Service and California Agricultural Experiment Station.

Woodward-Clyde Consultants (1992) Foundations Report, Vasco Road Relocation, Contra Costa and Alameda Counties, California; unpublished report prepared for the Contra Costa Water District Los Vaqueros Project, January 22.

Woodward-Clyde Consultants (1992) *Materials Report, Vasco Road Relocation, Contra Costa and Alameda Counties, California*; unpublished report prepared for the Contra Costa Water District Los Vaqueros Project, January 6.

001860.001

Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

001860.001 13-5

WOS	MARY OF ACTI WITHIN 100 Vasc	Table 4-1 RY OF ACTIVE AND POTENTIALLY ACTIVE I WITHIN 100 KILOMETERS OF THE PROJECT Vasco Road Safety Improvements Alameda County, California	SUMMARY OF ACTIVE AND POTENTIALLY ACTIVE FAULTS WITHIN 100 KILOMETERS OF THE PROJECT Vasco Road Safety Improvements Alameda County, California	TS	
		MAXIMU EARI	MAXIMUM CREDIBLE EARTHQUAKE	MAXIMUN EARTI	MAXIMUM PROBABLE EARTHQUAKE
FAULT NAME	US I AINCE (kilometers)	Moment Magnitude	Peak Site Acceleration (g)	Moment Magnitude	Peak Site Acceleration (g)
Great Valley Segment 4	61.7	9.9	0.07	5.7	0.04
West Napa	63.8	6.5	0.05	5.4	0.01
Rodgers Creek	64.8	7.0	90.0	6.5	0.05
Ortigalita	66.7	6.9	90.0	5.6	0.02
San Andreas (Santa Cruz Mountains)	6.89	7.0	90.0	6.7	0.05
Sargent	71.2	8.9	0.05	6.1	0.03
San Gregorio	72.5	7.3	90.0	6.5	0.04
San Andreas (North Coast)	76.0	7.6	0.07	7.4	0.07
Zayante - Vergeles	77.3	8.9	0.05	4.5	<0.01
Hunting Creek - Berryessa	87.5	6.9	0.04	6.4	0.03
San Andreas (Pajaro)	89.3	8.9	0.04	9.9	0.03
Foothills Fault System	91.1	6.5	0.04	5.2	0.01
Great Valley Segment 9	97.3	9.9	0.04	5.6	0.02
Quien Sabe	98.0	6.4	0.03	5.3	0.01
Point Reyes	0.66	6.8	0.05	4.9	0.01

	SUMMARY OF ACT WITHIN 10 Vas	Table 4-1 RY OF ACTIVE AND POTENTIALLY ACTIVE I WITHIN 100 KILOMETERS OF THE PROJECT Vasco Road Safety Improvements Alameda County, California	Table 4-1 IMARY OF ACTIVE AND POTENTIALLY ACTIVE FAULTS WITHIN 100 KILOMETERS OF THE PROJECT Vasco Road Safety Improvements Alameda County, California	TS	
		MAXIMU	MAXIMUM CREDIBLE EARTHQUAKE	MAXIMUN EART	MAXIMUM PROBABLE EARTHQUAKE
FAULT NAME	(kilometers)	Moment Magnitude	Peak Site Acceleration (g)	Moment Magnitude	Peak Site Acceleration (g)
Monterey Bay - Tularcitos	99.1	7.1	0.05	5.3	0.01
NOTES: 1. MCE fault magnitudes from U.S. Geological Survey (1996) and The Working Group on Northern California Earthquake Potential (1996). 2. MPE fault magnitudes approximately equal to earthquake with 100 year recurrence intervals. 3. Peak site acceleration associated with MCE and MPE based on Abrahamson and Silva (1997) attenuation relationship for rock sites. 4. Faults within about 30 km of the project site are shown in Figure 4-5.	Geological Survey (19 ately equal to earthquak with MCE and MPE ba project site are shown in	96) and The Working e with 100 year recur ised on Abrahamson a n Figure 4-5.	g Group on Northern Calife rence intervals. and Silva (1997) attenuatio	ornia Earthquake Poter n relationship for rock	tial (1996). sites.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					STS	TES							LE DEPTH	SAMPI	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Slake Corrosion R-Value	Consolidation	Compaction	UU Triaxial	Direct Shear	Compression	Unconfined	Hydrometer	No. 200 Wash	Atterberg Limits	Dry Density	Moisture Content	Meters	Feet	SAMPLE LOCATION
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						+					•	*	1.7	5.5	R-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u>.</u>			l ,		X		0.0	20.5	D (
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						X		. 1		۱.	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.3	175	
35.0						`				. 🔻	<u>.</u>	<u>X</u>	5.5	19.0	
35.0	-					<u>.</u>					- <u>*</u>	<u>-</u>	8.1	26.5	
						·					· · `	<u>-</u>		$\frac{20.5}{35.0}$	
						.: ♦					•		12.0	39.5	B-2
47 to 48 14.3 to 14.6				•									14.3 to 14.6		
48.5 14.8 • •	1					• ·		-			•	*	14.8		
55.0 16.8 • •						·					•	•	16.8	55.0	
69.0 21.0 • • •						*	-				•	•		69.0	
8.5 2.6 • • •			-			*					•	•	2.6	8.5	
14.0 4.3 • • • •						♦				•	•	•	4.3	14.0	
21.5 6.6 • • •						*					•	•	6.6	21.5	
29.5	•			_											
35.0 10.7 • •						* .					٠.			35.0	
B-3 45.5 13.9	•							, .		ĺ		•	13.9	45.5	B-3
B-3 46.5 14.2 ◆ ◆ ◆ ◆ ◆						•		•		•		. • .	14.2	46.5	
47.0 14.3 58.0 17.7					•								14.3	47.0	
						*					 •	*			
62.0 18.9 • • • •				-		•	_	•				·	18.9	$\frac{62.0}{51.5}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						•					•		21.8		
82.0 25.0 • • •						٠					•	•	25.0	82.0	
3.0 0.9 • • •						<u>•</u>					•	. •	0.9		
$\frac{12.0}{14.0}$ $\frac{3.7}{4.2}$ $\stackrel{\bullet}{\bullet}$ $\stackrel{\bullet}{\bullet}$						<u>•</u>					. •	•			
14.0 4.3 • •						. [♦	. *			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•										▼	. *			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u> </u>		*		•	•	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						▼					T	▼ .	8.2 8.2		
$\left \begin{array}{c c} 27.0 \\ \hline 28.0 \end{array}\right $ $\left \begin{array}{c c} 8.2 \\ \hline 8.5 \end{array}\right $ $\left \begin{array}{c c} 4 \\ \hline \end{array}\right $		-										▼ .			
30.0 9.1 • • • •					*					•	_	•		1	
35.5 10.8						▼	١ '	▼		▼ .	- ▼	•	7.1		

	SAMPI	LE DEPTH						TE	STS						
SAMPLE LOCATION	Feet	Meters	Moisture Content	Dry Density	Atterberg Limits	No. 200 Wash	Hydrometer	Unconfined Compression	Direct Shear	UU Triaxial	Compaction	Consolidation	Slake	Corrosion	R-Value
B-4	37 to 38 39.0 40.0 44.0	11.3 to 11.6 11.9 12.2 13.4		•	•		•	•		•		•		-	
	44.5 49.0 56.0	13.4 13.6 14.9 17.1 19.1	*	•				•							
	62.5 64.5 64.5 66.5	19.7 19.7	•					•	•			-	-		
	-66.5 70.5 75.5	20.3 21.5 23.0	* *	•			•	•						-	
	79.5 83.4	24.2 25.4 0.2 2.4	*	*		-		*						•	
	0.5 8.0 25.0 27.0	2.4 7.6 8.2	*	•				•						•	
	31.5 36.5 41.0	9.6	*	*				•						•	
	44.0 44.5 47.5	11.1 12.5 13.4 13.6 14.5							•					•	
B-5	55.0 62.0 62.5	16.8 18.9 19.1	•	*					•				-		
	66.5 69.5 75.0	20.3 21.2 22.9	•	•				•	-					•	
	79.0 80.5 81.5	24.1 24.5 24.8	•	•				•						•	

	SAMPI	LE DEPTH						,	TE!	STS						
SAMPLE LOCATION	Feet	Meters	Moisture Content	Dry Density	Atterberg Limits	No. 200 Wash	Hydrometer	Unconfined	Compression	Direct Shear	UU Triaxial	Compaction	Consolidation	Slake	Corrosion	R-Value
	84.5 30 to 66	25.8 9.1 to 20.1 2.0	_								-	•			•	
В-6	6.5 17.5 18.5 28.5	5.3 5.6	•	•									-			
В-7	28.5 13.0 18.0 3.0	8.7 4.0 5.5	*	*					• • • •							-
В-8	6.0 8.5 10.5 11.0 13.5	0.9 1.8 2.6 3.2 3.4 4.1 4.4	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		*		-					•			
 В-9	14.5 15.3 18.5 20.0 3.5	4.6 5.6 6.1	*	*					>	 _ ,					-	
B-10	6.5 10.0 14.5	1.1 2.0 3.0 4.4	*	•											-	
B-11	2.5 5.0	0.8	•	* * .							-					
B-12	3.5 5.5 10.5	1.1 1.7 3.2	•								-					
B-13	3.5 5.0 5.5	1.1 1.5 1.7	•	•									-		•	-
B-14	10.5 3.0 9.0 14.0	3.2 0.9 2.7 4.3	* * *	•												

	SAMPI	LE DEPTH						TE	STS						
SAMPLE LOCATION	Feet	Meters	Moisture Content	Dry Density	Atterberg Limits	No. 200 Wash	Hydrometer	Unconfined Compression	Direct Shear	UU Triaxial	Compaction	Consolidation	Slake	Corrosion	R-Value
B-15 TP-1	19.0 1.0 6.0 10.0	5.8 0.3 1.8 3.0	•	*		_								•	
TP-1 TP-2 TP-4 TP-5 B-3 and B-4		· · · · · · · ·									* · · · · · · · · · · · · · · · · · · ·			•	* · · · · · · · · · · · · · · · · · · ·

Table 6-2 SUMMARY OF MOISTURE-DENSITY TEST RESULTS Vasco Road Safety Improvements Alameda County, California

	SAMPL	E DEPTH	MOISTURE	DRY D	ENSITY
BORING	Feet	Meters	CONTENT (percent)	(pcf)	(kg/m3)
	5.5	1.7	17.8	103.5	1,658
B-1	13.5	4.1	21.5	104.1	1,668
	29.5	9.0	19.6	111.3	1,783
	17.5	5.3	23.3	104.6	1,676
	19.0	5.8	17.8	111.3	1,783
	26.5	8.1	17.5	112.7	1,805
B-2	35.0	10.7	20.4	107.1	1,716
D-2	39.5	12.0	18.6	113.9	1,825
	48.5	14.8	11.3	128.8	2,063
	55.0	16.8	17.2	116.4	1,865
	69.0	21.0	13.3	114.9	1,841
ľ	8.5	2.6	14.6	116.6	1,868
	14.0	4.3	18.9	104.1	1,668
1	21.5	6.6	15.9	115.2	1,845
	29.5	9.0	18.6		- /a - xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
	35.0	10.7	18.8	113.4	1,816
B-3	45.5	13.9	17.0		
	46.5	14.2	33.2	90.0	1,442
	58.0	17.7	25.3	99.6	1,595
İ	62.0	18.9	30.2	94.5	1,514
1	71.5	21.8	17.4	114.0	1,826
1	82.0	25.0	17.3	114.4	1,833
	3.0	0.9	10.8	115.4	1,849
	12.0	3.7	25.0	100.1	1,603
	14.0	4.3	12.7	120.8	1,935
	17.0	5.2	24.8		
	17.5	5.3	27.9	94.9	1,520
	27.0	8.2	24.6	100.8	1,615
	27.0	8.2	22.5		
	30.0	9.1	21.3	107.3	1,719
ľ	39.0	11.9	18.6	112.2	1,797
	44.0	13.4	17.3	115.7	1,853
B-4	44.5	13.6	17.2	115.7	1,033
	49.0	14.9	18.3	112.5	1,802
	56.0	17.1	17.2	114.9	1,841
	64.5	19.7	13.8	120.7	1,933
	64.5	19.7	13.8	120.7	1,733
	66.5	20.3	19.4	111.7	1,789
	70.5	21.5	17.3		
	70.5 75.5	23.0	17.5	115.4	1,849
	73.3 79.5		1	115.1	1,844
	19.3	24.2	15.5	117.9	1,889

Table 6-2 SUMMARY OF MOISTURE-DENSITY TEST RESULTS Vasco Road Safety Improvements Alameda County, California

	SAMP	LE DEPTH	MOISTURE	DRY DI	ENSITY
BORING	Feet	Meters	CONTENT (percent)	(pcf)	(kg/m3)
	83.4	25.4	16.6	114.6	1,83
	8.0	2.4	25.5	97.9	1,56
	27.0	8.2	18.7	113.3	1,81
	36.5	11.1	11.0	128.2	2,05
	41.0	12.5	19.9	110.6	1,77
B-5	47.5	14.5	17.9	114.2	1,82
D- 3	55.0	16.8	19.0	112.3	1,79
	62.5	19.1	16.9	115.7	1,85
	66.5	20.3	17.1	115.9	1,85
	75.0	22.9	15.2	117.5	1,88
	80.5	24.5	14.6	115.7	1,85
B-6	17.5	5.3	15.0	115.2	1,84
D-0	28.5	8.7	18.5	105.4	1,68
B-7	13.0	4.0	5.8	134.1	2,14
D- /	18.0	5.5	8.6	131.8	2,11
	3.0	0.9	8.9	101.9	1,63
	6.0	1.8	9.6	114.2	1,82
	8.5	2.6	14.4	108.8	1,74
	10.5	3.2	21.6	105.7	1,69
B-8	11.0	3.4	9.1	123.7	1,98
	13.5	4.1	11.0	117.7	1,88
	15.3	4.6	15.9	114.2	1,82
	18.5	5.6	15.9	115.3	1,84
	20.0	6.1	18.0	109.6	1,75
B-9	3.5	1.1	13.0	112.4	1,80
	6.5	2.0	5.4	112.8	1,80
B-10	10.0	3.0	6.0	117.5	1,88
	14.5	4.4	15.0	106.7	1,70
B-11	Ž.5	0.8	6.0	110.1	1,76
D-11	5.0	1.5	8.0	118.4	1,89
**	3.5	1.1	4.3	114.3	1,83
B-12	5.5	1.7	5.7	122.3	1,95
	10.5	3.2	4.8	128.2	2,05
	3.5	1.1	16.8	106.8	1,71
B-13	5.5	1.7	17.5	101.7	1,62
	10.5	3.2	6.9	110.8	1,77
	3.0	0.9	10.2	114.4	1,83
D 14	9.0	2.7	18.6	110.7	1,77
B-14	14.0	4.3	21.2	105.2	1,68
	19.0	5.8	16.9	104.0	1,66
	1.0	0.3	4.5	101.8	1,63

Table 6-2 SUMMARY OF MOISTURE-DENSITY TEST RESULTS

Vasco Road Safety Improvements Alameda County, California

	SAMPL	E DEPTH	MOISTURE	DRY DE	ENSITY
BORING	Feet	Meters	CONTENT (percent)	(pcf)	(kg/m3)
B-15	6.0	1.8	6.8	111.4	1,784
	10.0	3.0	7.5	122.4	1,961

	INFERRED RESIDUAL	FRICTION ANGLE (degrees per Stark and Eid, 1994)			8		20	18		24
T RESULTS	FINE-GRAINED FRACTION	Percent Finer Than 0.005 mm			73	40	42	52	58	40
Table 6-3 MARY OF ATTERBERG LIMITS TEST RESULTS Vasco Road Safety Improvements Alameda County, California	ИПS	Plasticity Index	24	26	62	63	35	27	22	23
AMARY OF ATTE Vasco Roa Alamed	ATTERBERG LIMITS	Plastic Limit	18	19	20	23	21	18	20	12
SUM		Liquid Limit	42	45	66	98	56	45	42	35
	SAMPLE DEPTH	Meters	5.3	4.3	14.2	18.9	5.3	9.1	13.4	21.5
	SAN	Feet	17.5	14.0	46.5	62.0	17.5	30.0	44.0	70.5
	(BORING	B-2		B-3			ğ	†	

		INFERRED RESIDUAL	FRICTION ANGLE (degrees per Stark and Eid, 1994)		∞	:	14	20		18			81		24	I		
		RAINED	Friction Angle (degrees)	17.8		!					9.6	,						,
		UNCONSOLIDATED-UNDRAINED TRIAXIAL SHEAR STRENGTH	Cohesion (KPa)	181.9		1	1	i			65.1				1		1	
		UNCONSO	Cohesion (ksf)	3.8	:			;			1.36	İ						
·	ST RESULTS nts		Large Displacement Cohesion (KPa)			14.0			5.0			25.8		9.5		5.8	0.0	00
Table 6-4	Table 6-4 SUMMARY OF SHEAR STRENGTH TEST RESULTS Vasco Road Safety Improvements Alameda County, California	_	Large Displacment Cohesion (psf)			292			104			538		199		122	0	
		DIRECT SHEAR STRENGTH	Large Displacement Friction Angle (degrees)			∞			29		s	26		32		35	35	35
	SI		Peak Cohesion (kPa)			34.5			22.7			25.8		73.9		20.1	52.9	88
				Peak Cohesion (psf)			720		;	474			538		1543		419	1105
			Peak Friction Angle (degrees)			20			25			26		35		38	34	46
		SAMPLE DEPTH	Meters	14.3 to 14.6	14.2	14.3	18.9	5.3	8.5	1.6	11.3 to 11.6	12.2	13.4	19.1	21.5	13.6	18.9	4.4
		SA	Feet	47 to 48	46.5	47.0	62.0	17.5	28.0	30.0	37 to 38	40.0	44.0	62.5	70.5	44.5	62.0	14.5
			BORING	B-2		B-3					7 0	7 0						2.0

Table 6-5 SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH TEST RESULTS Vasco Road Safety Improvements Alameda County, California

BORING	GEOLOGIC	ELEVATION		IPLE PTII	SAMPLE ELEVATION	МО	DISTURE - DE	NSITY		UNCONFIN COMPRESS STRENGT	VE
	UNIT	(meters)	Feet	Meters	Meters	Moisture Content (percent)	Dry Density (pcf)	Dry Deusity (kg/m3)	qu (psf)	qu (kPa)	Strain (percent)
			5.5	1.7	262.3	17.8	103.5	1658	1572	75.3	1.6
B-I	Tuss	264 0	13.5	4.1	259.9	21.5	104.1	1668	1668	79.9	1.2
			29.5	9.0	255.0	19.6	111.3	1783	1783	85.4	1.5
			17.5	5.3	298.2	23.3	104.6	1676	1675	80.2	1.7
			190	5.8	297.7	17,8	111.3	1783	1783	85.4	1.3
			26.5	8.1	295.4	17.5	112.7	1805	1805	86.4	2.2
B-2	Kps	303 5	35 0	10.7	292.8	20.4	107.1	1716	1715	82.1	1.8
			39 5	12.0	291.5	18.6	113.9	1825	1825	87.4	1.6
			48 5	14.8	288.7	11.3	128.8	2063	2063 1865	98.8 89.3	4.1 3.9
			55 0	16.8	286.7	17.2	116.4 114.9	1865	1840	89.3 88 1	2.1
			69 0 8 5	21.0	282.5 297.9	13.3 14.6	116.6	1868	10402	498.1	1.8
			140	4.3	296.2	18.9	104.1	1668	5290	253.3	1.8
			21.5	6.6	293.9	15.9	115.2	1845	5290	253.3	2
			350	10.7	289.8	18.8	113.2	1816	1284	61.5	1.7
B-3	Kps	300.5	46.5	14.2	286.3	33.2	90	1442	1317	63.1	2.1
D -3	i i i i	300.5	58.0	17.7	282.8	25.3	99.6	1595	5469	261 9	1.8
			62.0	18.9	281.6	30.2	94.5	1514	3080	147.5	2.2
			71.5	21.8	278.7	17.4	114	1826	5512	263.9	1.8
			82.0	25.0	275.5	17.3	114.4	1833	3387	162 2	1 1
		1	3.0	0.9	316.6	10.8	115.4	1849	3556	170 3	2.3
			12.0	3.7	313.8	25.0	100.1	1603	2324	1113	1.3
			14.0	4.3	313.2	12.7	120.8	1935	4958	237.4	2
			17.5	5.3	312.2	27.9	94.9	1520	1226	58.7	3.3
			27 0	8.2	309.3	24.6	100.8	1615	2371	113.5	3.5
			30.0	9.1	308.4	21.3	107.3	1719	1240	59.4	1.7
			39.0	11.9	305.6	18.6	112.2	1797	5042	241.4	1,7
B-4	ν.	317.5	44.0	13.4	304.1	17.3	115.7	1853	2254	107.9	0.8
B-4	Kps	317.5	49 0	14.9	302.6	18.3	112,5	1802	6234	298.5	6
		l	56.0	17.1	300.4	17.2	114.9	1841	3227	154.5	4
			64.5	19.7	297.8	13,8	120.7	1933	13236	633.7	1.9
			66.5	20.3	297.2	19.4	111.7	1789	11400	545.8	5.2
			70.5	21.5	296.0	17.3	115.4	1849	13326	638.1	3.7
			75.5	23.0	294.5	17.5	115.1	1844	17206	823.8	5.7
			79.5	24.2	293.3	15.5	117.9	1889	11804	565.2	5.4
			83.4	25.4	292.1	16.6	114.6	1836	17723	848.6	2.3
			8.0	2.4	309.1	25.5	97.9	1568	3309	158.4	2.3
			27.0	8.2	303.3	18.7	113.3	1815	4062	194.5	4.2
			36.5	11,1	300.4	11.0	128.2	2054	6583	315.2	1.3
			41.0	12.5	299.0	19.9	110,6	1772	11541	552.6	2.5
B-5	Kps	311.5	47.5	14.5	297.0	17.9	114.2	1829	8370	400.8	2.3
			55.0	16.8	294.7	19.0	112.3	1799	10645	509.7	4.9
			62.5	19.1	292.5	16.9	115.7	1853	10714	513.0	1.7
			66.5	20.3	291.2	17.1	115.9	1857	14620	700.0	2.8
			75 0	22.9	288.6	15.2	117.5	1882	12042	576.6	1.9
D 6	·	272.6	80.5	24.5	287.0	14.6	115.7	1853	10213	489.0	1.9
B-6	Tmss	272 5	28.5	8.7	263.8	18.5	105.4	1688	2479	118.7	0.9
B-7	Kps	293 0	13 0	5.5	289.0	5.8	134.1	2148	31512	1508.8	1.3
			18.0		287.5	8.6	131.8	2111	22284	1067.0	1.3
B-8	Tmss	266.3	15.3	4.6	261.7	15.9	114.2	1829	1763	84.4	1.9
			9.0	5,6	260.7	15.9	115.3	1847	1633 18364	78.2 879.3	4.9
B-14	Kps	284.8	14.0	4.3	282.1			1685		307.2	6.1
			14.0	4,3	280,5	21.2	105.2	1082	6415	307,2	6.1

		Recompression Index (Cr)	0.018		0.014				
	CONSOLIDATION	Compression Index (Cc)	090.0		0.082		:		
T RESULTS	CONSOI	Coefficient of Consolidation (cm2/min)			1.99 (@306kPa)			!	1
Table 6-6 YA OF COMPACTION AND CONSOLIDATION TEST RESULTS Vasco Road Safety Improvements Alameda County, California		Coefficient of Consolidation (in2/min)			0.308 (@6400psf)	No. 10 to the state of the stat			
Table 6-6 IPACTION AND CONSOLIDATI Vasco Road Safety Improvements Alameda County, California	ER	Optimum Water Content (percent)		13		12	15	6	13
SUMMARY OF COMI	COMPACTION PER ASTM D1557	Maximum Dry Density (kg/m3)		1890		1874	1762	2002	1890
Wns		Maximum Dry Density (pfc)		118		117	110	125	118
	SAMPLE DEPTH	Meters	10.8	30 to 66 9.1 to 20.1	2.6		:		
	SAM	Feet	35.5	30 to 66	8.5				
		BORING	B-4	B-5	B-8	TP-2		TP-5	B-3 and B-4

		R-VALUE										:									25	55	23
		Chloride (ppm)							5	5	8	9	9	6	7	24		5	42	8			33
TS		Sulfate SO4 (ppm)			-				54	117	312	105	840	1800	1860	105	~	24	69	45			81
Table 6-7 IMARY OF DURABILITY AND CORROSION TEST RESULTS Vasco Road Safety Improvements Alameda County, California	CORROSIVITY	Electric Conductivity (umhos/cm)		•					[880]	[099]	[782]	[658]	[982]	[1100]	[1060]	[494]	[591]	[308]	[3022]	[415]			[205]
Table 6-7 URABILITY AND CORROSION Vasco Road Safety Improvements Alameda County, California		Minimum Resistivity (ohm-cm)					No. 10 No. 10 Add No. 10 No. 1		1140	1520	1280	1520	1020	606	943	2020	1690	3250	3310	2410			4880
JRABILITY asco Road S Alameda C		Soil pH (units)							6.58	6.50	6.87	29.9	6.41	5.71	5.96	5.69	7.05	6.31	3.05	6.46			3.8
RY OF DU	KE TESTS	ĺì	1	_	_	1	-													-			
SUMMA	SLAKE	Si		88.5	85.1	78.4	80.3	85.4				i											
	DEPTH	Meters	0.6	13.9	5.2	8.2	13.6	19.7	0.2	7.6	9.6	13.4	21.2	24.1	24.8	25.8	2.0	5.6	1.5				
	DEF	Feet	29.5	45.5	17.0	27.0	44.5	64.5	0.5	25.0	31.5	44.0	69.5	79.0	81.5	84.5	6.5	18.5	5.0				
		BORING	B-3	,		B-4	ţ					B-5	j				, A-R	2	B-13	TP-1	TP-2	TP-4	TP-5

Table 7-1

THE ROCK MASS RATING SYSTEM (GEOMECHANICS CLASSIFICATION OF ROCK MASSES)

(After Bieniawski, 1989)

Vasco Road Safety Improvements

Alameda County, California

			CLASSIFICATION PAR	CLASSIFICATION PARAMETERS AND THEIR RATINGS	R RATINGS				
	Parameter	<u>.</u>			Range of Values				
	Strength of Intact	Point-Load Strength Index (MPa)	>10	4 to 10	2 to 4	1 to 2	For this compres	For this low range, uniaxial compressive test is preferred	uniaxial preferred
_	Rock Material	Uniaxial Compressive Strength (MPa)	>250	100 to 250	50 to 100	25 to 50	5 to 25	1 to 5	<
	R	Rating	15	12	7	4	2	1	0
,	Drill Cc	Drill Core Quality	90 to 100	75 to 90	50 to 75	25 to 50		<25	
7	R	Rating	20	17	13	8		3	
·	Spacing of 1	Spacing of Discontinuities	>2m	0.6 to 2m	200 to 600 mm	60 to 200 mm		~60 mm	
7	R	Rating	20	15	10	8		5	
4	Condition of	Condition of Discontinuities	Very rough surfaces Not continuous No separation Unweathered wall rock	Slightly rough surfaces Separation < 1mm Slightly weathered walls	Slightly rough surfaces Separation <1mm Highly weathered wall	Slickensided surfaces or Or Gouge <5mm thick or Separation 1 to 5mm Continuous	Soft I	Soft gouge > 5mm thick or Separation > 5mm Continuous	n thick
	R	Rating	30	25	20	10		0	
		Inflow per 10m Tunnel Length (L/min)	None or	<10 or	10 to 25 or	25 to 125 or		>125 or	
ĸ	Groundwater	Joint Water Pressure Ratio	0 or	<0.1 or	0.1 to 0.2 or	0.2 to 0.5 or		>0.5 or	
•		General Conditions	Completely Dry	Damp	Wet	Dripping		Flowing	
	R	Rating	15	10	7	4		0	

ORMATION	B-4 B-5	UNCONFINED	COMPRESSIVE	RQU STRENGTH RQU STRENGTH	(kPa) (kPa)	100 823 100 700	20 59 70 158	78 317 93 488	85 237 96 512	24 253 9 158	32 40	Poor Rock	100 to 200	30 -+ 31
Table 7-2 UMMARY OF ROCK MASS STRENGTH INFORMATION Vasco Road Safety Improvements Alameda County, California	B-3	UNCONFINED	COMPRESSIVE	STRENGTH	(kPa)	264	62	183	162	87	29	Poor Rock	100 to 200	15 to 25
ROCK MA see Road S Alameda C			6	KŲD	101	100	16	82	93	28		P	1(
SUMMARY OF Va	B-2	UNCONFINED	COMPRESSIVE	STRENGTH	(kPa)	66	80	87	87	9	21	Very Poor to Poor Rock	<100	<15
			6	KŲD		86		65	80	30		Very Po		The same section of the sa
			VALUE			Maximum	Minimum	Average	Median	Standard Deviation	Total Hoek & Bray Rating	Hoek & Bray Classification	Cohesion (kPa)	Friction Angle (degrees)

NOTES:

- 1. Rock mass rating system summarized in Table 7-1. Total rating value equal to unconfined compressive strength rating + RQD rating + discontinuity spacing rating + discontinuity rating + groundwater rating + discontinuity orientation rating.
 - 2. Discontinuity spacing rating qualitatively evaluated based on boring logs and assumed to be 8 assumed for B-2, 12 for B-3, and 15 for B-4 and B-5.
 - 3. Discontinuity condition rating qualitatively evaluated based on boring logs and assumed to be 15 for B-2, B-3, and B-4 and 20 for B-5.
 - 4. Groundwater rating value of 10 assumed for all borings.
- 5. Discontinuity orientation rating assumed to be fair (-25) for all borings.

	SUMMARY	OF CUT SI	Table 8-1 MARY OF CUT SLOPE STABILITY ANALYSIS RESULTS	ESULTS	
		Vasco R Alam	Vasco Road Safety Improvements Alameda County, California		
	STATIC FAC	STATIC SAFETY FACTOR	IS	SEISMIC STABILITY	Å
SLOPE	Deep Surface	Shallow Surface	Pseudostatic Safety Factor Deep Surface (Far/Intermediate/Near Field)	Pseudostatic Yield Coefficient, k _y	Max Displacement (cm) (Far/Intermediate/Near Field)
Composite Buttressed 2.5:1 Lower Slope and Unbuttressed 3.5:1 Upper Slope	1.51	1.93	1.27 / 1.10 / 1.03	0.11	NA / 1 cm/ 1cm
3.5.1 Cut Slope With 50 m Hydraugers at Each Bench	1.44	1.69	1.22 / 1.06 / 1.00	0.10	NA / NA / 1 cm
3.5:1 Cut Slope With 70 m Hydraugers at Each Bench	1.55	1.69	1.32 / 1.15 / 1.07	0.123	Na / NA / 1cm
NOTES:					

<u>- 2 %</u>

Safety factors calculated using the computer program GSLOPE. See Appendix 1 for discussion of input parameters for pseudostatic analyses.

Potential seismic displacement calculated based on procedure described in Makdisi and Seed (1978).

Stability analyses performed for maximum east-facing cut slope that is shown as Section A-A' in Figures 4-3 and 4-4.

SUMMAR	Table 8-2 IARY OF EMBANKMENT STABILITY ANALYSIS RESULTS Vasco Road Safety Improvements Alameda County, California	ESULTS
SECTION LOCATION	STATIC SAFETY FACTOR	SEISMIC STABILITY (Far/Intermediate/Near Field)
Sta 0+800	1.57	1.41 / 1.28 / 1.22
Sta 1+080	1.53	1.38 / 1.23 / 1.16
Sta 1+160	1.54	140 / 1.27 / 1.21
SHEON		

NOTES:

Safety factors calculated using the computer program GSLOPE.
 Displacement analysis not required because seismic global stabilis

Displacement analysis not required because seismic global stability analyses indicate safety factors greater than 1.15.

		Unit Densities	not req'd	not req`d	20 kN/m³	20 kN/m³
	SIGN	Soil Strength	not req'd	not req`d	Embankment: φ=26°, c=2.5 kPa Reinforced Zone: φ=30°, c=0 Foundation: φ=30°, c=2.5 kPa	Embankment: φ=26°, c=2.5 kPa Reinforced Zone: φ=26°, c=2.5 kPa Foundation: φ=30°, c=2.5 kPa
N PARAMETERS	PARAMETERS FOR PRELIMINARY DESIGN	Passive Equivalent Fluid Pressure	48 kN/m³/m	48 kN/m³/m	not req'd	not req`d
Table 8-3 PRELIMINARY EARTH RETAINING STRUCTURE DESIGN PARAMETERS Vasco Road Safety Improvements Alameda County, California	PARAMETERS FOI	Active Equivalent Fluid Pressure	8 kN/m³/m for flat 12 kN/m³/m for 1V:2H	8 kN/m³/m for flat 12 kN/m³/m for 1V:2H	not req'd	not req'd
Table 8-3 H RETAINING STRUCTURE DI Vasco Road Safety Improvements Alameda County, California		Base Friction	0.35	0.35	not req`d	not req'd
IINARY EARTH V:		Allowable Bearing	120 kPa	120 kPa	Determine based on soil strengths, see FHWA Demo 82	Determine based on soil strengths, see FHWA Demo 82
PRELIN		COMMENTS	Use Caltrans Standard Plans, sulphate resistant concrete req'd.	Use Caltrans Standard Plans, sulphate resistant concrete req'd.	Select backfill req'd, corrosivity of on-site soil problematic for steel reinforcement. Design using FHWA Demo 82 Guidelines.	Use on site soils with geosynthetic reinforcement. Design using FHWA Demo 82 Guidelines.
		STRUCTURE TYPE	Reinforced concrete cantilever wall	Gravity wall / Cribwall	MSE-type wall Panel face or SRW	RSS

Table 8-4 SUMMARY OF CORROSION TEST RESULTS Vasco Road Safety Improvements Alameda County, California

SAMPLE ID	SAMPLE LOCATION	SAMPLE DESCRIPTION	SOIL pH -log[H+]	MINIMUM RESISTIVITY (ohm-cm)	SULFATE SO ₄ (ppm)	CHLORIDE Cl (ppm)
VRI	B-5 0.2 m	Dk. brown sandy clay	6.58	1140	54	5
VR2	B-5 7.6 m	Dk. yellow-brown sandy clay with weathered yellow-brown claystone	6.50	1520	117	5
VR3	B-5 9.6 m	Gray-brown weathered claystone	6.87	1280	312	8
VR4	B-5 13.4 m	Mottled gray-brown, dk. yellow- brown, and lt. gray clayey sand- stone/sandy claystone	6.67	1520	105	6
VR5	B-5 21.2 m	Mottled lt. gray-brown and yellow- brown clayey sandstone	6.41	1020	840	6
VR6	B-5 24.1 m	Gray clayey sandstone	5.71	909	1800	9
VR7	B-5 24.8 m	Gray claystone with white tuff	5.96	943	1860	7
VR8	B-5 25.8 m	Gray sandstone	5.69	2020	105	24
VR9	B-6 2.0 m	White, gray, and yellow-brown weathered sandstone	7.05	1690	< 1	<1
VR10	B-6 5.6 m	White-gray and dk. yellow-brown weathered sandstone	6.31	3250	24	5
VR11	B-13 1.5 m	Pale brown/red-brown and yellow- brown weathered sandstone	3.05	3310	69	42, **
VR12	TP-1 0-1.8 m	Yellow-brown and white weathered friable sandstone (trench spoil)	6.46	2410	45	8
VR13	TP-5 0-1.2 m	Brown residual silty sand with yellow-brown and white weathered friable sandstone (trench spoil)	3.80	4880	81	33

Table 8-5

SUMMARY OF ESTIMATED SERVICE LIFE OF CSP AND ALTERNATIVE CULVERT MATERIALS WITH A 50 YEAR SERVICE LIFE

Vasco Road Safety Improvements Alameda County, California

	C	ORRU	GATI	ED ST	EEL P	PIPE (CSP) I	EST. S	ERVI	CE LI	FE (y	rs)				
		Galv	anizeo	l CSP,	57 g]	Exterio Galv	or Bitu anized			ı			NATI RIAL	. —
SAMPLE ID	18 Gage 1.3 mm	16 Gage 1.6 mm	14 Gage 2.0 mm	12 Gage 2.8 mm	10 Gage 3.5 mm	8 Gage 1.3 mm	18 Gage 1.3 mm	16 Gage 1.6 mm	14 Gage 2.0 mm	12 Gage 2.8 mm	10 Gage 3.5 mm	8 Gage 1.3 mm	RCP	CAP	CASP	PLASTIC
VR1	13	17	21	29	37	45	38	42	46	54	62	70	Y ⁽²⁾	NR	NR	Y
VR2	14	18	23	31	40	49	39	43	48	56	65	74	Y ⁽²⁾	Y	Y	Y
VR3	15	20	25	34	44	54	40	45	50	59	69	79	Y ⁽²⁾	NR	NR	Y
VR4	15	20	25	34	44	53	40	45	50	59	69	78	Y ⁽²⁾	Y	Y	Y
VR5	11	14	18	25	32	38	36	39	43	50	57	63	Y ⁽²⁾	NR	NR	Y
VR6	7	9	11	15	19	24	32	34	36	40	44	49	Y ⁽²⁾	NR	NR	Y
VR7	8	10	13	18	23	28	33	35	38	43	48	53	Y ⁽²⁾	NR	NR	Y
VR8	11	15	18	26	33	40	36	40	43	51	58	65	Y ⁽²⁾	Y	Y	Y
VR9	21	27	34	46	59	72	46	52	59	71	84	97	Y ⁽¹⁾	Y	Y	Y
VR10	17	23	28	39	49	60	42	48	53	64	74	85	Y ⁽²⁾	Y	Y	Y
VR11	7	9	11	16	20	25	32	34	36	41	45	50	Y ⁽³⁾	NR	NR	Y
VR12	16	22	27	37	47	57	41	47	52	62	72	82	Y ⁽²⁾	NR	NR	Y
VR13	11	14	18	25	32	39	36	39	43	50	57	64	Y ⁽³⁾	NR	NR	Y

NOTES:

Pipe thicknesses listed above are for corrosive breakthrough only and do not take into account the structural strength which may be needed for overburden or loading conditions;

- NR Not recommended for use due to corrosive conditions;
- Y Yes, use of the indicated material is generally acceptable given the corrosive conditions;
- (1) pH mitigation measures required for concrete and RCP: Use Type IP (MS) Modified Cement or Type II Modified Cement, cement content as required by Caltrans Std. Spec. 90-1.01;
- pH mitigation measures required for concrete and RCP: Use Type IP (MS) Modified Cement or Type II Modified Cement, minimum cement content as required by Caltrans Std. Spec. 90-1.01, maximum water/cement ratio of 0.45;
- pH mitigation measures required for concrete and RCP: Use Type II Modified Cement or Type V Cement, minimum cement content 400 kg/m³ with 25% mineral admixture replacement (by weight), maximum water/cement ratio of 0.40

	Table 9-1	-1	
00	COMMERCIAL MATERIAL SOURCES WITHIN 50 KM OF THE PROJECT	WITHIN 50 KM OF THE	PROJECT
	Vasco Road Safety Improvements Alameda County, California	Improvements California	
		, camor ma	
SOURCE	LOCATION	APPROXIMATE ONE-WAY HAUL DISTANCE	PRODUCTS
		(km)	
RC Readymix Livermore Plant	1227 Greenville Rd., Livermore	7.9	Aggregates and Concrete
Vulcan Materials Pleasanton Plant	501 El Charro Rd., Pleasanton	16.3	Aggregates, Asphalt-Concrete, and Recycled Concrete
RMC Lonestar Eliot Plant	1544 Stanley Blvd., Pleasanton	16.7	Aggregates and Ready-Mix Concrete
Hanson Aggregates Pleasanton Plant	3000 Busch Rd., Pleasanton	16.7	Aggregates and Ready-Mix Concrete
RMC Lonestar San Ramon Plant	4700 Norris Canyon Rd., San Ramon	32.5	Ready-Mix Concrete
RMC Lonestar Sunol Plant #120	6527 Calaveras Rd., Sunol	35.9	Aggregates
Mission Valley Rock & Asphalt	7999 Athenour Way, Sunol	37.7	Aggregates and Asphalt-Concrete
RMC Lonestar Kerlinger Aggregate and Hot Plant #562	30350 S. Tracy Blvd., Tracy	38.3	Aggregates and Asphalt-Concrete
Granite Construction Tracy Rock and Asphalt Plant	30909 S. Tracy Blvd.,Tracy	38.9	Aggregates and Asphalt-Concrete
Teichert Aggregates Tracy Plant	29099 S. MacArthur Dr., Tracy	41.4	Aggregates and Asphalt-Concrete
Teichert Aggregates Veralis Plant	36314 South Bird Rd., Tracy	43.5	Aggregates and Asphalt-Concrete
Dutra Materials Hayward RecyclePlant 4001 West Winton Ave., Hayward	4001 West Winton Ave., Hayward	49.9	Recycled Aggregate Base and Drain Rock

		SUMMARY O	ARY OF CU	Table 12-1 F CUT AND FILL SLOPE RECOMMENDATIONS Vasco Road Safety Improvements Alameda County, California
STATION	STATION (approx)	Varamono Ovia ao	MAX	COMMENTS (DECOMMENDATIONS
From	То	GKADING GEOMETRY	HT.	COMMENTS / RECOMMENDATIONS
0+080	0+280	minor cut/fill grading	4m	over excavate 1 m where cut/fill transitions through road
0+280	0+370	side hill cut on two sides	12m	use 1V:2H cut with 5m benches at 8m vert spacing
0+370	0+480	side hill fill on two sides	ш9	use 1V:2H fill, no benches needed
0+480	0+290	side hill cut on both sides	m/	use IV:2H cut, no benches needed
0+290	1+050	side hill fill on both sides	22m	sta 0+620 to 0+660 over excavate colluvial soil, use 1V:2H fill w/ 4m benches at 8m vert spacing sta 0+700 to 0+750 over excavate colluvial soil, use 1V:2H fill w/ 4m benches at 8m vert spacing sta 0+780 to 0+880 deep colluvial soil w/ stock pond below, use retaining wall or steepened reinforced slope to avoid or over excavate colluvial soil and use 1V:2H fill w/ 4m benches at 8m
				vert spacing sta $0+880$ to $1+050$ use $1V:2H$ fill w/ 4m benches at 8m vert spacing
1+050	1+080	side hill cut	ш6 _	use 1V:2H cut with 4m benches at 8m vert spacing
080+1	1+345	side hill fill on both sides	23m	sta 1+080 to 1+180 use1V: 2.5H fill over ravine/creek - possible wetland, alternatively use retaining wall or steepened reinforced slope to avoid use underdrain along length of fill to drain existing drainage which will be filled fill crosses main strand of Greenville fault
1+345	1+580	side hill cut	28m	large cut crosses fault shear zone - very poor rock use IV:3.5H cut w/ 5m benches at 8m vert spacing install 70m long hydraugers at roadway and at benches as determined in field 5m wide stability fills may be needed in areas depending upon quality of material exposed in cut
1+580	1+690	side hill fill	13m	sta 1+590 to 1+680 over excavate existing fill and underlying colluvial soil use 1V:2H fill w/ 4m benches at 8m vert spacing
1+690	1+840	cut on both sides		sliver cut of existing cut slopes, use 1V:2H with 4m benches at 8m vert spacing

Table 12-2

RECOMMENDED ALTERNATIVES FOR CULVERT AND DRAIN MATERIALS

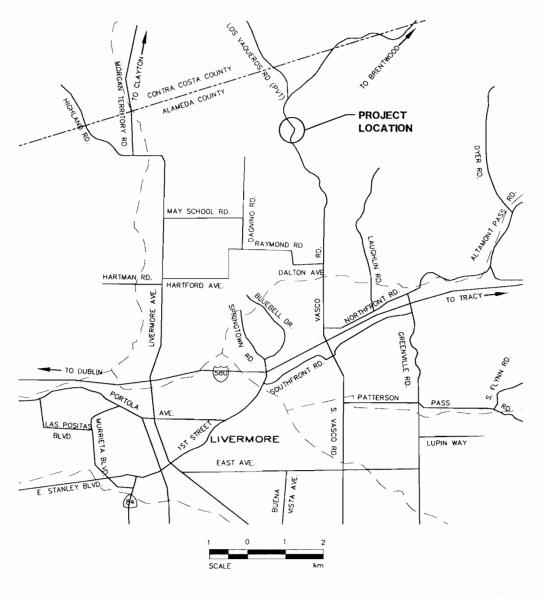
Vasco Road Safety Improvements Alameda County, California

	IFE			JOINT TYPE		
TYPE OF INSTALLATION	SERVICE L (yrs)	RECOMMENDED ALTERNATIVES	Standard	Positive	Downdrain	
Culvert & Drainage Systems	50	CSP (1, 2) - 8 gage/1.3 mm, w/ exterior bitumen coating; NRCP (1, 3, 4); RCP (1, 4); RCB (1, 4); PPC (1)	X ⁽⁵⁾	X ⁽⁵⁾		
Overside Drains	50	CSP (1, 2) - 8 gage/1.3 mm, w/ exterior bitumen coating			X ⁽⁵⁾	
Underdrains	50	PPET (1); PPVCP (1)	X ⁽⁵⁾			
Arches (Culverts & Drainage Systems	50	CSPA (1, 2); RCA (1, 4)	X ⁽⁵⁾	X ⁽⁵⁾		

LEGEND

22000			
ASRP	- Aluminum Spiral Rib Pipe (NR)	PSP	- Perforated Steel Pipe (NR)
CAP	- Corrugated Aluminum Pipe (NR)	RCA	- Reinforced Concrete Arch (1, 4)
CAPA	- Corrugated Aluminum Pipe Arch (NR)	RCB	- Reinforced Concrete Box (1, 4)
CASP	- Corrugated Aluminized Steel Pipe, Type 2 (NR)	RCP	- Reinforced Concrete Pipe (1, 4)
CIPCP	- Cast-in-Place Concrete Pipe (NR)	SAPP	- Structural Aluminum Plate Pipe (NR)
CSP	- Corrugated Steel Pipe (1, 2)	SAPPA	- Structural Aluminum Plate Pipe Arch (NR)
CSPA	- Corrugated Steel Pipe Arch (1, 2)	SSPA	- Structural Steel Plate Arch (NR)
NRCP	- Non-Reinforced Concrete Pipe (1, 3, 4)	SSPP	- Structural Steel Plate Pipe (NR)
PAP	- Perforated Aluminum Pipe (NR)	SSPPA	- Structural Steel Plate Pipe Arch (NR)
PCC	- Plastic Pipe Culvert (1)	SSRP	- Steel Spiral Rib Pipe (NR)
PPET	- Perforated Polyethylene Tubing (1)	X	- Permissible Joint Type for the type of

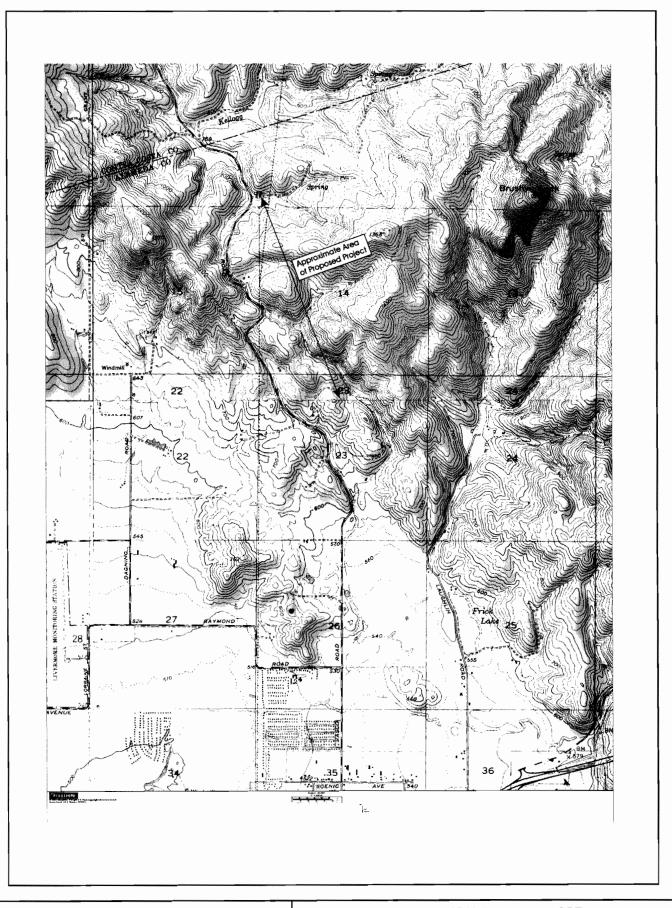
installation indicated (5)


PPVCP NOTES:

NR Not recommended for use due to corrosive conditions;

- Perforated Polyvinyl Chloride Pipe (1)

- (1) Pipe thicknesses (if listed) are for corrosive breakthrough only. Designer should specify thickness that addresses both corrosive and overburden/loading conditions;
- (2) Additional corrosion testing should be performed prior to the use of CSP;
- (3) Use permitted under special conditions in accordance with HDM Section 854.1(5);
- (4) Type II Modified Cement or Type V Cement, minimum cement content 400 kg/m³ with 25% mineral admixture replacement (by weight), maximum water/cement ratio of 0.40;
- Designer should specify the most cost-effective option. For "Normal" joints below grade, Designer should specify filter fabric wrap at joint per HDM Section 831.4.

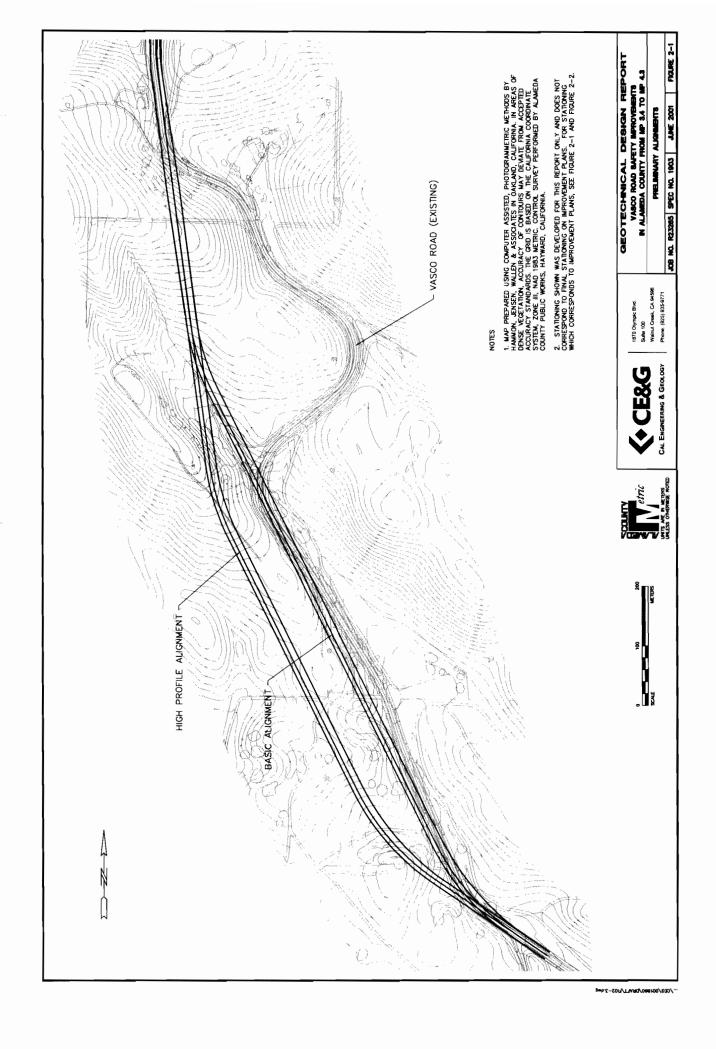


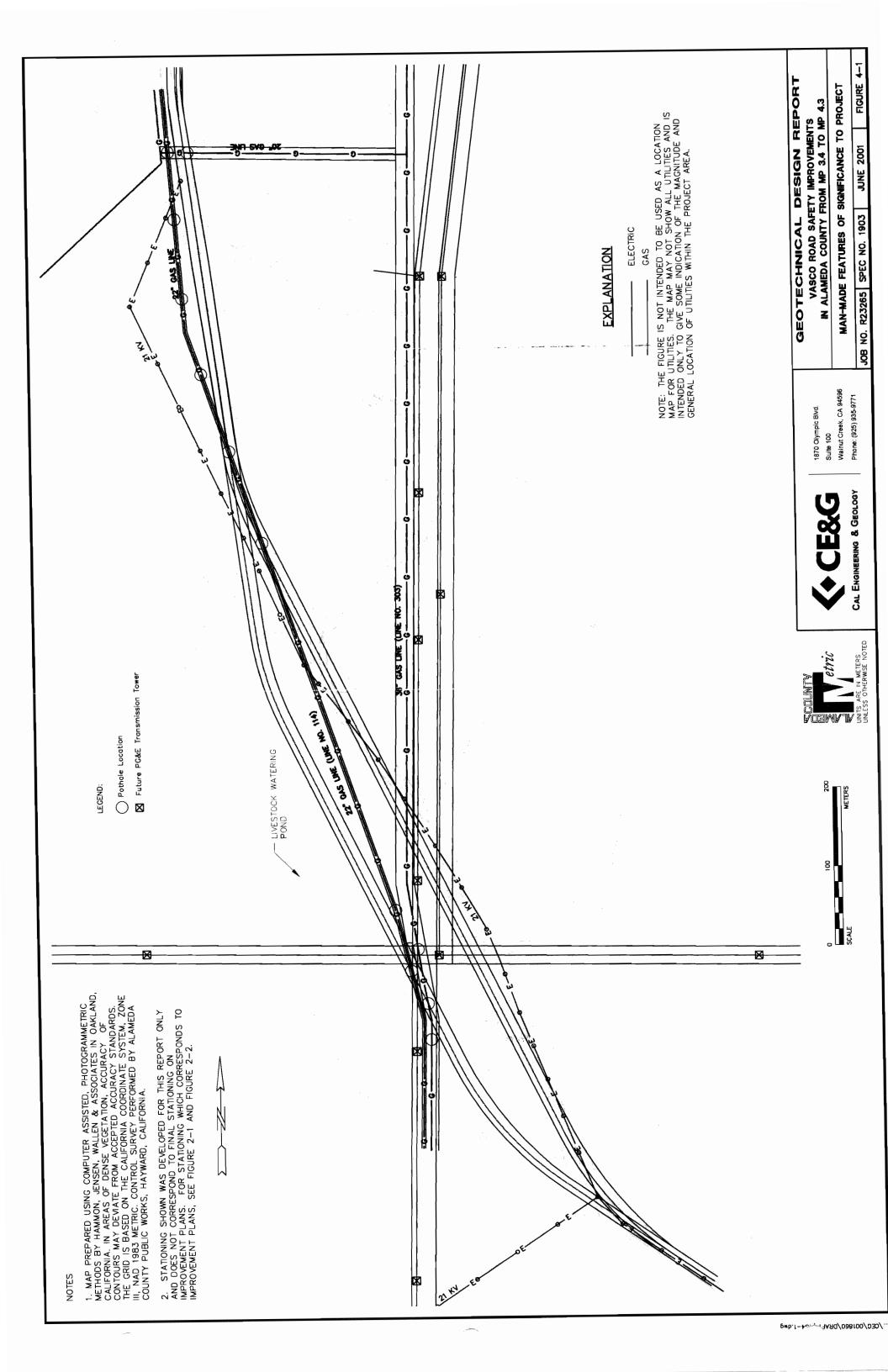
1870 Olympic Blvd. Suite 100 Walnut Creek, CA 94596 Phone: (925) 935-9771

VASCO ROAD SAFETY IMPROVEMENTS PROJECT IN ALAMEDA COUNTY FROM MP 3.4 TO 4.3

PROJE	T ?	$I \cap C \Delta$	TION	MΔD

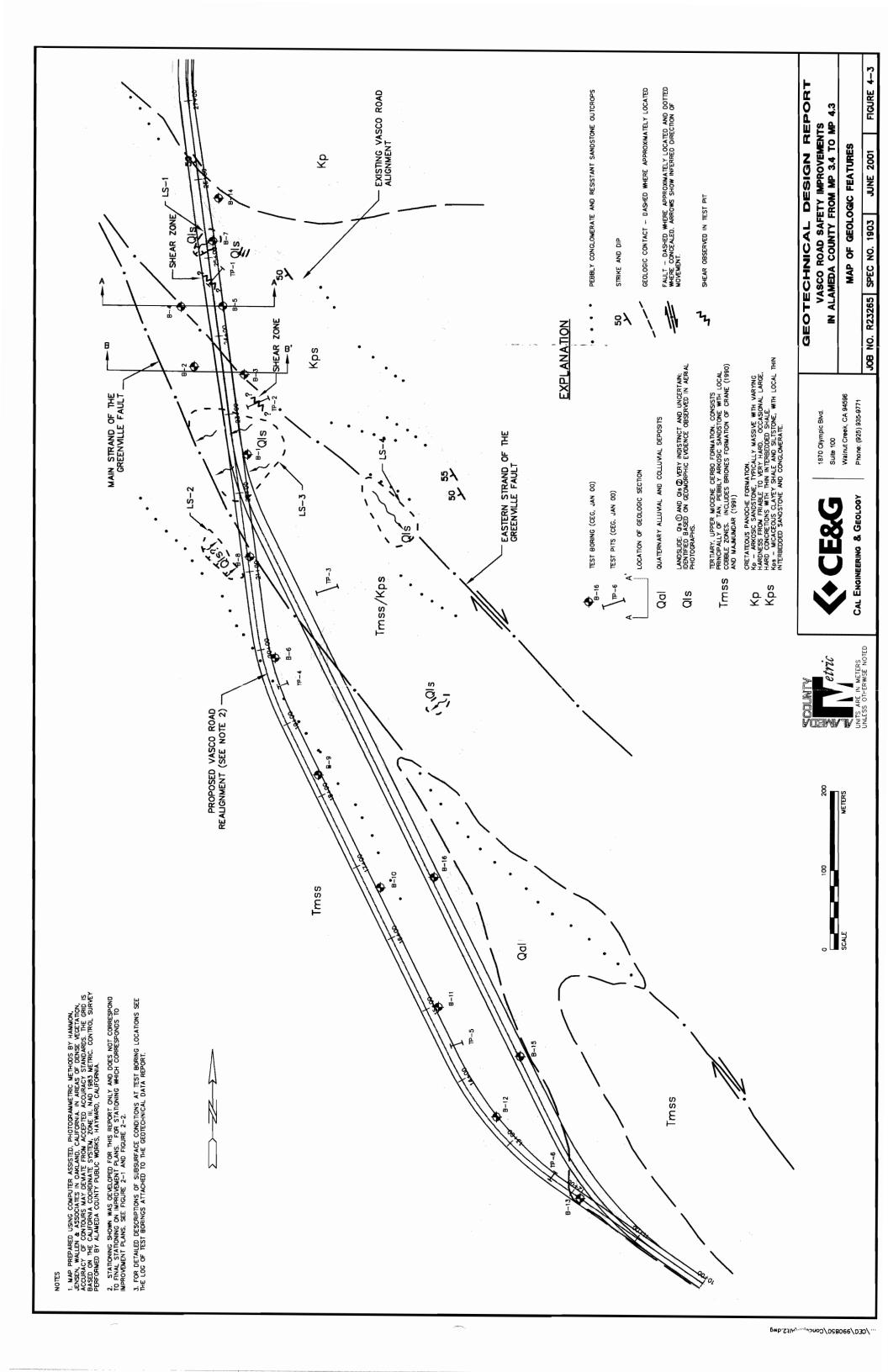
JOB NO. R23265 SPEC NO. 1903 JUNE 2001 FIGURE 1-1

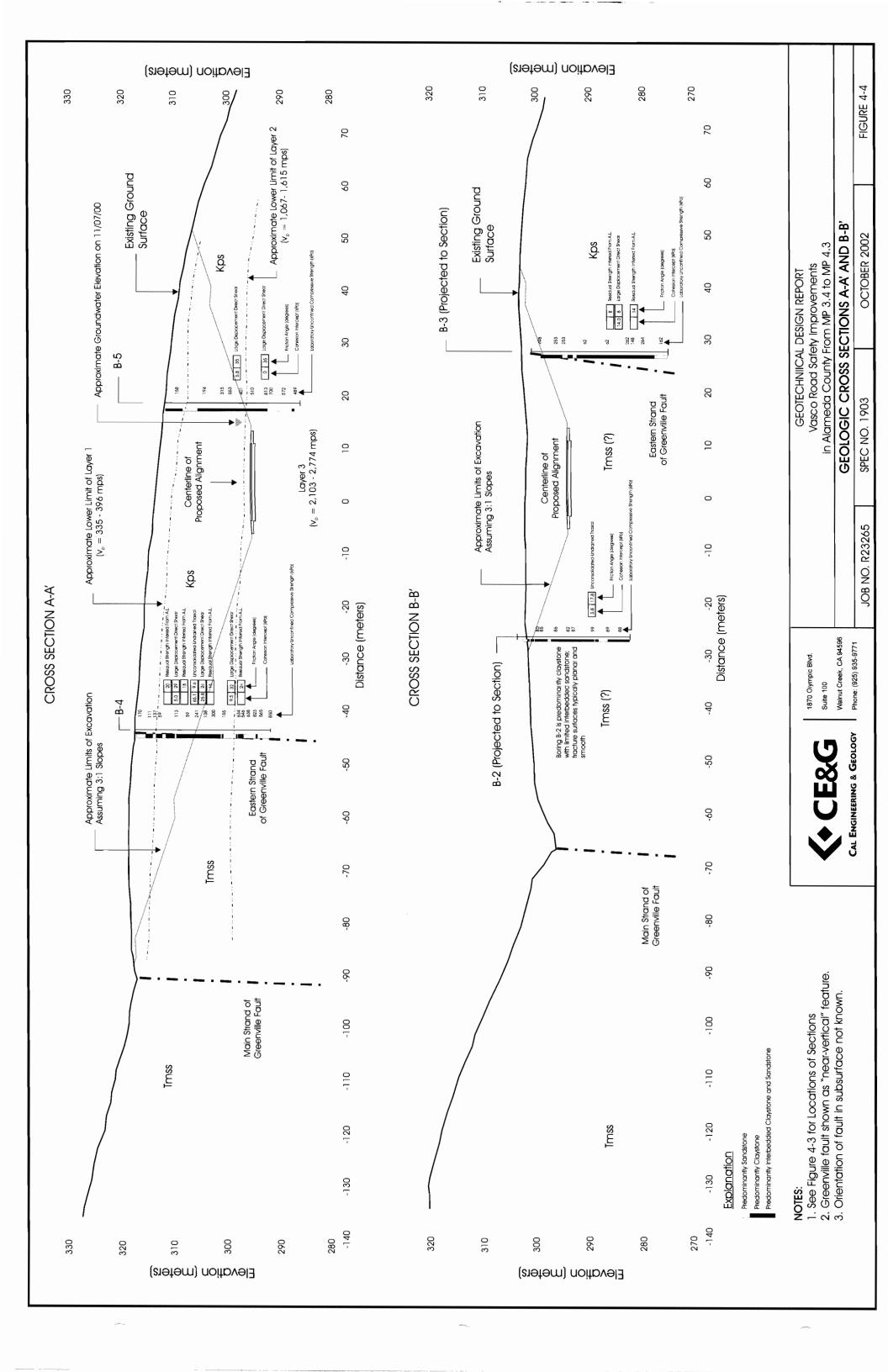


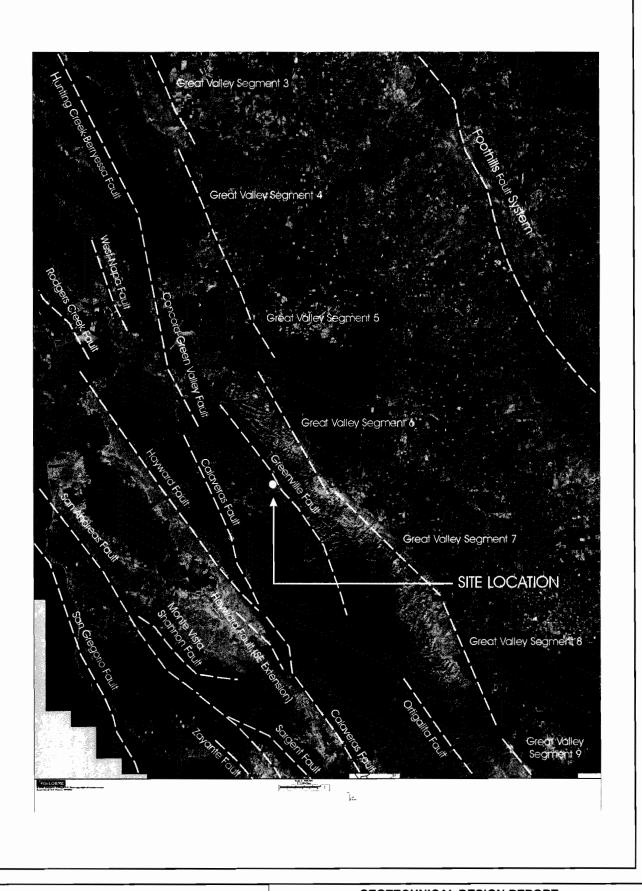

1870 Olympic Blvd. Suite 100 Walnut Creek, CA 94596 Phone: (925) 935-9771 GEOTECHNICAL DESIGN REPORT Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

PROJECT VICINITY MAP

JOB NUMBER R23265 SEPTEMBER 2002

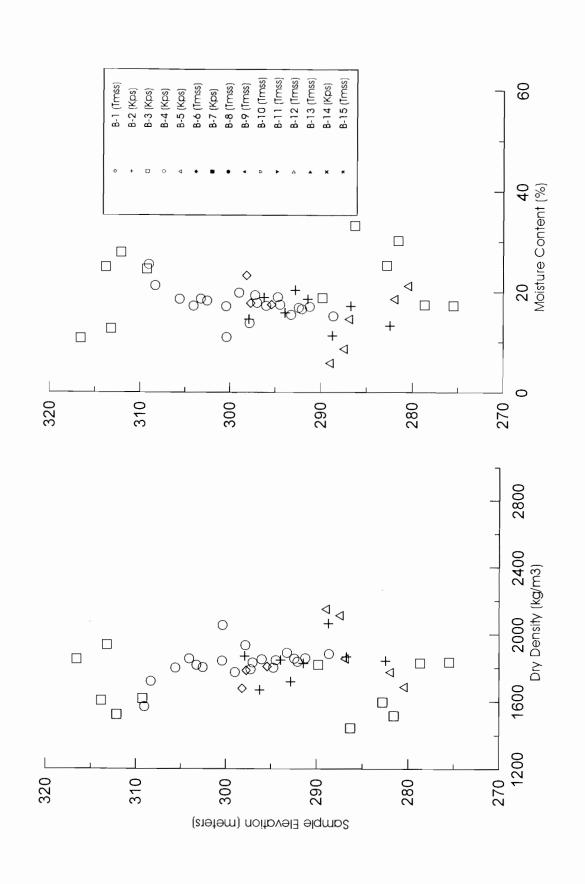

FIGURE 1-2





JUNE 2001 JOB NO. R23265 SPEC NO. 1903

1870 Olympic Blvd. Suite 100

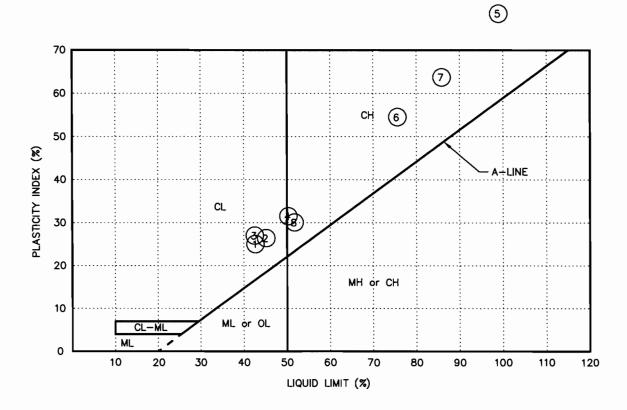

Walnut Creek, CA 94596 Phone: (925) 935-9771 GEOTECHNICAL DESIGN REPORT Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3

REGIONAL	FAULTS
----------	---------------

JOB NUMBER R23265 SE

SEPTEMBER 2002

FIGURE 4-5

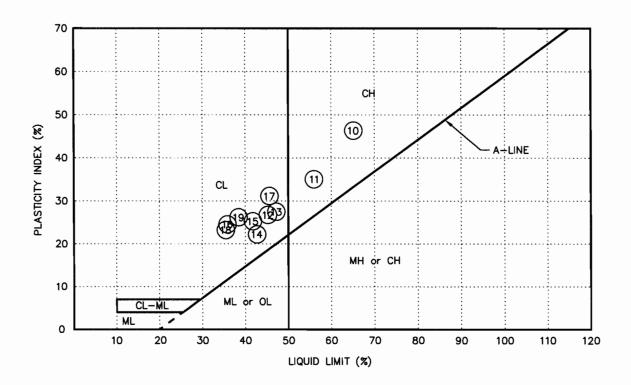


GEOTECHNICAL DESIGN REPORT DRY DENSITY AND MOISTURE CONTENT VS. ELEVATION VASCO ROAD SAFETY IMPROVEMENTS IN ALAMEDA COUNTY FROM MP 3.4 TO MP 4.3

FIGURE 6-1 JUNE 2001 CEG NO. 001860

Walnut Creek, CA 94596 Phone: (925) 935-9771 1870 Olympic Blvd. CAL ENGINEERING & GEOLOGY

/CEC/001860/DISAF1/FIC6-1.dwg


NUMBER	BORING	DEPTH (m)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
1	B-2	5.3	42	18	24
2	B3	4.2	45	19	26
3	B-3	6.6	42	16	26
4	B-3	10.7	50	19	31
5	B-3	14.2	99	20	79
6	B-3	17.7	75	21	54
7	B-3	18.9	86	23	63
8	B-3	21.8	51	21	30
9	B-3	25.0	56	18	38

1870 Olympic Blvd. Suite 100 Walnut Creek, CA 94596 Phone: (925) 935-9771 VASCO ROAD SAFETY IMPROVEMENTS IN ALAMEDA COUNTY FROM MP 3.4 TO MP 4.3

ATTERBERG LIMITS TEST RESULTS

JOB NO.: 001860 DATE: JUNE 2001 FIGURE 6-2 (1 OF 2)

NUMBER	BORING	DEPTH (m)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
10	B-4	3.7	65	18	47
(1)	B-4	5.3	56	21	35
12	B-4	9.1	45	18	27
13	B-4	11.9	47	20	27
14)	B-4	13.4	42	20	22
15)	B-4	17.1	41	16	25
16	B-4	19.7	36	12	24
17	B-4	20.3	46	15	31
18	B-4	21.5	35	12	23
19	B-4	24.2	39	13	26

1870 Olympic Blvd. Suite 100 Walnut Creek, CA 94596 Phone: (925) 935-9771 GEOTECHNICAL DESIGN REPORT
VASCO ROAD SAFETY IMPROVEMENTS IN ALAMEDA
COUNTY FROM IMP 3.4 TO IMP 4.3

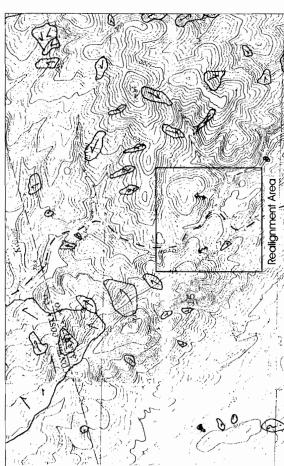
ATTERBERG LIMITS TEST RESULTS

JOB NO.: 001860 DATE: JUNE 2001 FIGURE 6-2 (2 OF 2)

1870 Olympic Blvd. Suite 100

Walnut Creek, CA 94596 Phone: (925) 935-9771

GEOTECHNICAL DESIGN REPORT


VASCO ROAD SAFETY IMPROVEMENTS IN ALAMEDA COUNTY FROM MP 3.4 TO MP 4.3

UNCONFINED COMPRESSIVE STRENGTH VS. ELEVATION

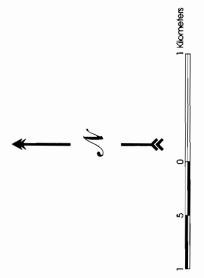
CEG NO. 001860

JUNE 2001

FIGURE 6-3

Recilignment Area

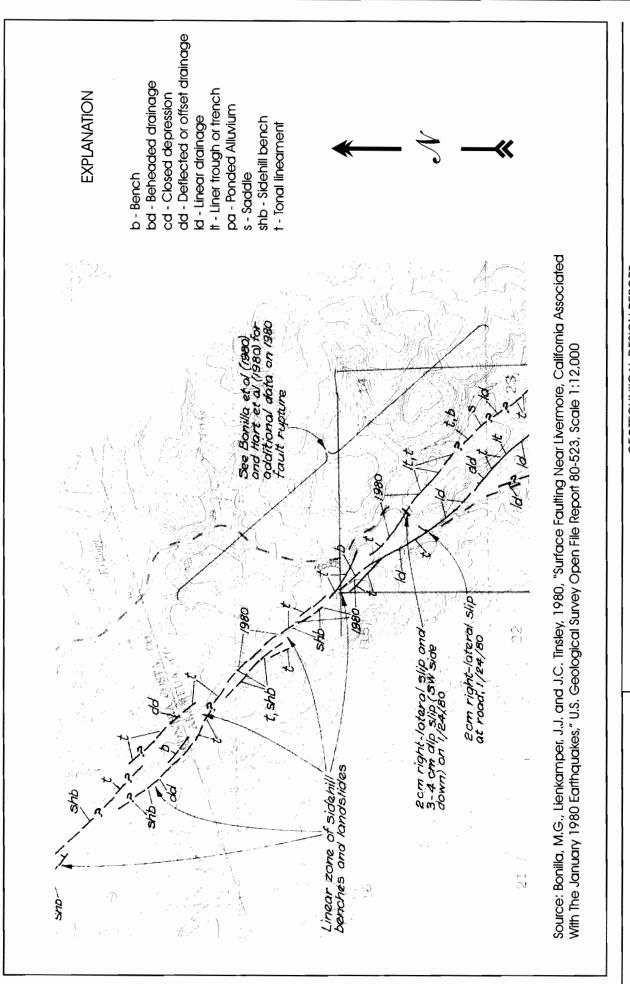
| #### | #### | #### | #### | #### | ####| ### | ####| ####| ####| ####| ####| ####| ####| ####| ####|


EXPLANATION

Landslides from California Department of Mines and Geology Open-File Report 92-05; Landslide Hazard Identification Map No. 27, Landslides and Related Features Map Plate 27 B.

Relative Slope Stability from California Department of Mines and Geology Open-File Report 92-05; Landslide Hazard Identification Map No. 27, Relative Landslide Susceptibility Map, Plate 27A

Area 3 - Generally susceptible to landslides. Slopes within this area are at or near their stability limits due to a combination of weaker materials and steeper slopes. Although most slopes within area 3 do not currently contain landslide deposits, the materials that underlie them can be expected fail, locally, when modified because they are close to their stability limits


Area 4 - Most susceptible area. This area is characterized by steep slopes and includes most kandslides in upslope areas, whether apparently active at present or not, and slopes upon which there is substantial evidence of downslope creep of surface materials. Slopes within area 4 should be considered unstable and subject to failure even in the absence of the activities of man.

GEOTECHNIICAL DESIGN REPORT Vasco Road Safety Improvements in Alameda County From MP 3.4 to MP 4.3
--

E STABILITY MAP	OCTOBER 2007
REGIONAL SLOPE STABILITY MAP	SPEC NO. 1903
	JOB NO. R23265
BOK, CAUADED	1 / R-058 (07

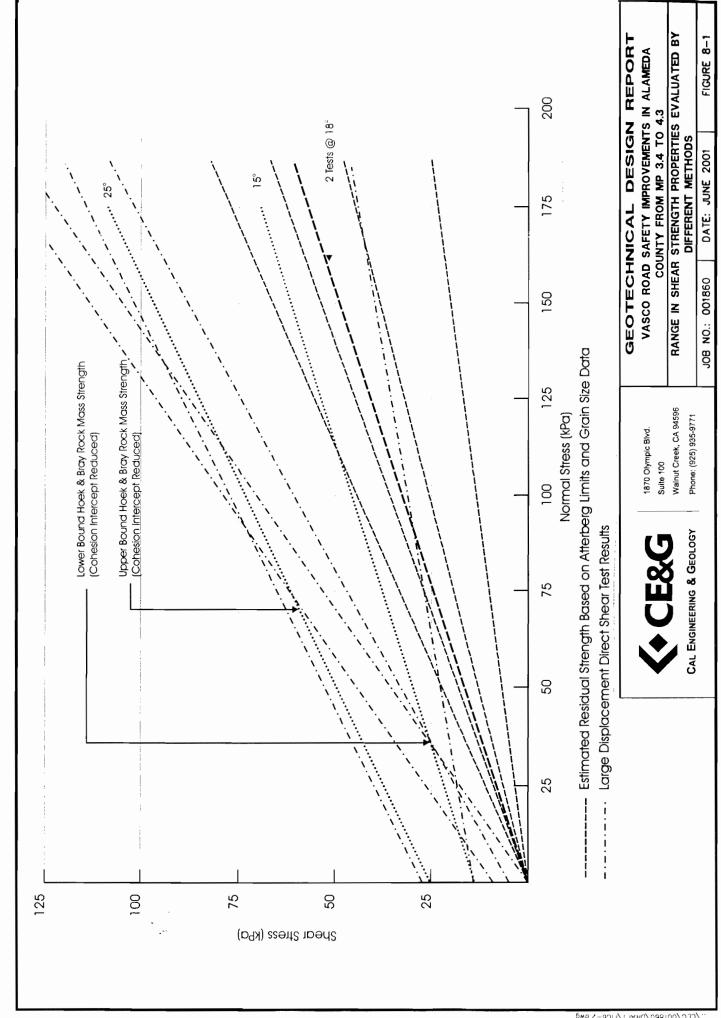
FIGURE 7-1

in Alameda County From MP 3.4 to MP 4.3 Vasco Road Safety Improvements GEOTECHNIICAL DESIGN REPORT

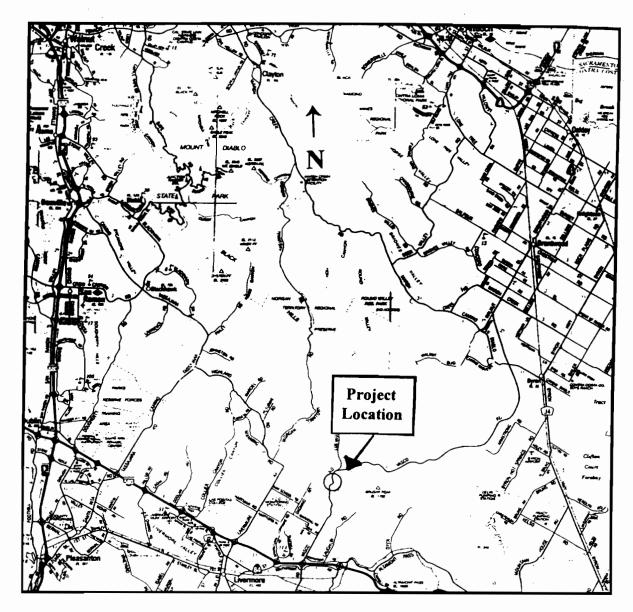
GEOMORPHIC FEATURES ATTRIBUTED TO THE GREENVILLE FAULT AND THE 1980 GREENVILLE EARTHQUAKE

JOB NO, R23265

Walnut Creek, CA 94596 Phone: (925) 935-9771


CAL ENGINEERING & GEOLOGY

◆ CE&G


1870 Olympic Blvd.

October 2002

Figure 7-2

PROJECT STUDY REPORT

VASCO ROAD SAFETY IMPROVEMENTS

in Alameda County from MP 3.4 to MP 4.3

Approved:	
Donald La Belle, Public Works Director	6-19-98
Donald La Belle, Public Works Director	Date
Approval Recommended by:	
Raem John	6-17-98
Ralph Johnson, Deputy Director	Date

Prepared by:

Teresa K.Q. Bowen, William R. Gray and Company

This Project Study Report has been prepared under the direction of the following registered civil engineer. The registered civil engineer attests that recommendations and conclusions are based on the technical information and the engineering data contained herein this Project Study Report.

Tat Cheung, P.E.

Project Manager

Date

I. INTRODUCTION

This project is located on Vasco Road in Alameda County starting at a point approximately 1.8 miles north of the Livermore City limit to the recently reconstructed Vasco Road approximately 1.6 miles south of the Contra Costa County line. For a Location Map, see Attachments A and B. It is proposed to reconstruct this portion of Vasco Road on a new improved alignment and grade, widen shoulders and add passing lanes to improve traffic operations and safety. This portion of Vasco Road will be designed based on current County standards for new roads and comfort speeds. Three alternatives with varying alignments and grades have been defined and studied. The cost of the alternatives range from \$7.2 million to \$10 million. This Project Study Report (PSR) summarizes the results of engineering studies and documents program level cost estimates. This PSR is intended to form the basis for a multi-agency consensus of the project concept and to seek funds to advance the state of readiness and construction of the proposed project. This project has been developed in cooperation with, and has the support of, Contra Costa County, the Cities of Livermore, Brentwood and Antioch, and the Contra Costa Transportation Authority.

II. BACKGROUND

Vasco Road is a north/south arterial between Tesla Road in Alameda County and Camino Diablo Road in Brentwood, Contra Costa County. Vasco Road is part of the Metropolitan Transportation System and is also defined as a route of regional significance by Contra Costa County. Vasco Road is a narrow and winding two-lane rural road along most of its length, except in developed areas in the City of Livermore, where it widens to four lanes.

In 1996, a 13 mile portion of Vasco Road in Contra Costa County was relocated and improved as a result of the construction of the Los Vaqueros Reservoir. The relocated segment from one-half mile south of the County line to Camino Diablo Road in Brentwood was constructed to current highway standards. The remaining three mile segment in Alameda County has tight curves, inadequate sight distance and narrow shoulders. Because of these poor roadway geometrics, transit does not serve this corridor. It is the general consensus that improvements on the Alameda County portion should be made to provide all users of Vasco Road with a safer facility.

Alameda County, in cooperation with Contra Costa County, the Cities of Livermore, Brentwood and Antioch, and the Contra Costa Transportation Authority initiated this PSR to define the scope and cost of the proposal in order to seek funds to advance the state of readiness and construction of the proposed project.

III. NEED AND PURPOSE

Vasco Road north of I-580 is a major commuter and truck route linking the Tri-Valley and Silicon Valley with eastern Contra Costa County. Vasco Road has become an alternative commute route to the congested I-680 and SR 4 corridors. Commute traffic on the Vasco Corridor is projected to increase with growth forecasted in Eastern Contra Costa County, the Tri-Valley, and Silicon Valley in Santa Clara County. Attachment G diagrams the distribution of trips on Vasco Road for northbound p.m. traffic projected for year 2000.

According to the studies conducted for the Vasco Road and Utility Relocation Project (prepared in conjunction with the Contra Costa Water District's Los Vaqueros project), the estimated free-flow travel time for Vasco Road from the intersection of Camino Diablo Road to I-580 interchange is 16-18 minutes. Traffic on Vasco Road is subject to substantial delays due to heavy peak hour traffic volumes, the steepness of roadway grade, short curve radii, and lack of passing lanes on Vasco Road. Travel during peak hours can take as long as 25-30 minutes, particularly when passenger vehicles are backed up behind trucks.

Several sources contribute to truck traffic on the Vasco Road Corridor. These sources include agricultural uses, commercial deliveries, landfill operations, and truck storage areas. In general, however, there are two major categories of truck travel in the project area: inter-regional truck travel (which includes exporting agricultural products) and trucks destined to and from the Vasco Road Landfill.

The existing and the projected Year 2010 traffic volumes and the historical accident data are shown on Attachment F. With increased traffic volumes in the future, Vasco Road is expected to have a Level of Service F in the Year 2010.

As noted above, a portion of Vasco Road in Contra Costa County was relocated as part of the Los Vaqueros Reservoir Project. This resulted in the improvement of a major arterial between eastern Contra Costa and Alameda Counties. The relocated 13 mile segment of the roadway was constructed to current highway standards resulting in a safer road with higher design speeds and better traffic conditions. With the improvement on the Contra Costa segment, the occurrences of accidents and injuries along the improved portion of Vasco Road have been substantially reduced.

The table below summarizes the accident rates for a period from 1994 to 1997. The average accident rates, except for fatal accidents, for Vasco Road between the Livermore

City limit and the Alameda/Contra Costa County line for a three-year period from 1994 to 1996 is higher than the State average rates for a similar facility.

Location:	Total Accidents	Туре				Actual Average Rate per Million Vehicles Miles		Statewide Average Rate per Million Vehicles Miles¹		
		Fatal	Injury	Fatal	F&I	Total	Fatal	F&I	Tota	
Alameda County (1994, '95 & '96) MP 3.4 to 4.3	18	0	9	0.00	0.36	0.71	0.017	0.25	0.57	
Contra Costa County (1994, '95) MP 0 to 11.10	77	3	30	0.027	0.30	0.70	0.017	0.25	0.57	
Contra Costa County (May to December 1996 ² , '97) MP 0 to 11.10	39	1	19	0.009	0.17	0.34	0.017	0.25	0.57	

- 1. Assembly of Statistical Reports 1995, State of California, Business Transportation and Housing Agency, December 1997
- 2. Reconstructed segment of Vasco Road in Contra Costa County was completed and opened to traffic April 15, 1996. Data for Jan-April 1996 was not included due to ongoing construction activities.

Both the Gateway Policy adopted by the Alameda County Board of Supervisors and the Action Plan adopted by the Tri-Valley Transportation Council places constraints on widening Vasco Road beyond two through lanes. The Tri Valley Transportation Plan does acknowledge the need to realign and upgrade the Alameda segment of Vasco Road while retaining the two lane cross section. The Tri-Valley Transportation Plan further recommends that improvements be done in such a manner to not preclude future accommodation of public transit or other improvements as subsequently determined appropriate. Alameda County and Contra Costa County are taking steps in seeking funds for improving Vasco Road from the improved segment in Contra Costa County to the Livermore City limit.

Recognizing that both counties have other major unfunded transportation priorities and all of the needed funds for Vasco Road may not be available, phasing construction of the three-mile segment is proposed. Phase I of the project will cover 0.9 miles of the most winding and narrowest portion of Vasco Road contiguous to the new Vasco Road. To improve traffic safety and operation at this location, improvements would include realignment of the roadway, widening of shoulders and installing passing lanes without increasing its capacity. Phase 1 has independent utility from future and subsequent

phases. The proposed project concept is consistent with the standards used in the Contra Costa County. Other phases covering the remainder of the three-mile segment may follow as funds become available.

IV. ALTERNATIVES

The typical roadway section for Vasco Road will include two 12-foot lanes with 8 foot shoulders, 2:1 side slopes and minimum 10 foot distance between the catch point and right of way fence line. This typical section applies to all three alternatives studied. For details on the proposed cross section, see Attachment C.

Three alternatives were defined and analyzed. Alternative 1 is characterized as Straight Alignment Basic Profile; Alternative 2: Straight Alignment High Profile and; Alternative 3, Reverse Curves Alignment. Features for each of these three alternatives are comparatively summarized in Attachment H. Detailed cost estimates for each alternative are shown on Attachments I, J and K. Each alternative is described as follows:

Alternative 1: Straight Alignment Basic Profile (Attachment D)

The alignment of this alternative for the most part is straight between conform points, connecting to the existing pavement with a R-1300' curve and 4% superelevation at each end. The design speed for this alternative is 55 mph. The maximum grade is 8%. The profile of this alternative does not fit the existing grade of the newly constructed Vasco Road. About 1000' of the new road may need to be reconstructed. However, this profile would meet existing grade at the south conform and would provide flexibility for the next phase of the project. Based on this profile grade, the maximum height of cut would be 100'. Consequently, this alternative would require the most earthwork, estimated at 550,000 CY of roadway excavation.

Right of way acquisition would involve only unimproved lands and no right of way relocation would be required. Existing property access would be maintained during construction of the project. Traffic through the south conform would be affected during construction so staged construction may be necessary. Utility relocation would include existing power poles and Sprint facilities. As wetlands would be impacted with this project, wetland restoration would be required. The construction and right of way cost of this alternative including 25% for preliminary and design engineering, 15% for construction engineering and 20% for contingencies is \$9.6 million for a road improvement length of approximately 4,000'.

The advantages for this alternative are better alignment and grade. The disadvantages are higher cost due to more earthwork and the need to reconstruct more of the existing new road at the north conform.

Alternative 2: Straight Alignment High Profile (Attachment D)

The alignment and other design features and right of way and environmental impacts of this alternative are the same as Alternative 1, except this alignment has a higher profile. Consequently, the maximum height of cut is only 80' and the earthwork (estimated at 350,000 CY) is much less than Alternative 1. However, it would also require much longer distance (about 2,000') to conform at the south end and more right of way than Alternative 1. At the north end, it would require less construction of the new road (about 600'). The construction and right of way cost of this reconstruction alternative including 25% for preliminary and design engineering, 15% for construction engineering and 20% for contingencies is \$10.0 million for a road improvement length of approximately 6,000'.

The advantages for this alternative are the straight alignment and lower cost per mile of construction. The disadvantages are higher profile with longer steep grade. Maintaining traffic during construction at the south conform is an issue due to the difference in grade between the existing and the proposed profile. The higher cost of Alternative 2 may make it more difficult to procure the needed funding for construction.

Alternative 3: Reverse Curves Alignment (Attachment E)

The alignment of this alternative for the most part is winding with double reverse curves (R=1200') between conform points. Superelevations of 4% are required almost throughout the entire length of the project. The design speed is 55 mph. The maximum grade is 8%. The profile of this alternative is the same as Alternative 1. About 1000' of new road may need to be reconstructed. The maximum height of cut is 85'. This alternative would require the least earthwork of the three alternatives studied. About 310,000 CY of roadway excavation would be needed. Right of way acquisition would be slightly less than Alternatives 1 and 2. Utility relocation, wetland impacts and other aspects of design involvements are the same as required for Alternative 1. The construction and right of way cost of this alternative including 25% for preliminary and design engineering, 15% for construction engineering and 20% for contingencies is \$7.2 million for a road improvement length of approximately 4,000'.

The primary advantage for this alternative is lower cost. The primary disadvantages are the double reverse curves with short tangents.

V. SYSTEM PLANNING

The proposed project is consistent with the Alameda and Contra Costa Counties General Plans. The need to improve the Alameda portion of Vasco Road is acknowledged in the Tri -Valley Transportation Plan/Action Plan for Routes of Regional Significance. This

project has the support of the Cities of Livermore, Brentwood and Antioch and the Contra Costa Transportation Authority.

VI. ENVIRONMENTAL ISSUES AND CLEARANCE PROCESS

An Initial Study was conducted by reviewing entries in the California Natural Diversity Database (NDDB), consulting with the Northwest Information Center, reviewing the Vasco Road and Utility Relocation Project Environmental Impact Report and by conducting a site visit on December 3, 1997. The initial findings and recommendations are summarized in a December 19, 1997 report included as Attachment L. Additional studies are required in order to determine the appropriate level of environmental clearance and whether the proposed project is subject to NEPA. Additional biological surveys are needed to determine the extent of impacts to special studies species and their habitats known to occur within the project area. A Project Site reconnaissance for historic and prehistoric cultural resources will need to be conducted. Given the proximity of the site to an earthquake fault, soil studies may be needed to determine characteristics along the project alignment.

The proposed project may be subject to the requirements of EPA's project level conformity rules and MTC Resolution 2270. It appears the project may be categorized as a "small project" since this project would not significantly change traffic capacity, traffic volumes or speed, and that there are no significant air quality impacts to nearby receptors.

The proposed project is likely to require the following permits: US Army Corps of Engineers Permit (US Fish and Wildlife Service Section 7 consultation may be required), Regional Water Quality Control Board Section 401 Water Quality Certification/Waiver, California Department of Fish and Game Streambed Alteration Agreement.

Federal environmental review is triggered if the project is located on federally owned or controlled lands or if the project is funded with federal funds. Alameda County would be the lead agency for CEQA.

VII. FUNDING AND PROGRAMMING

The proposed Phase 1 project is currently unfunded. Contra Costa County, through the Contra Costa Transportation Authority, has initiated steps to program partial funding for Phase 1 of the project. Proposed Track 1 Investments outlined in the Preliminary Draft 1998 Regional Transportation Plan (RTP) for Contra Costa County includes \$5.8m for Vasco Road Improvements in Alameda County. (See Attachment M.) Contra Costa County proposes to program these funds contingent on an Alameda County match of \$5.8m. At the present, Vasco Road is not included in the Alameda County project list

proposed for the 1998 RTP. Potential funding for Phase 1 and subsequent phases of the project could include a combination of Federal, State, and local funds, including traffic impact mitigation fees.

VIII. RECOMMENDATION

It is recommended that this PSR be approved so that the project concept can be established. It is further recommended that the following steps be taken:

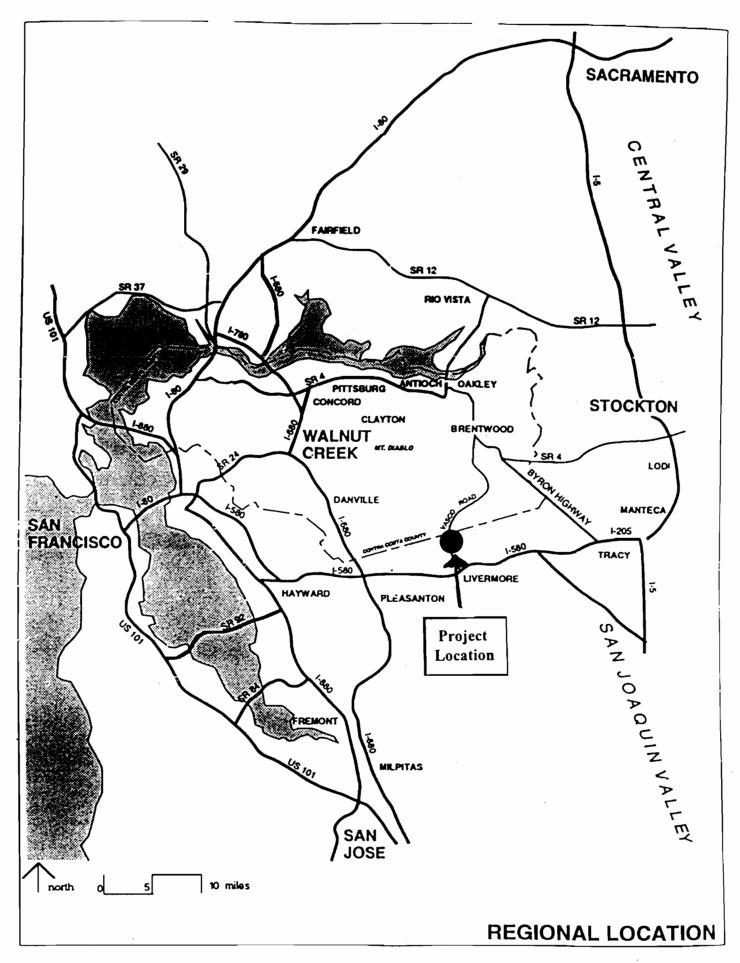
- Develop a near and long term funding strategy for Phase 1 and subsequent phases in coordination with Contra Costa County and others.
- Advance the project's state of readiness by:
 - * conducting an environmental assessment,
 - * selecting a preferred alternative,
 - * preparing the environmental document and
 - * initiating preliminary and final PS&E.

IX. PROJECT TEAM

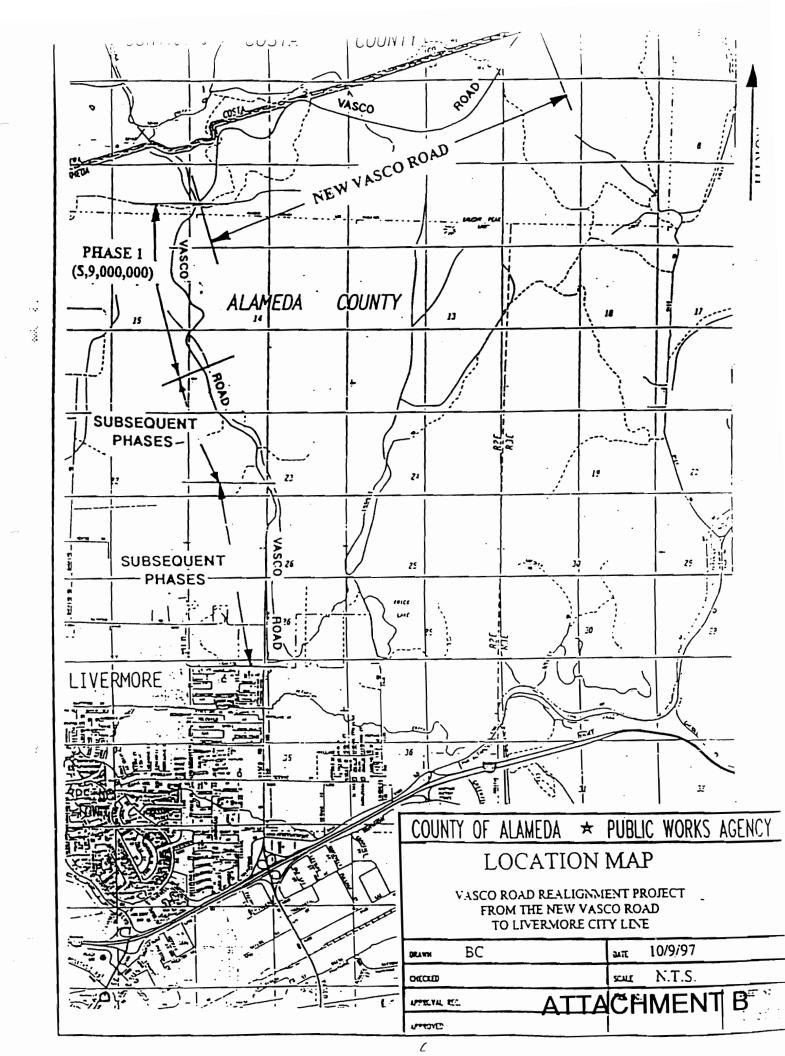
Tat Cheung, Alameda County Public Works Agency	(510) 670-5486
Ralph Johnson, Alameda County Public Works Agency	(510) 670-5562
Joanne Parker, Alameda County Planning Department	(510) 670-6511
Dennis Fay, Alameda County CMA	(510) 836-2560
Bob McCleary, Contra Costa Transportation Authority	(925) 256-4724
Maurice Shiu, Contra Costa County	(925) 313-2251
Joe Yee, Contra Costa County	(925) 313-2258
Dan Smith, City of Livermore	(925) 373-5240
Lynne Filson, City of Brentwood	(925) 516-5322
Ed Franzen, City of Antioch	(925) 779-3051
Bill Gray/Terry Bowen, William R. Gray and Company	(925) 947-1966

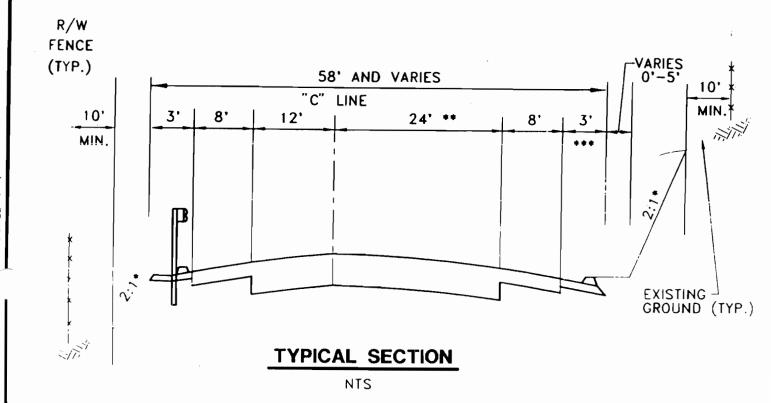
X ATTACHMENTS

Attachment A:	Regional Location Map
Attachment B:	Location Map
Attachment C:	Typical Section
Attachment D:	Straight Alignment Alternatives Plan and Profiles (Basic and High)
Attachment E:	Reverse Curve Alignment Alternative Plan and Profile
Attachment F:	Existing and Projected Traffic Volumes and Accident Data
Attachment G:	Origins and Destinations on Vasco Road
Attachment H:	Summary of Alternatives
Attachments I-K:	Cost Estimates


Attachment L:

Environmental Reconnaissance


Attachment M:


Preliminary Draft 1998 Contra Costa Regional Transportation Plan

S:\DATA\SHARE\VASCO\PSR.REV

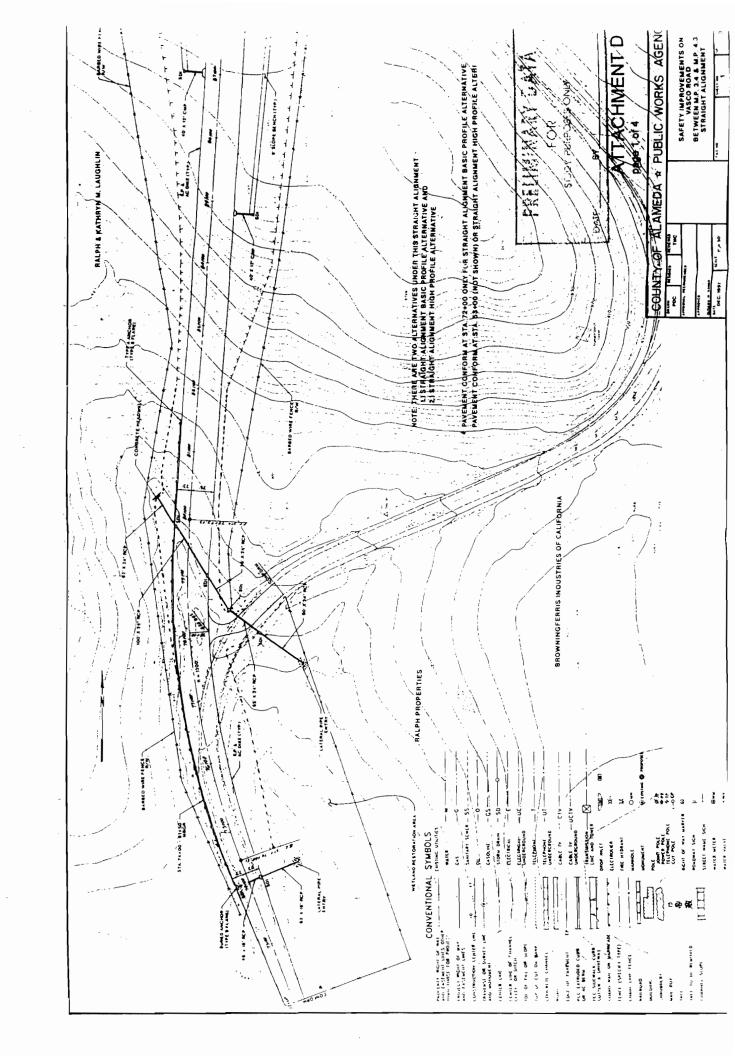
ATTACHMENT A

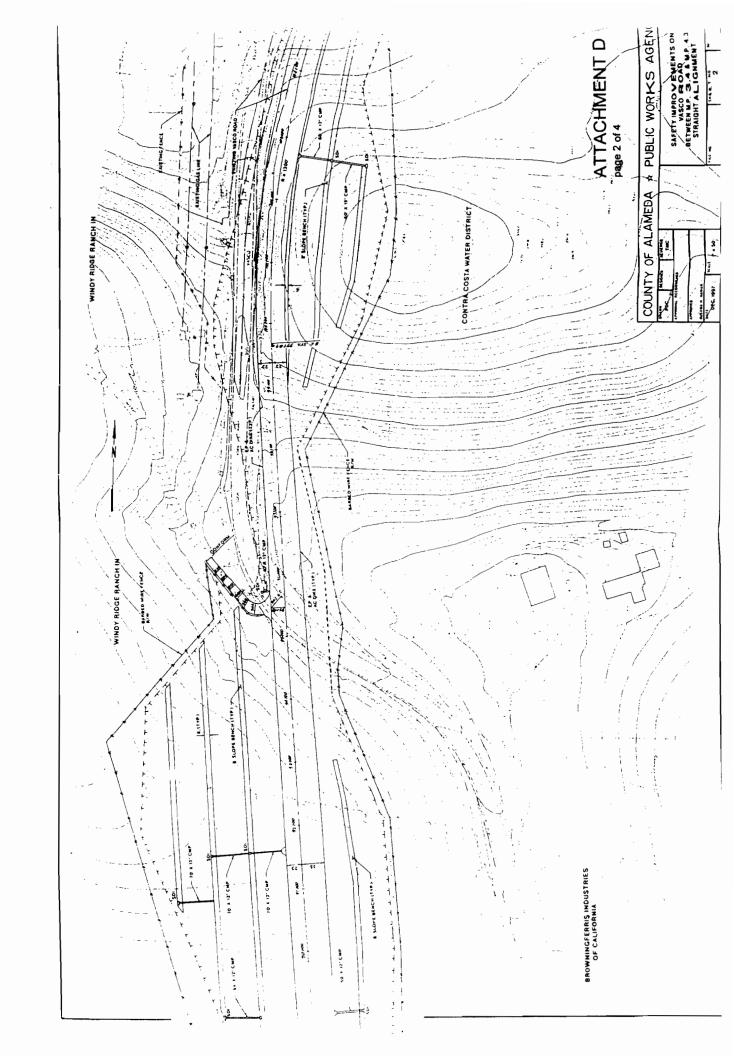
ATTACHMENT C

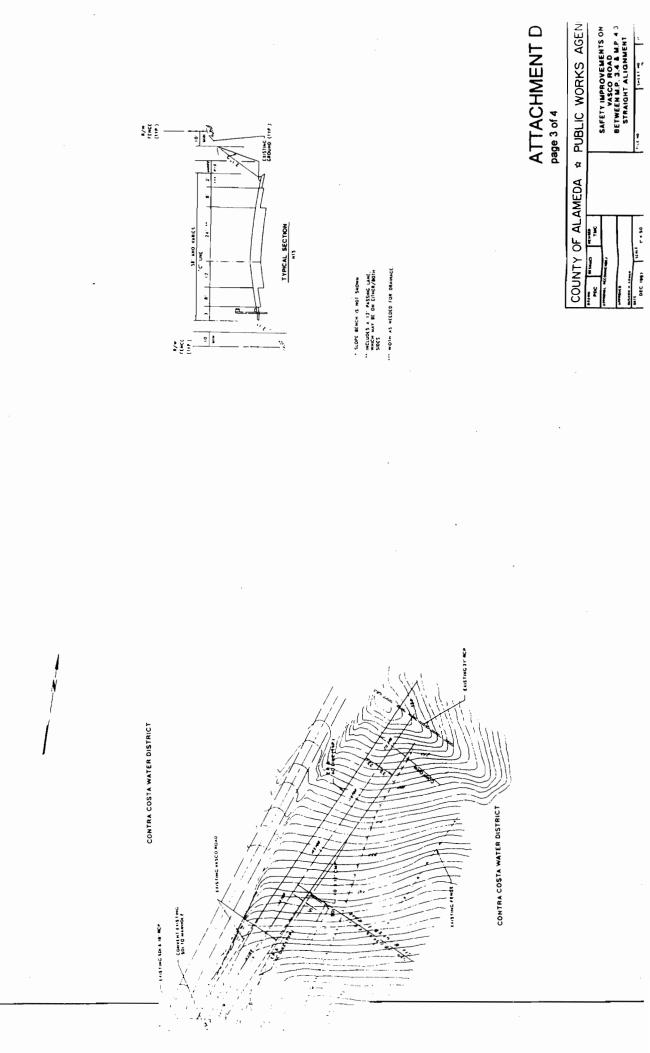
* SLOPE BENCH IS NOT SHOWN.

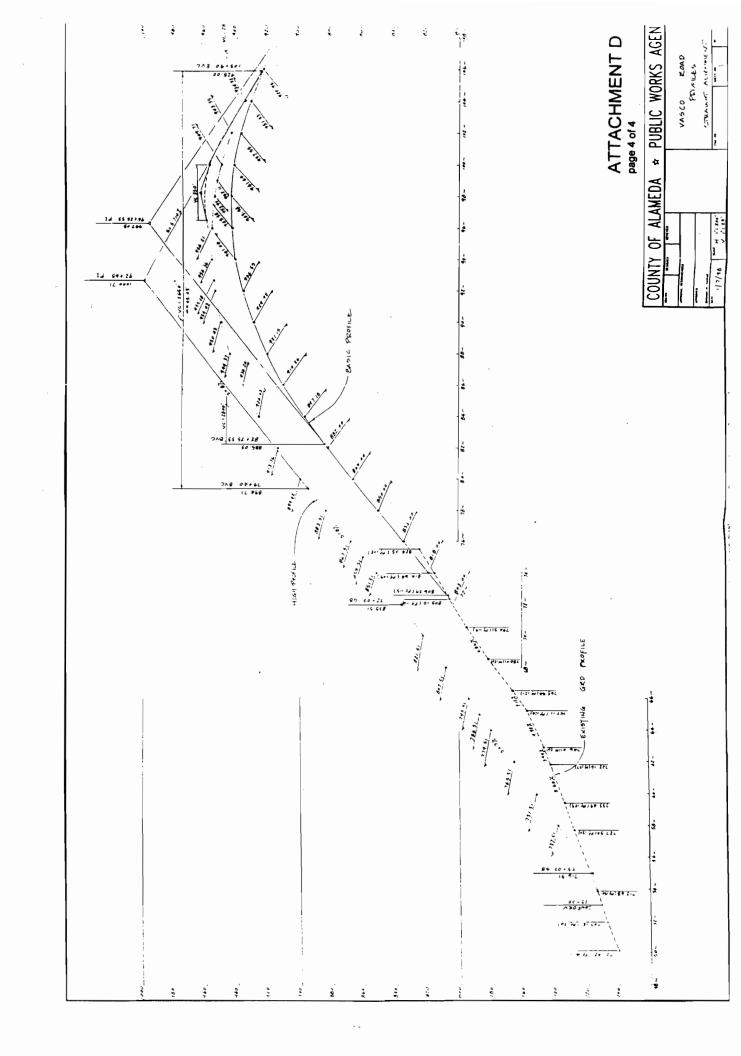
9

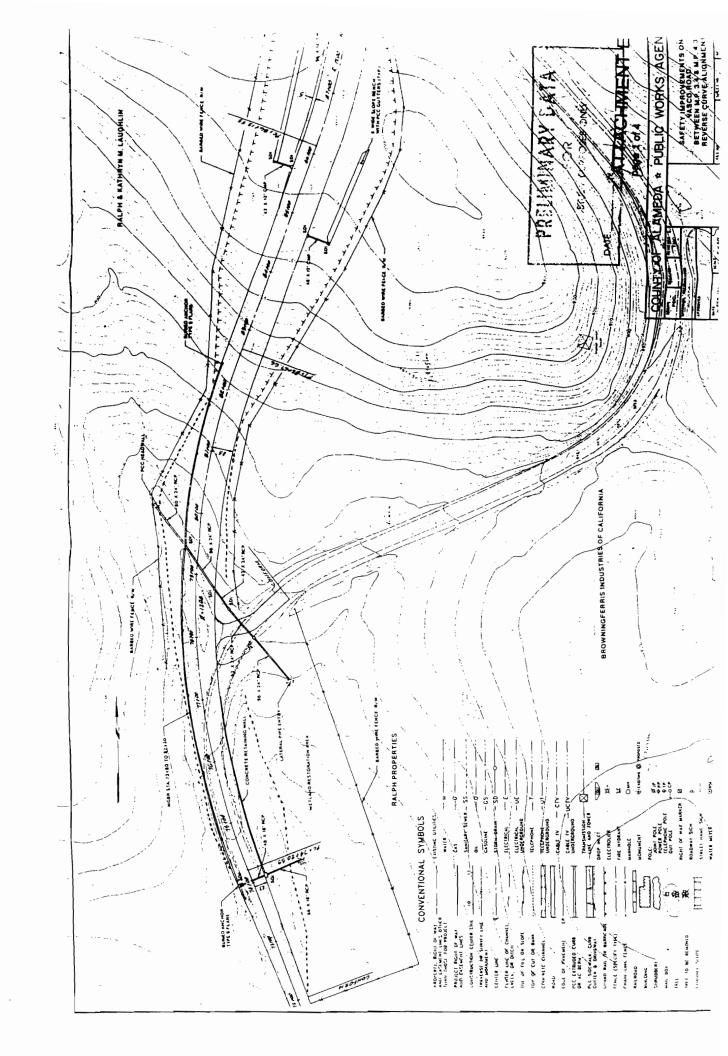
 \simeq

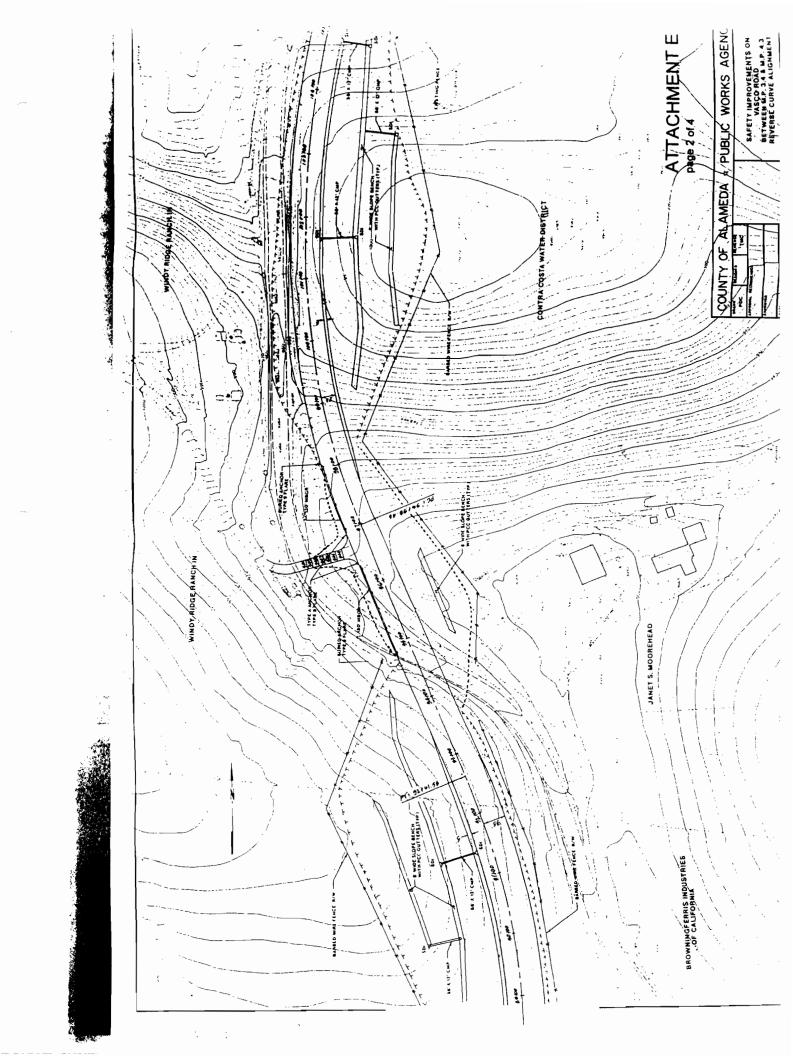

,

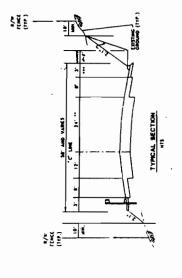

- ** INCLUDES A 12' PASSING LANE, WHICH MAY BE ON EITHER/BOTH SIDES.
- *** WIDTH AS NEEDED FOR DRAINAGE.


COUNTY OF ALAMEDA ★ PUBLIC WORKS AGENCY

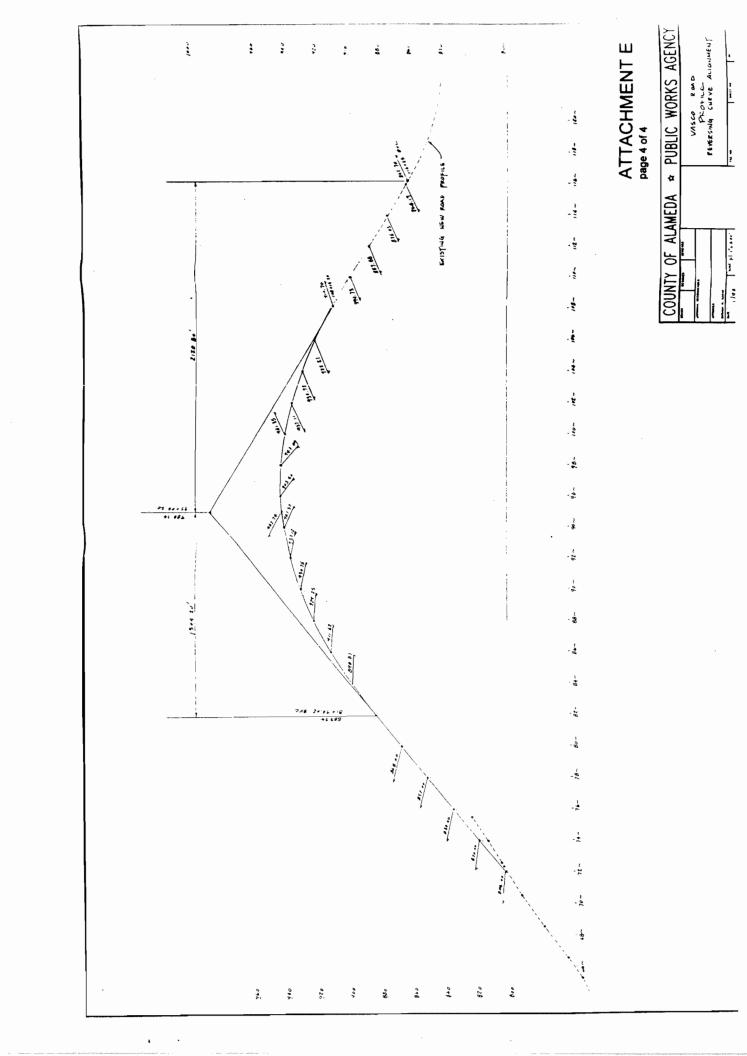

VASCO ROAD REALIGNMENT (FROM PM 3.4 \pm TO PM 4.3 \pm) TYPICAL SECTION


DRAWN	PDC	DATE NOV. 199	7
CHECKED	ТМС	SCALE NTS	
APPROVAL REC.	_	FILE NO.	SHEET NO.
APPROVED			1 of 1





* SLOPE BENCH IS NOT SHOWN.


** INCLUDES A 12" PASSMG LUM,

WHICH LAY BE ON CHINES/BOTH

SHOES

*** WIDTH AS HEEDED FOR DRAMAGE

CONTRA COSTA WATER DISTRICT CONTRA COSTA WATER DISTRICT

Vasco Road Traffic Data

Traffic Volumes:

1) Existing Traffic Volumes

Time Period	Northbound (veh)	Southbound (veh)
Morning Peak Hour	293	1,508
Evening Peak Hour	<u>1,666</u>	343
Average Daily Traffic (AD)	T) 10,252	8,568

Source: Alameda County Public Works - Traffic Counts (1996)

2) Year 2010 Projected Traffic Volumes

Time Period	Northbound (veh)	Southbound (veh)
Morning Peak Hour	539	1,666
Evening Peak Hour	1,681	311

Source: Tri-Valley Transportation Plan prepared by Barton-Aschman Associates (6/95)

Accident Data:

1) State average rates for a similar roadway:

	<u>Accidents</u>	Fatal & Injury Acc.	Fatal Acc.
Principle Arterial (Rural)	0.57	0.25	0.017

Note: All rates shown are expressed in annual accidents per million vehicle miles

Source: State of California 1995 Assembly of Statistical Reports.(most recent report)

2) Average annual accident rates for Vasco Road:

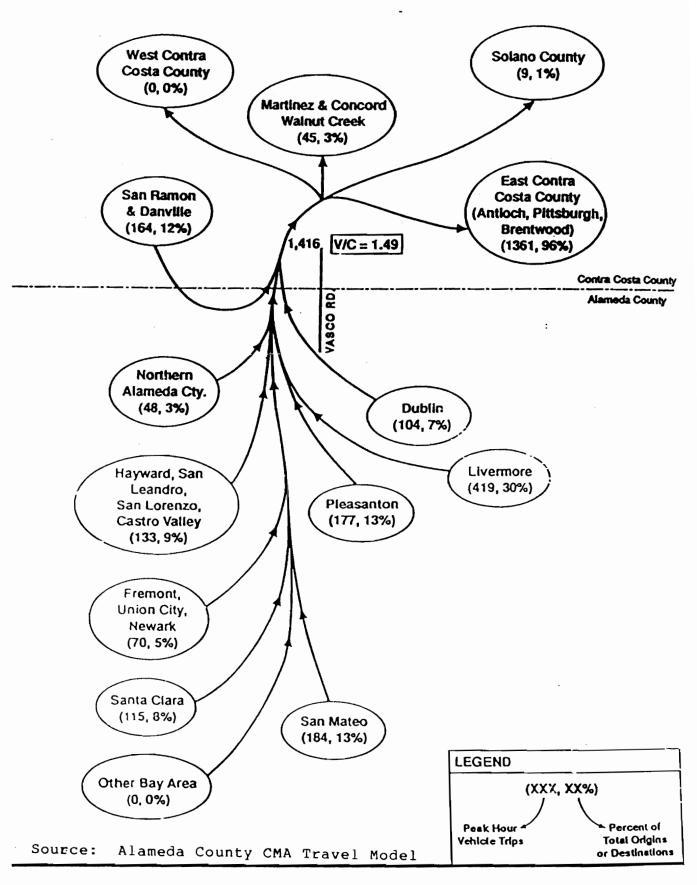
Between the Livermore City line and the Alameda\Contra Costa County Line (1994, 1995, and 1996)

	Accidents	Fatal & Injury Acc.	Fatal Acc.
Vasco Road	0.71	0.36	0.0

Note: All rates shown are expressed in annual accidents per million vehicle miles

Source: State of California SWITERS reports.

Year 2010 and 2026 Forecasts


	Al	M Peak Hour	PM Peak Hour		
Location	LOS	Volume (two direction)	LOS	Volume (two direction)	
Vasco Road	F	2,065	F	2,274	
s/o Camino Diablo	F	2,290	F	2,557	
Vasco Road	F	2,040	F	2,236	
n/o I-580 (Alameda)	F	2,252	F	2,486	

Legend:

Year 2010 Year 2026

Source: DKS Associates 1996

Cowell Ranch DEIR (10/96) "without project" scenario

Analysis of Origins/Destinations on Vasco Road for the Year 2000 PM Peak Hour

ATTACHMENT

ATTACHMENT H

PROJECT STUDY FOR SAFETY IMPROVEMENT ON VASCO ROAD BETWEEN MP 3.4 AND 4.3

COMMENTS		Cotact legitisa	Safety/comfort	Safety/comfort	Cost-effectiveness		Major post				Wetland restoration			
ALT. 3 REVERSE CURVES ALIGNMENT	55 m.p.h.	\$ 7.2 Million	Double reverse curves	Almost throughout	4,000'	550,000 SF	310,000 CY	85'	Maintained;Improves 1 access	Affected @ S. Conform	Wetland	Poles, sprint	Flexible	1000.
ALT. 2 STRAIGHT ALIGNMENT HIGH PROFILE	55 m.p.h.	\$ 10 Million	Straight between conform	4% @ curve each end	,000'9	900,000 SF	350,000 CY	,08	Maintained	More affected @ S. Conform	Wetland	Poles, sprint (More)	Much Ionger (2000') conform	.009
ALT. 1 STRAIGHT ALIGNMENT BASIC PROFILE	55 m.p.h.	\$ 9.6 Million	Straight between conform	4% @ curve each end	4,000'	610,000 SF	550,000 CY	100,	Maintained	Affected @ S. Conform N	Wetland	Poles, sprint	Flexible	1,000'
FACTORS	DESIGN SPEED	CONSTRUCTION COST	ALIGNMENT	SUPERELEVATION	ROAD IMPROVEMENT LENGTH	RW ACQUISITION	EARTHWORK	MAX. HEIGHT OF CUT	PROPERTY ACCESS	TRAFFIC DURING CONSTRUCTION	WETLAND/CREEK IMPACT	UTILITIES AFFECTED	SOUTH CONFORM FLEXIBILITY	RECONSTRUCT EXIST. NEW ROAD

Realignment and Safety Improvements on Vasco Road between Mile Post 3.4 and Mile Post 4.3 Straight Alignment Basic Profile Alternative Prellminary Estimates

Length of Project: 4,000 Feet

ITEM	QUANTITY	UNIT	UNIT	-	TOTAL
			COST		(\$)
1. Clearing annd Grubbing	100%	LS	\$ 50,000	\$	50,000
2. Traffic Control	100%	LS	\$ 70,000	\$	70,000
3. Roadway Excacation	550000	CY	\$ 6	\$	3,300,000
4. Asphalt Concrete, Type B	7600	Ton	\$ 50	\$	380,000
5. Aggregate Base, Class 2	8000	Ton	\$ 20	\$	160,000
6. Aggregate Subbase, Class 3	23000	Ton	\$ 14	\$	322,000
7. AC Dike	8000	LF	\$ 4	\$	32,000
8. Minor Concrete (Retaining Walls)	250	CY	\$ 400	\$	100,000
9. Storm Drain Inlet	19	Each	\$ 2,000	\$	38,000
10. 24" RCP, Class III	400	LF	\$ 150	\$	60,000
11. 18" RCP, Class III	120	LF	\$ 120	\$	14,400
12. 12" RCP Class III	10	LF	\$ 120	\$	1,200
13. 12" CMP	700	LF	\$ 100	\$	70,000
14. Lateral Pipe Entry	2	Each	\$ 2,000	\$	4,000
15. 3" Slotted Plastic Pipe	7000	LF	\$ 20	\$	140,000
16. 6" Unslotted Plastic Pipe	3200	LF	\$ 25	\$	80,000
17. Subdrain Cleanout	44	Each	\$ 400	\$	17,600
18. PCC Gutter (3" Thick)	4000	LF.	\$ 20	\$	80,000
19. Minor Concrete (Headwall)	4	CY	\$ 500	\$	2,000
20. Metal Beam Guardrail	800	LF	\$ 40	\$	32,000
21. Anchor Assembly	2	Each	\$ 1,000	\$	2,000
22. Barbed Wire Fencing	7000	LF	\$ 12	\$	84,000
23. Kit Fox Fencing	8000	LF	\$ 24	\$	192,000
24. Survey Monuments	10	Each	\$ 500	\$	5,000
25. Signing & Striping	100%	LS	\$ 25,000	\$	25,000
26. Landscaping & Hydoseeding	100%	LS	\$ 80,000	\$	000,08
27. Wetland Restoration	100%	LS	\$ 100,000	\$	100,000
28. Slope Protection	1000	Ton	\$ 100	.\$	100,000
29. Environmental Mitigation	100%	LS	\$ 100,000	\$	100,000
30. Cleaning Site & Misc. Things	100%	LS	\$ 50,000	\$	50,000
Subtotal (Construction)		,		\$	5,691,200
Right of Way Acquisition	610000	SF	\$ 1	\$	610,000
Preliminary Engineering and Design (25%)				\$	1,400,000
Construction Engineering (15%)				\$	850,000
Subtotal (Engineering)				\$	2,250,000
Contingencies (20% of Construction)				\$	1,130,000
Total				\$	9,600,000

ATTACHMENT I

Realignment and Safety Improvements on Vasco Road between Mile Post 3.0 and Mile Post 4.3. Straight Alignment High Profile Alternative Preliminary Estimates

Length of Project: 6,000 Feet

ITEM	QUANTITY	UNIT		UNIT		TOTAL
				COST		(\$)
1. Clearing annd Grubbing	100%	LS	\$	70,000	\$	70,000
2. Traffic Control	100%	LS	\$	100,000	\$	100,000
3. Roadway Excacation	350000	CY	\$	6	\$	2,100,000
4. Asphalt Concrete, Type B	12200	Ton	\$	50	\$	610,000
5. Aggregate Base, Class 2	12800	Ton	\$	20	\$	256,000
6. Aggregate Subbase, Class 3	37000	Ton	\$	14	\$	518,000
7. AC Dike	12500	LF	\$	4	\$	50,000
8. Minor Concrete (Retaining Walls)	250	CY	\$	400	\$	100,000
9. Storm Drain Inlet	23	Each	\$	2,000	\$	46,000
10. 24" RCP, Class III	400	LF	\$	150	\$	60,000
11. 18" RCP, Class III	420	LF	\$	120	\$	50,400
12. 12" RCP, Class III	10	LF	\$	120	\$	1,200
13. 12" CMP	700	LF	\$	100	\$	70,000
14. Lateral Pipe Entry	4	Each	\$	2,000	\$	8,000
15. 3" Slotted Plastic Pipe	10000	LF	\$	20	\$	200,000
16. 6" Unslotted Plastic Pipe	3200	LF	\$	25	\$ ·	80,000
17. Subdrain Cleanout	54	Each	\$	400	\$	21,600
18. PCC Gutter (3" Thick)	4000	LF	\$	20	\$	30,000
19. Minor Concrete (Headwall)	4	CY	\$	500	\$	2,000
20. Metal Beam Guardrail	1600	LF	\$	40	\$	64,000
21. Anchor Assembly	4	Each	\$	1,000	\$	4,000
22. Barbed Wire Fencing	11500	LF	\$	12	\$	138,000
23. Kit Fox Fencing	10500	LF	\$	24	\$	252,000
24. Survey Monuments	12	Each	\$	500	\$	6,000
25. Signing & Striping	100%	LS	\$	40,000	\$	40,000
26. Landscaping & Hydoseeding	100%	LS	\$	100,000	\$	100,000
27. Wetland Restoration	100%	LS	\$	120,000	\$	120,000
28. Slope Protection	1000	Ton	\$	100	\$	100,000
29. Environmental Mitigation	100%	LS	\$	110,000	\$	110,000
30. Cleaning Site & Misc. Things	100%	LS	\$	80,000	\$	80,000
Subtotal (Construction)					\$	5,437,200
Right of Way Acquisition	900000	SF	\$. 1	\$	900,000
Delining Contracting and Design (25%)					\$	1,400,000
Preliminary Engineering and Design (25%) Construction Engineering (15%)					\$_	850,00C
					\$	2,250,000
Subtotal (Engineering)					•	
Contingencies (20% of Construction)					\$	1,100,000
Total					\$	9,700,000
			Ca	11	\$_	10,000,000

ATTACHMENT J

Realignment and Safety Improvements on Vasco Road between Mile Post 3.4 and Mile Post 4.3 Reverse Curves Alignment Alternative Preliminary Estimates

Length of Project : 4,000 Feet

ITEM	QUANTITY	UNIT		UNIT		TOTAL
				COST		(\$)
1. Clearing annd Grubbing	100%	LS	\$	50,000	\$	50,000
2. Traffic Control	100%	LS	\$	70,000	\$	70,000
3. Roadway Excacation	310000	CY	\$	6	Š	1,860,000
4. Asphalt Concrete, Type B	7600	Ton	\$	50	\$	380,000
5. Aggregate Base, Class 2	8000	Ton	\$	20	Š	160,000
6. Aggregate Subbase, Class 3	23000	Ton	\$	14	\$	322,000
7. AC Dike	8000	LF	\$	4	\$	32,000
8. Minor Concrete (Retaining Walls)	250	CY	\$	400	\$	100,000
9. Storm Drain Inlet	17	Each	\$	2,000	\$	34,000
10. 24" RCP, Class III	400	LF	\$	150	\$	60,000
11. 18" RCP, Class III	120	LF	\$	120	\$	14,400
12. 12" RCP, Class III	0	LF	\$	120	\$	•
13. 12" CMP	560	LF	\$	100	\$	56,000
14. Lateral Pipe Entry	2	Each	\$	2,000	\$	4,000
15. 3" Slotted Plastic Pipe	7000	LF	\$	20	\$	140,000
16. 6" Unslotted Plastic Pipe	3200	LF	\$	25	\$	80,000
17. Subdrain Cleanout	44	Each	\$	400	\$	17,600
18. PCC Gutter (3" Thick)	3000	LF	\$	20	\$	60,000
19. Minor Concrete (Headwall)	4	CY	\$	500	\$	2,000
20. Metal Beam Guardrail	1300	LF	\$	40	\$	52,000
21. Anchor Assembly	6	Each	\$	1,000	\$	6,000
22. Barbed Wire Fencing	7000	LF	\$	12	\$	84,000
23. Kit Fox Fencing	8000	LF	\$.	24	\$	192,000
24. Survey Monuments	10	Each	\$	500	\$	5,000
25. Signing & Striping	100%	LS	\$	25,000	\$	25,000
26. Landscaping & Hydoseeding	100%	LS	\$	70,000	\$	70,000
27. Wetland Restoration	100%	LS	\$	100,000	\$	100,000
28. Slope Protection	1000	Ton	\$	100	\$	100,000
29. Environmental Mitigation	100%	LS	\$	100,000	\$	100,000
30. Cleaning Site & Misc. Things	100%	LS	\$	50,000	\$	50,000
Subtotal (Construction)					.\$	4,226,000
Right of Way Acquisition	550000	SF	\$	1	\$	550,000
Preliminary Engineering and Design (25%)					\$	1,050,000
Construction Engineering (15%)					\$	630,000
Subtotal (Engineering)					\$	1,680,000
Contingencies (20% of Construction)					\$	840,000
Total					<u>\$</u>	7,290,000
,						

ATTACHMENT K

5

PRELIMINARY ENVIRONMENTAL ASSESSMENT VASCO RD. REALIGNMENT PHASE I

Cecc Sellgren
Environmental Planner
Contra Costa County, Dept. Of Public Works
December 19, 1997

PROJECT LOCATION: The proposed project is located on Vasco Road that runs north from the City of Livermore into Contra Costa County in the eastern part of Alameda County. The project begins from MP 3.4 to MP 4.3 and includes about 500-foot segment of the newly constructed segment of the road in Contra Costa County.

PROECT DESCRIPTION: The project proposes to realign portions of the roadway easterly and westerly of the existing road in order to flattened the dangerous curves in the road. Several alternatives have been considered. The preferred alternative runs easterly of the existing road (at the southerly limits) and westerly (at the northerly limits) to intersect the new roadway in Contra Costa County. The project construction would involve severe cuts and excavation and fill to lower and raise the roadway gradient. In addition, an existing CMP that crosses underneath the road way will be replaced. The proposed project is a Phase 1 of a project that would extend south to intersect Interstate Highway 580.

PROJECT PURPOSE: The proposed project purpose is to upgrade the existing road to current standards and safety.

A. ENVIRONMENTAL SETTING:

The project is located on the easterly edge of the Inner Coast Ranges characterized by rolling hills and valleys with intermittent creeks that drain into northern parts of the Livermore Las Positas Valley.

Geology: The geology of the proposed project area is composed of complexly folded and faulted Tertiary marine and nonmarine formations, and cretaceous marine formations (AGS 1989). The upland areas are underlain by Panoche Formation, which consists of shale and interbedded sandstone, mudstone, claystone and siltstone. (Jones and Stokes Associates 1990). The highest points within the project immediate vicinity is 1300 feet. The valleys and the low land areas consist of alluvial fan and basin deposits. In most areas the hard rock is at depths of 25 feet of less.

Soil: The Soil in the project area is described as Altamont-Diablo-Fontana Association on the uplands and the Marcuse-Solano-Pescadero Association on the low land areas. Both types of Soil Association groups have moderate to high potential for expansion and crodability. (Jones and Stokes Associates 1990).

Grassland - The project area is dominated by annual grasslands (Bromus mollis, B. rubens, B. diandrus, Avena barbata, A. fatua, Hordeum leporinum, Erodium cicutarium, E. botrys), with sparsely distributed perennial grasslands of alkali rycgrass (Leymus tritichoides). Interspersed within the grasslands along the hilltops, are areas of rocky outcrops with shallow soils supporting patches of herbaceous plants such as locoweed (Astragalus oxyphysus). The

Vasco Rd. Realignment. .

grasslands provide livestock forage and foraging, protect the soil from erosion, and provide habitat for several wildlife species.

Riparian Corridor A well-defined unnamed intermittent creek that drains the hill slopes in the northwesterly segment of the proposed project alignment, crosses the roadway through a CMP and runs parallel to the southerly segment of the proposed project to drain into the Livermore Amador Valley. This creek corridor represents a remnant riparian habitat that is heavily degraded by cattle grazing, resulting in a loss of vertical structure and severely reduced herbaceous layer. This grazing activity has resulted in severe gullying. Near the culvert inlet and extending to the outlet (on the south side of the road) is a growing stand of mostly tree of heaven (Ailanthus altissima) with occasional willow trees (Salix spp.). Roadside landscaping of young coast live oak and fruit trees occur along the easterly edge of the road, near the southerly limits of the project. Five large matured oak trees (Quercus agrifolia) also occur along the creek at this segment of the project. Riparian areas provide critical habitat for a variety of wildlife species, protect against soil erosion, and filter out nutrients, sediment, and other pollutants.

Wildlife - A number of wildlife species potentially utilizes the project area. Among the more common animals found within the grassland community are: western fence lizards, gopher snakes, horned larks, western meadow larks, western screech owls, American kestrels, redtailed hawks, deermice, desert cotton tails, California ground squirrels, striped skunks, red foxes, and coyotes (Jones and Stokes, 1989).

Riparian woodlands are an important wildlife resource. Although few upland species spend their entire life cycle in or next to a creek, most animals rely on the riparian areas in some way. Among the more common species that can be found utilizing riparian woodlands are: aquatic and terrestrial vertebrates species. These species include California slender salamander, western skink, common garter snake, ringneck snake, warble, northern flicker, downy woodpecker, flycatcher, great homed owl, red-tail hawk, American kestrel, bat, shrew, vole, mice, striped skunk, raccoon, red and grey fox, badger, and deer (Jones and Stokes, 1989).

Rare, threatened, and endangered species within or near project area -- There is several rare, threatened, and endangered species which can be found near the project area. Many are associated with special habitats. Several state or federal listed species have been observed within a five mile radius of the project site including: kit fox (Vulpes macrotis mutica), burrowing owl (Athene cunicularia), tricolored blackbird (Agelaius tricolor), Alameda whipsnake (Masticophis lateralis euryxanthus), California red-legged frog (Rana aurora draytonnii), California tiger salamander (Ambystoma tigrinum), Mt. Diablo manzanita (Arctostaphylos auriculata), brittlescale (Atriplex parishii), San Joaquin spearscale (Atriplex patula ssp. spicata), and Diablo helianthella (Helianthelle castenea) (Jones and Stokes, 1989).

Cultural Resources -Four separate Native American linguistic groups (Costanoans, the Bay

Miwok, the plains Miwok, and the Northern Valley Yokuts) are known to have utilized the project area, as they maintained mutual territorial boundaries in the project area. Archaeological sites, such as rock shelters and small encampments, including the Vasco Caves and petroglyphs have been found within two miles of the project area. Although records and literature review found no known historic or archaeological sites within the project alignment, it is highly likely that buried and or exposed archaeological sites may occur within the project area especially along midslope terraces, ridge tops, and stream terraces. These resources may be uncovered during project construction.

A. INITIAL STUDY

Initial investigations were conducted by reviewing entries in the California Natural Diversity Database (NDDB), consulting with the Northwest Information Center, reviewing the Vasco Road and Utility Relocation Project Environmental Impact Report, and by conducting a site visit on December 3, 1997.

B. ADDITIONAL STUDIES REQUIRED

- 1. Additional Biological site surveys would be needed to determine the extent of impacts to resources including special status species and their habitats known to occur within the project area. These species would include but not limited to rare, threatened, or endangered species such as San Joaquin pocket mouse (Perognathus inornatus inornatus), the American badger (Taxidea taxus), forruginous hawk (Biteo regalis), and the northern harrier (Circus cyaneus)
- 2. Project Site reconnaissance for historic and prehistoric cultural resources will need to be conducted. The recommendation from this reconnaissance should be followed.
- 3. Soil studies may be needed to determine the characteristics, e.g., soil expansion along the project alignment. This is important because of the proximity of site to earth quake fault.

C. ADDITIONAL ENGINEERING INFO NEEDED

Exact project alignment including cut and fill zones would be required to determine extent of potential impacts to wetland resources. The preferred alignment Alternative 1 appears to require some filling of the creek at the inlet and downstream of the outlet along the southerly limits of the project. Slight modifications to this alignment will negate any impacts to this wetland.

D. RECOMMENDATIONS

The following recommendations are provided to minimize impacts to the creek corridor:

- 1. The recommended further studies should include the future phases (II & III) of the project in order to address regulatory agencies cumulative impacts concerns
- 2. The project is located along County designated Scenic route. The proposed project may be

Vasco Rd. Realignment. .

- in conflict with this designation and would therefore require changes to the County General and Specific plan if the realignment is considered significant.
- 3. The design of the proposed project and its subsequent phases should consider impacts to resources e.g., stock pond further south. Obtaining permits for filing a stock pond (that may be habitat for special status species) may pose a problem with regulatory agencies.
- 4. Realign the southerly segment of the project westerly, to avoid filling the wetland to the east of the roadway.
- 5. Install a retaining wall along the toc of the existing road at the southerly limits of the project to minimize encroachment onto the wetlands to the east.
- 6. Include in the project design and construction, enhancement of the wetlands along the southerly limits as a mitigation for the proposed fill at the inlet of the culvert and at other locations.

E. ENVIRONMENTAL PERMITS REQUIRED

- 1. US Army Corps of Engineers Permit (US Fish and Wildlife Service Section 7 Consultation may be required. This permit would take anywhere from one month to 12 months depending on project impacts and proposed mitigation plans.
- 2. RWQCB Sec 401 Water Quality Certification/waiver. This permit would also take three to 6 months to negotiate depending on project impacts.
- 3. CA Dept. Of Fish and Game 1601 Streambed Alteration Agreement. This Agreement would take about one month to negotiate if project impacts are minimal.

F. ALTERNATIVES TO CONSIDER

There are four alternative alignments being considered for the project. Each alignment has a slightly different set of impacts upon the environment. The main difference lies in the alignment of the road in relation to the unnamed creek at the southern terminus of the project. Alternative 1 (the preferred alternative) aligns the new road to the West of the existing road and would result in lesser impacts to resources than the other alternatives. This alignment is therefore, recommended (with minor modifications as stated under Section D 3,4 & 5 above). In addition, the area adjacent to the east side of the road near the southerly limits provides an excellent mitigation area for impacts elsewhere along the project alignment. Alternative 2 - 4 approach the southern terminus from the east side of the existing road, and will result in greater impacts to wetland habitats of higher quality (including removal of the large oak trees) than Alternative 1. Alternative 2 - 4 will also require finding another site to mitigate the impacts from the loss of the wetlands at the southerly limits of the project.

G. MITIGATION MEASURES

New wetlands will need to be created to replace filled wetlands associated with the project. Wetlands will be replaced at minimum, on a 1:1 ratio. The area adjacent to the creek near the

Vasco Rd. Realignment. .

southerly limits of the project provides excellent potential for the establishment or enhancement of the existing degraded riparian corridor. Trees removed as part of the project will require mitigation at a 3:1 ratio (three trees for everyone removed). Likely tree species include willow (Salix spp.), coast live oak (Quercus agrifolia), and tree of heaven (Ailanthus altissima). Removal of the matured oaks trees along the creek may result in a higher replacement ratio.

Any impacts to threatened or endangered species habitat will also require mitigation. Any mitigation for endangered species will be species specific. If several species from a similar habitat are affected, then mitigation will likely focus on creation and/or restoration of the impacted habitat. Alameda County will develop a protection plan to reduce any potential impacts to important resources during pre-and post construction.

The proposed project should consider installation of similar fence along the proposed realignment to conform with the existing Kit-fox/Tiger salamander protection fence located along the segment of the road in Contra Costa County.

REFERENCES

Compas, Lynn (1997), "Cultural resource record search for the realignment of a portion of Vasco Road"; Northwest Information Center; Rohnert Park, CA.

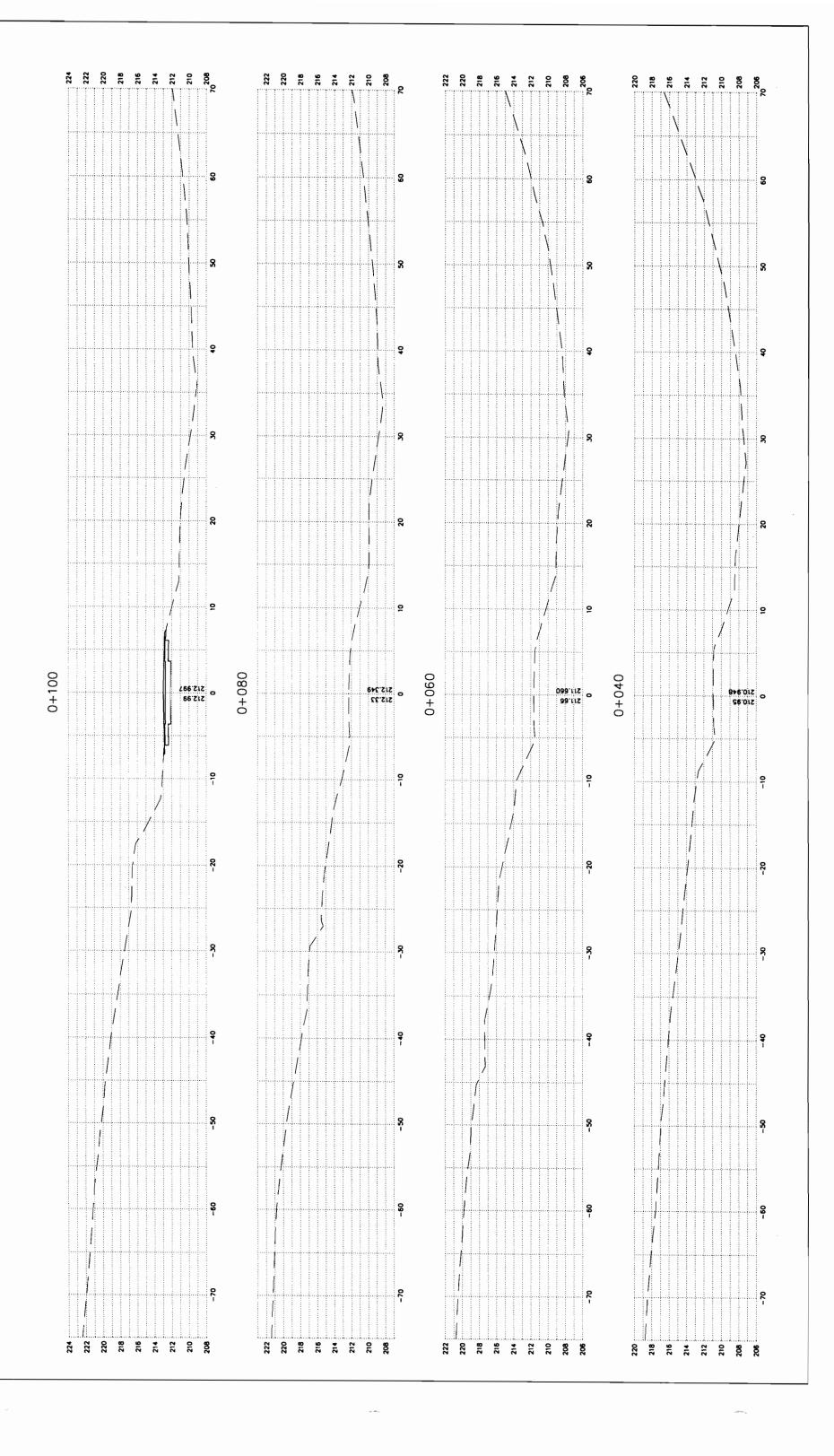
Jones and Stokes (1990), "Draft Environmental Impact Report Vasco Road and Utility Relocation Project SCH # 89032123," prepared for Contra Costa Water District, Concord, CA.

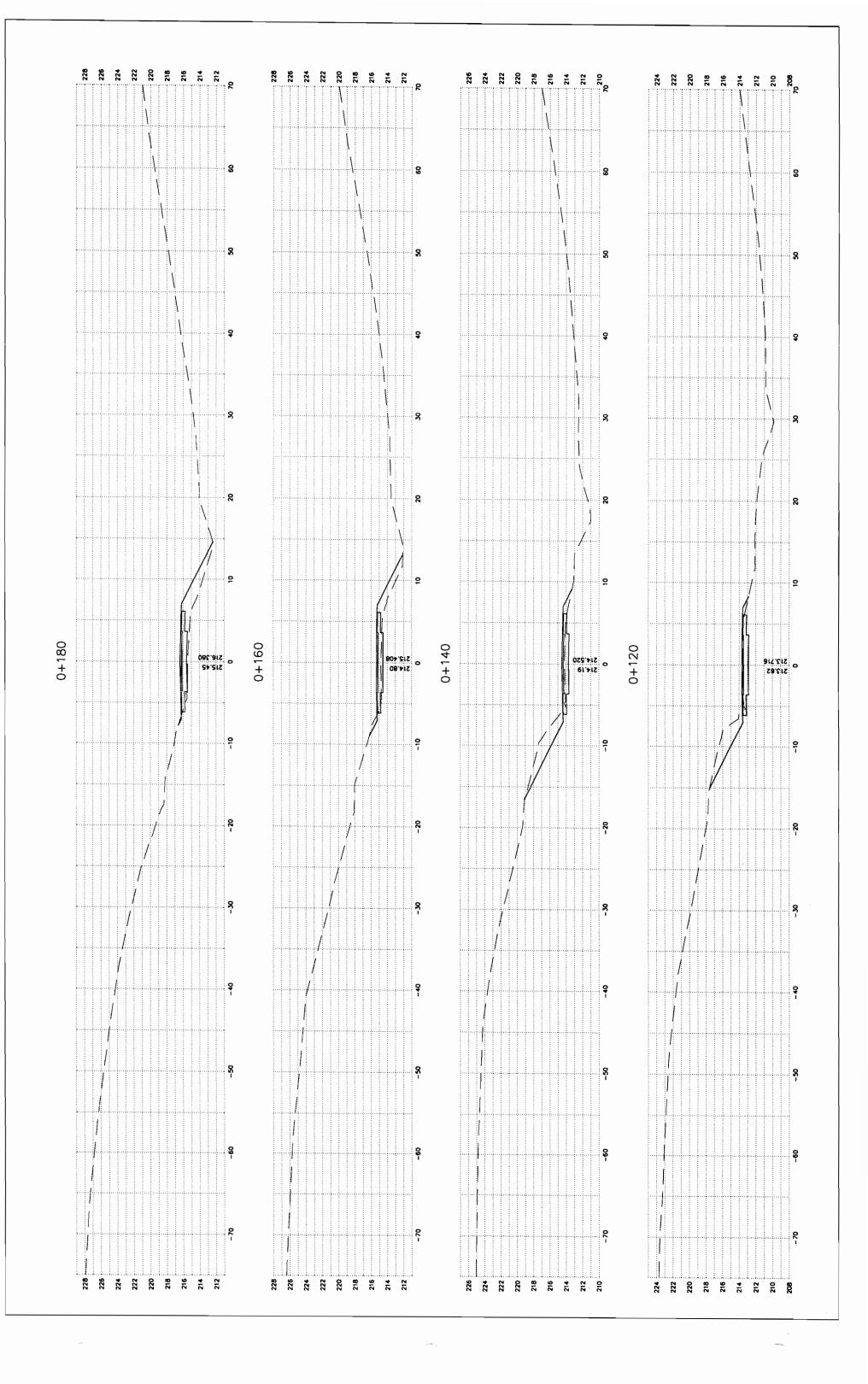
Dept. Of Fish and Game (1997), California Natural Diversity Database: Inventory Status Figures - Byron Hot Springs and Altamont 7.5 minute quadrangles.

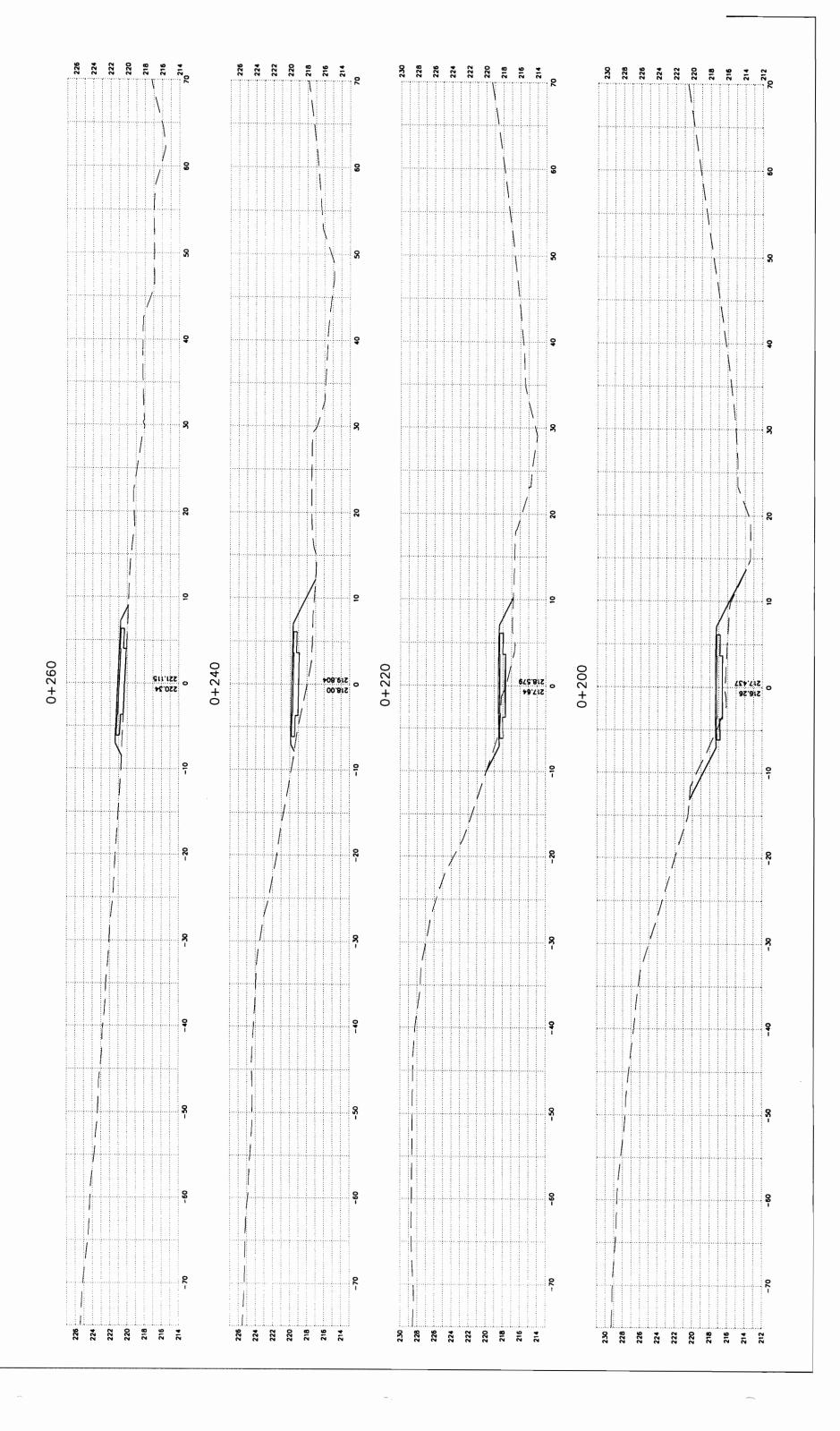
AGS Inc. 1989. Draft preliminary geotechnical investigation: L Vasco Road relocation - Los Vasqueros project. Contra Costa and Alameda Counties, California, Şacramento, CA, prepared for: James Montgomery, Consulting Engineers, Inc., Walnut Creek, CA

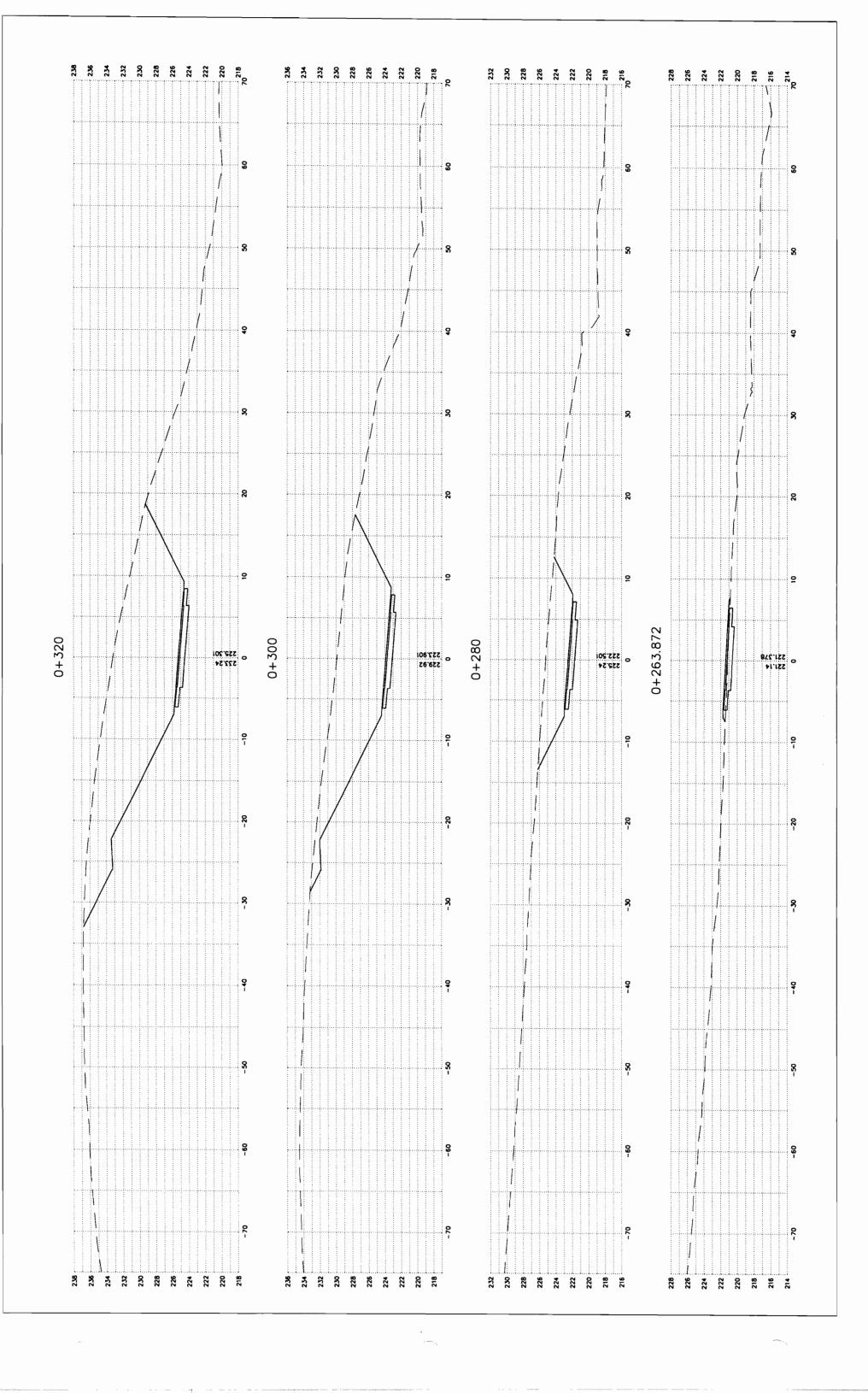
PRELIMINARY DRAFT—For Review and Comment 23-Feb-98

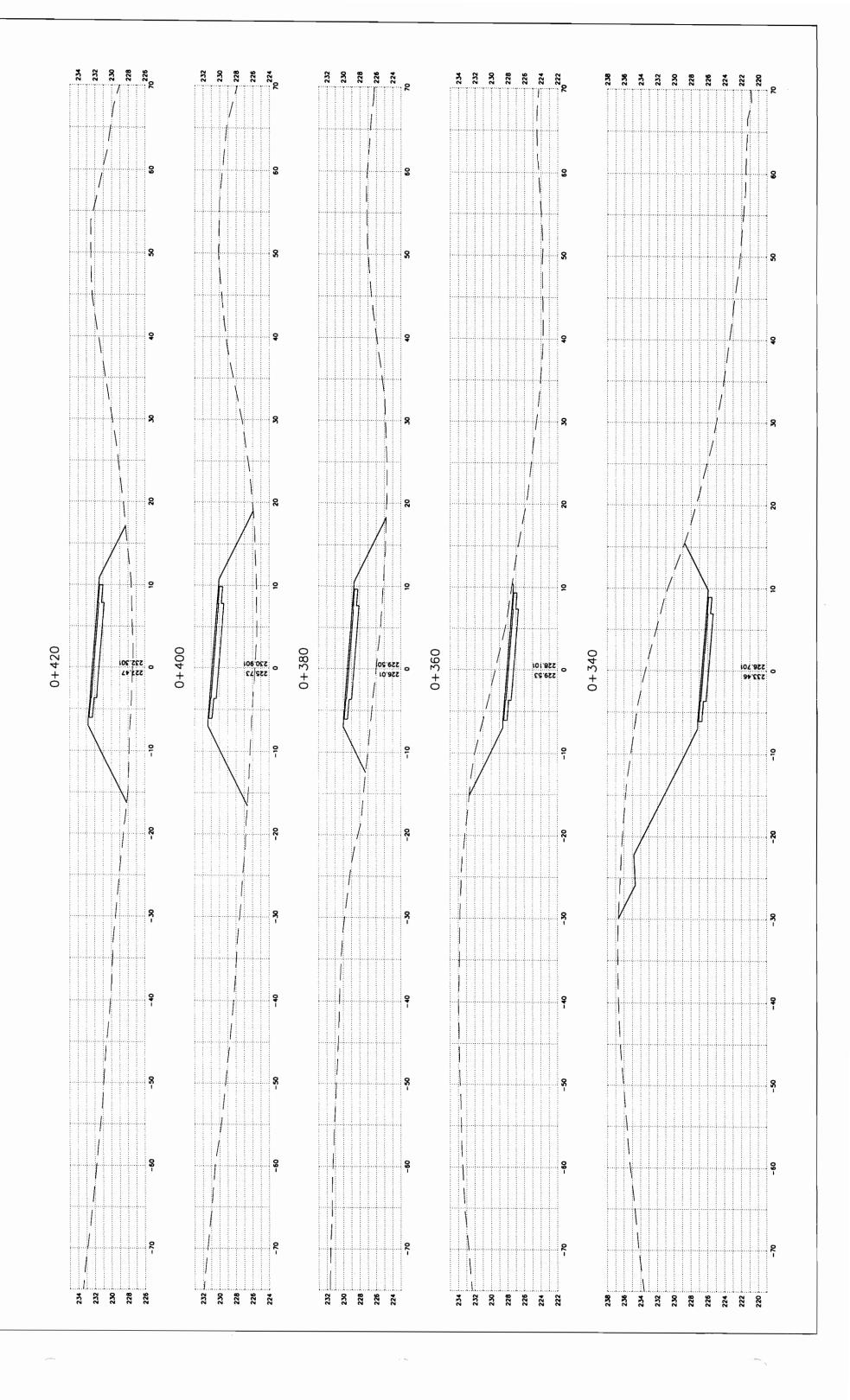
TRACK | INVESTMENTS

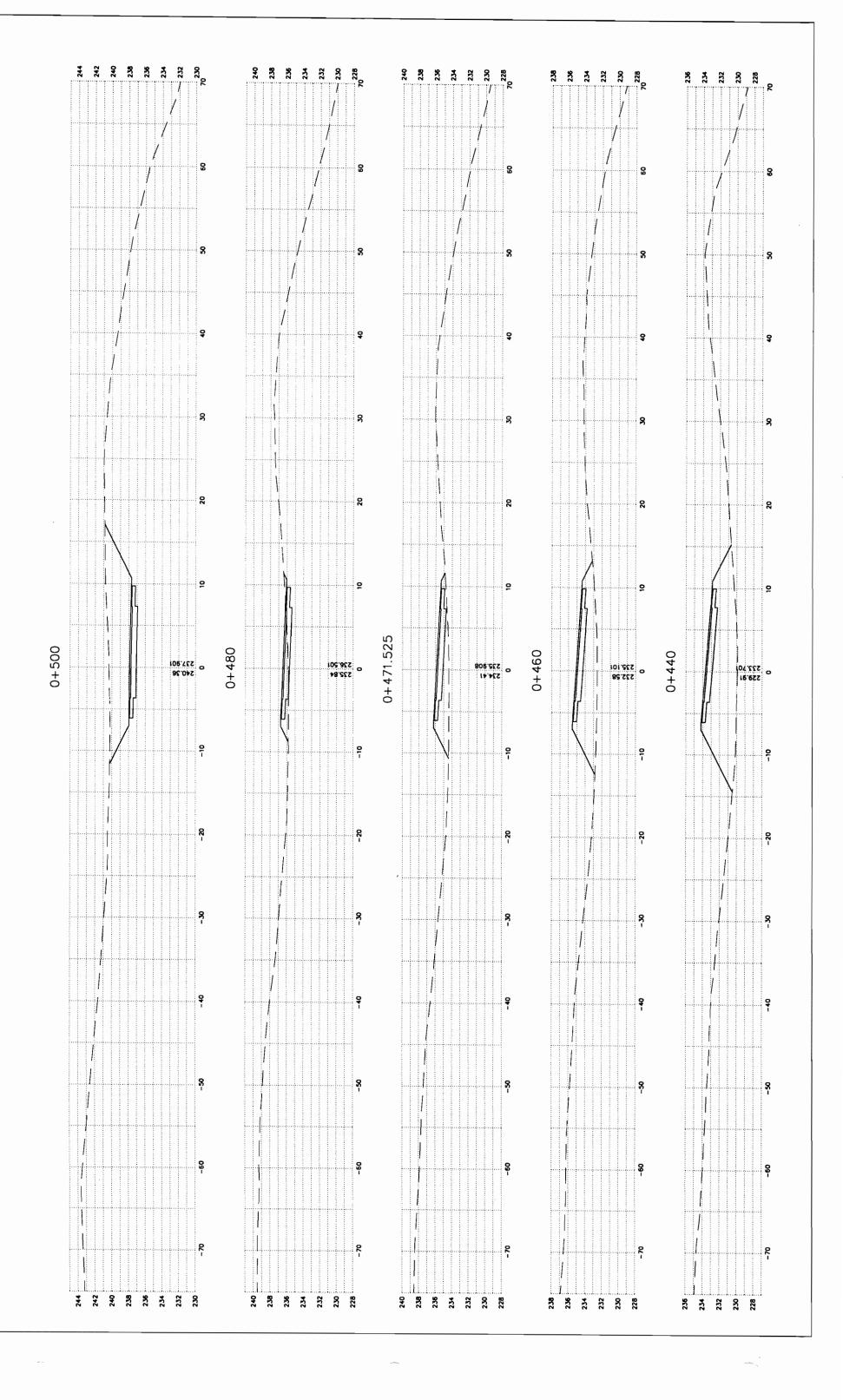

1998 Regional Transportation Plan for Contra Costa County Project costs and revenues shown in millions of escalated dollars

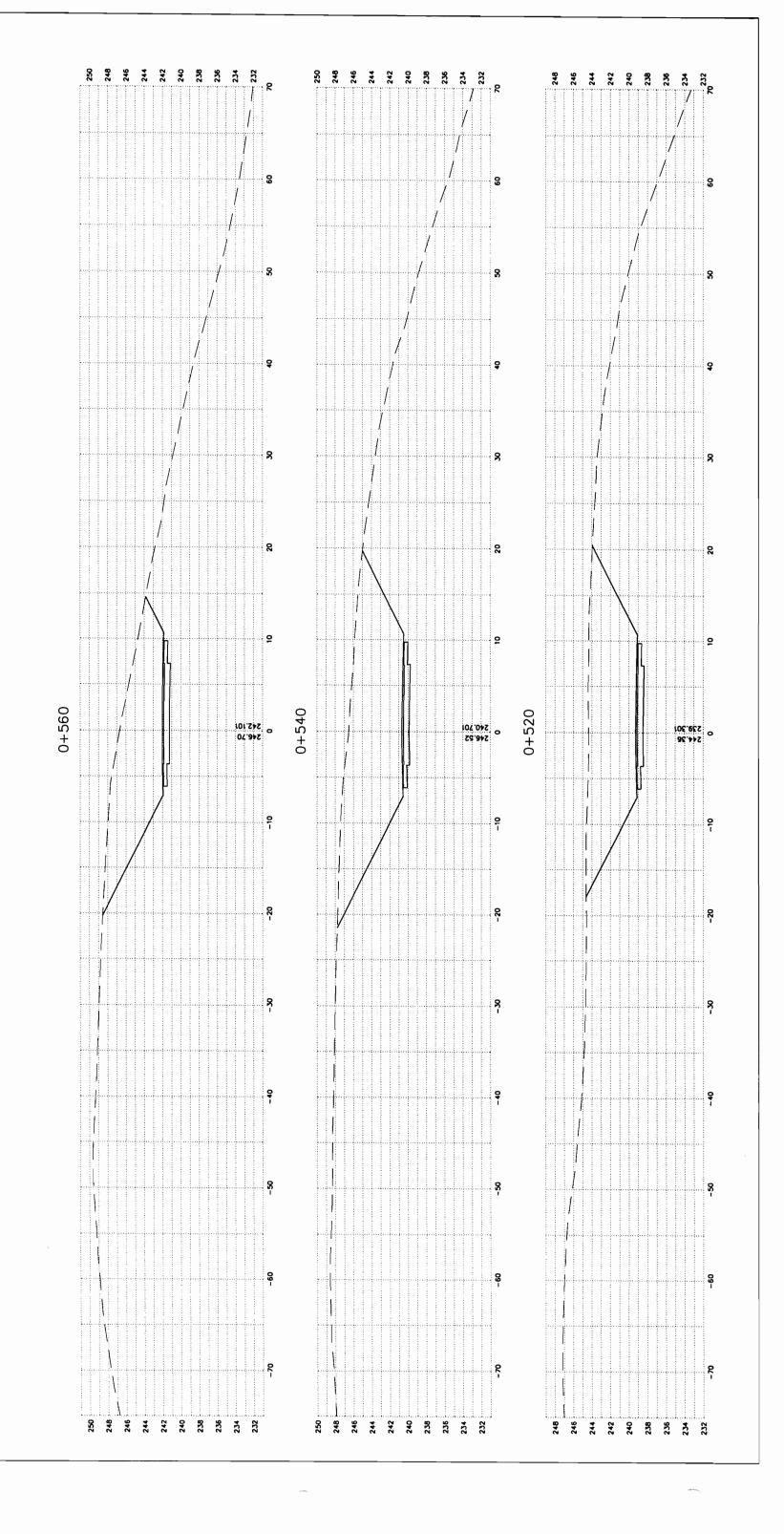

		Other	
Project	Total Cost	Funds(1)	Track Total
COCCOTOCOMERCIAL PROPERTY AND AND ADDRESS OF			
New express buses (capital only)	\$25.0	\$0.0	\$25.0
I-80 HOV lanes, SR 4 to Carquinez Bridge	\$39.4	\$0.0	\$39.4
AC Transit enhanced service, San Pablo Avenue	\$3.4	\$0.0	\$3.4
I-80: interchange & parallel arterial projects (3)	\$10.0	\$0.0	\$10.0
SCIE ROMANISOTS GOT			
SR 4 West widen to full freeway	\$77.3	\$6.0	\$71.3
SR 4 East: 8 lanes to Somersville, 6 lanes beyond (4)	\$131.9	\$65.9	\$65.9
SR 4 Bypass: widen to 4 lanes & new interchanges	\$41.4	\$5.9	\$35.5
SR 4: interchange & parallel arterial projects (3)	\$25.0	\$0 .0	\$25.0
I-680 North Corridor			
I-680 Auxiliary Lanes, Diablo Rd to Bollinger	\$72.9	\$24.0	\$48.9
SR 24 auxiliary lanes, Gateway Blvd to Brookwood	\$10.3	\$0.0	\$10.3
I-680: interchange & parallel arterial projects (3)	\$25.0	\$0.0	\$25.0
Other Projects			
Vasco Rd improvements in Alameda County (5)	\$ 5.8	\$0.0	\$5.8
MTOS: Arterial improvements	\$5.0	\$0.0	\$5.0
Total	\$472.4	\$101.8	\$370.5
Available Track Revenues			\$480.2
Remaining Balance			\$109.7

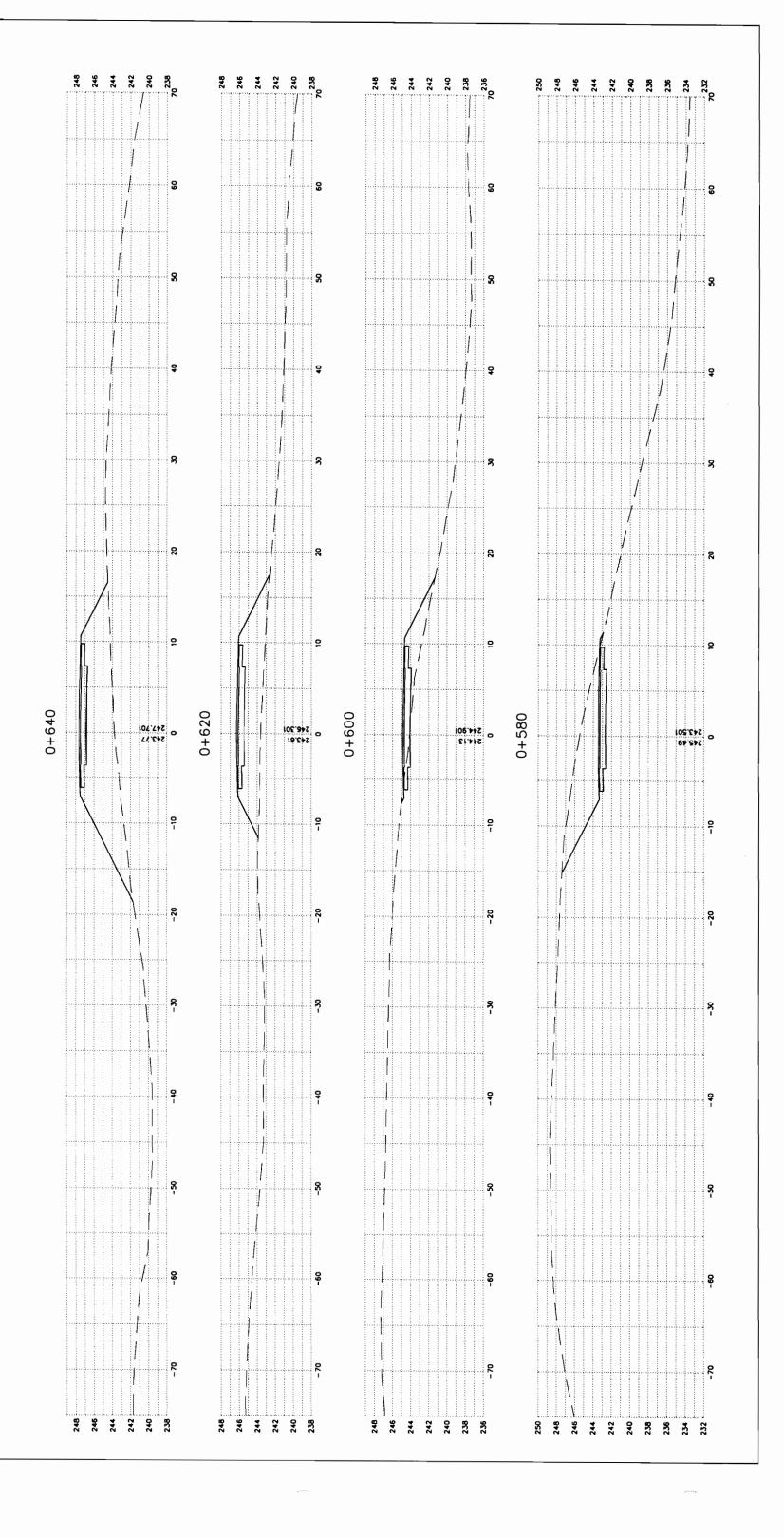

- (I) "Other Funds" are from local sales tax revenues and impact fees
- (2) "Track I Funds" are from STP, CMAQ, TIP and IIP
- (3) A suggested proxy list of Interchange and arterial projects for analyzing air quality conformity is:
 - a) widen Ygnacio Valley/Kirker Pass from Cowell to Clearbrook
 - b) improve the I-680-Alcosta interchange
 - c) widen Alhambra Avenue from SR 4 to McAlvey
 - d) widen Pacheco Blvd from Blum to Arthur
- (4) SR 4 widening projects assume 50% of cost will be locally funded
- (5) Contingent on Alameda County match of \$5.8 M

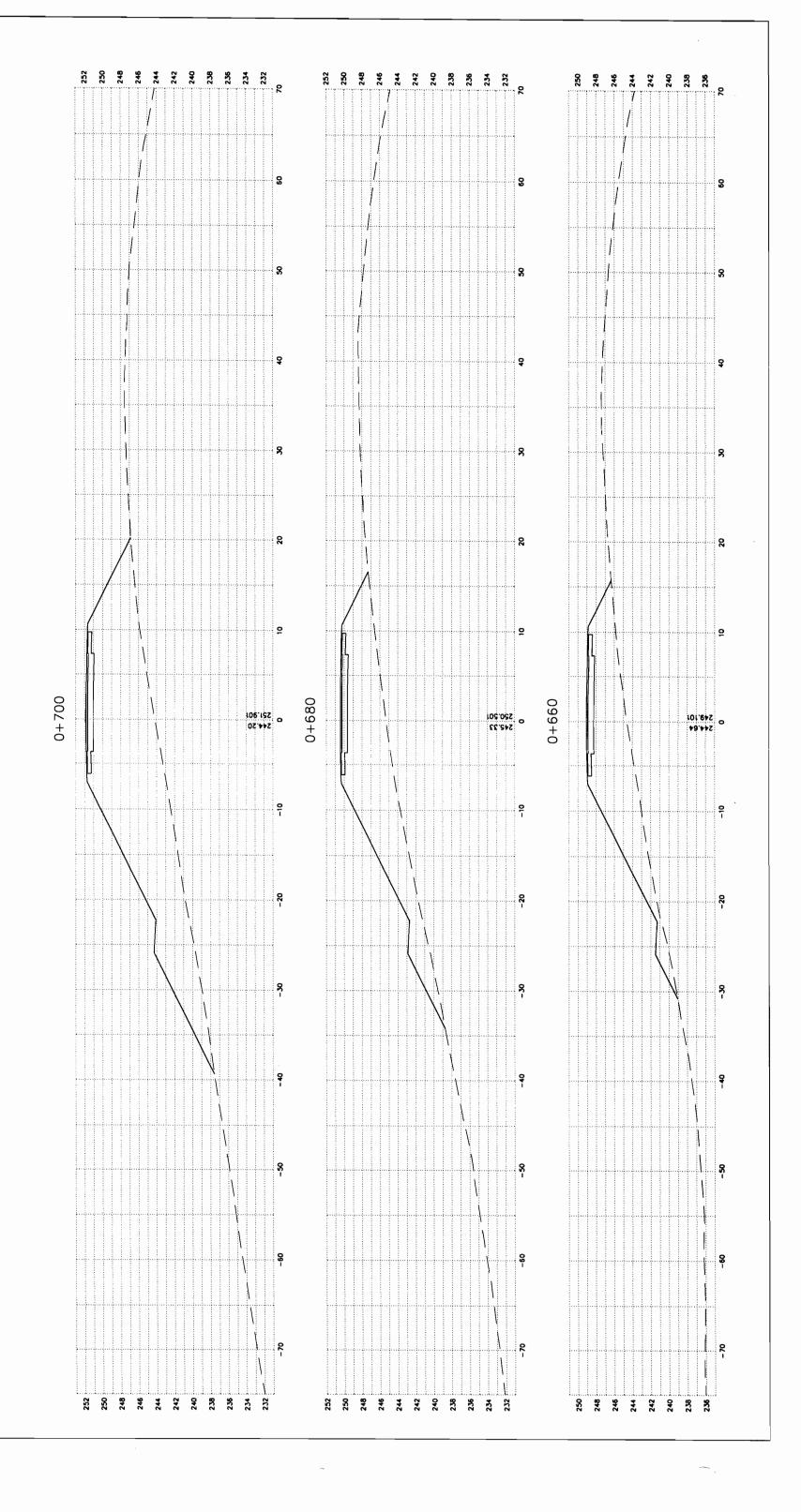

Baseline Projects for the 1998 Regional Transportation Plan Contra Costa County

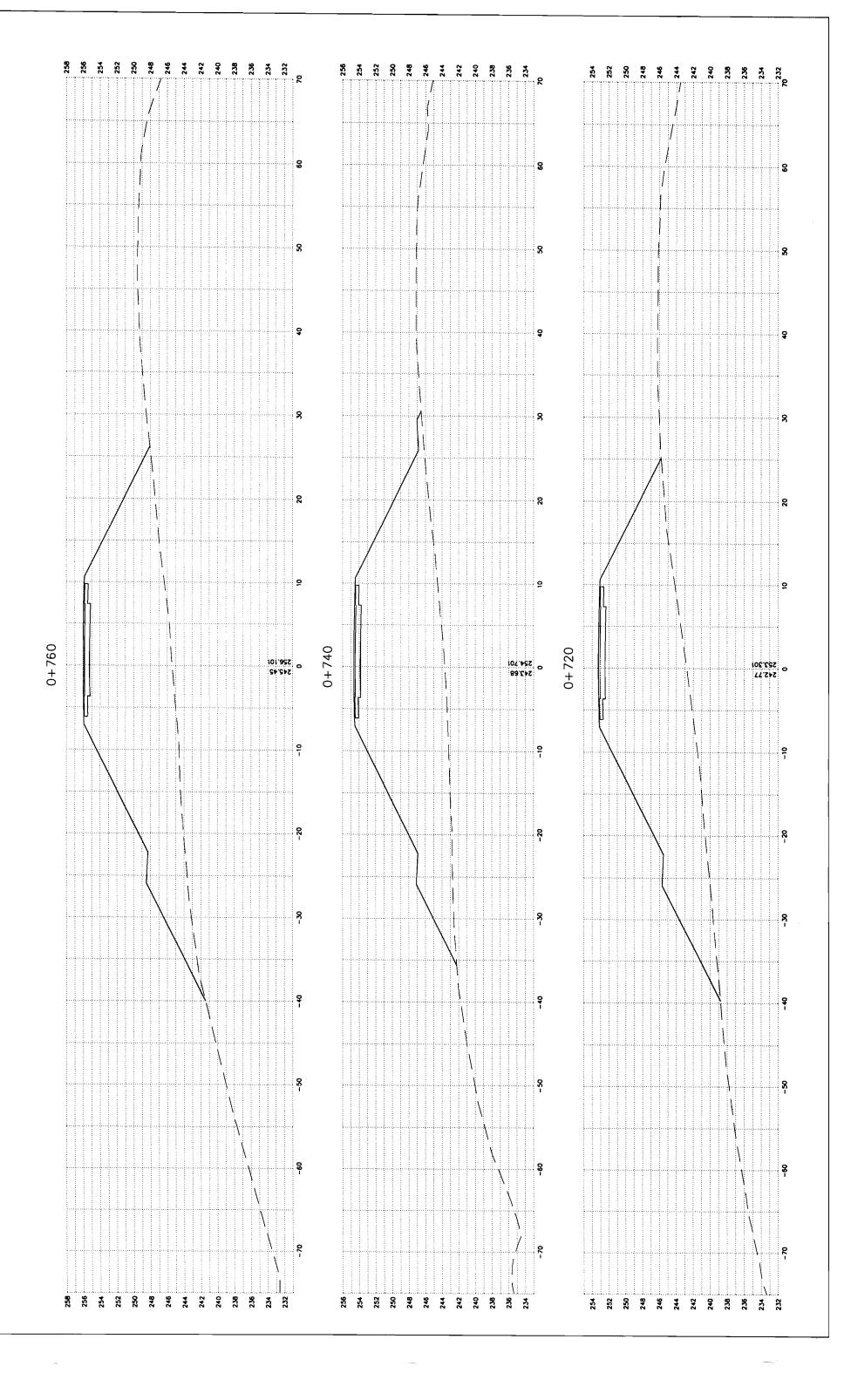

Project	Status
I-680/SR 24 Interchange	Under Construction
I-680 Interchange/overcrossing improvements	Under Construction
Richmond Parkway: Phase 1B south & Phase 4	Under Construction
Oak Park Blvd overcrossing improvements	Locally Funded
Gateway Lamorinda Traffic Program	Locally Funded
SR 4: RR Ave I/C improvements, widen to Loveridge	Locally Funded
SR 24: auxiliary lane (Initial stages of design only)	Locally Funded
SR 4 Bypass: I/C @ SR 4/160, 2 lanes to Balfour	Locally Funded
Bollinger Canyon Rd: extend, Alcosta to Dougherty	Locally Funded
Dougherty Rd: widen to 6 lanes, Red Willow to Alameda	Locally Funded
Windermere Pkwy: construct 4 lanes	Locally Funded
East Branch: construct 4 lanes, Bollinger to Camino Tassajara	Locally Funded
SR 242: mbced-flow lane	Locally Funded
I-680: HOV lanes, Benicia-Martinez Bridge to N. Main	STIP Funds
Benicia-Martinez Bridge: construct 2nd span	STIP Funds
Carquinez Bridge: replace west bridge, add HOV	STIP Funds
Amtrak Capitol Corridor: expand service	STIP Funds
SR 4 TOS	STIP Funds
SR 4: widen to 8 lanes (2 HOV), Bailey to RR	STIP Funds
Martinez Intermodal Facility	STIP Funds
SR 242: Concord ramps and auxiliary lane	STIP Funds

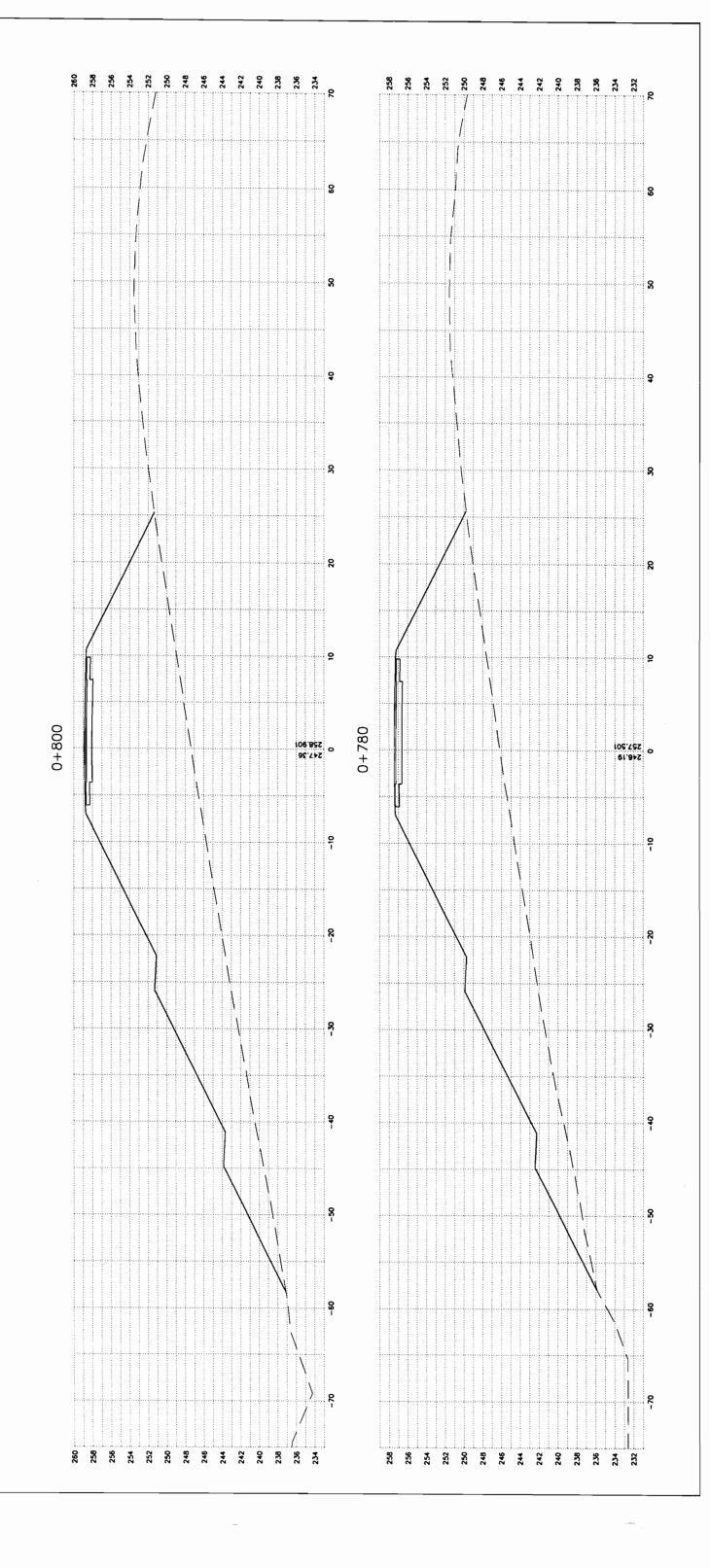


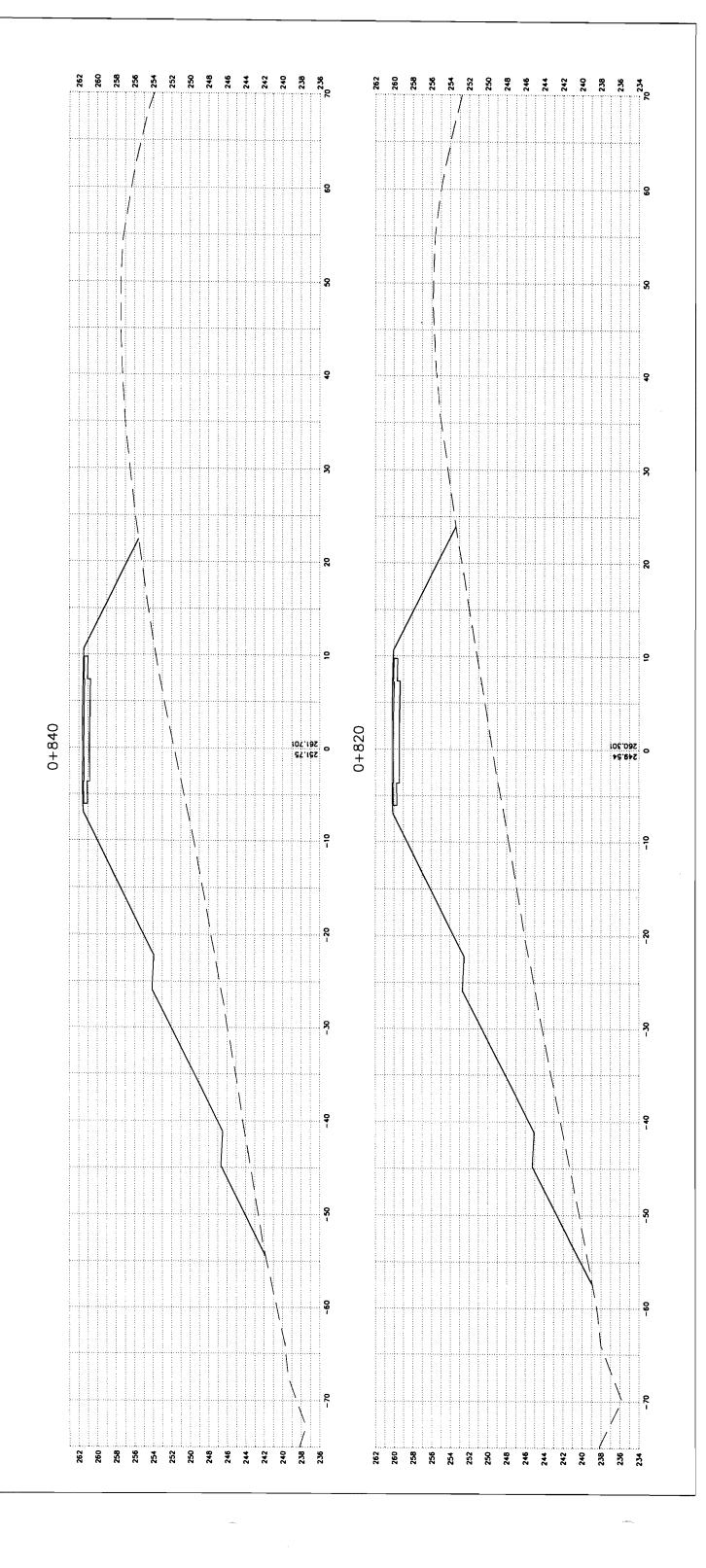


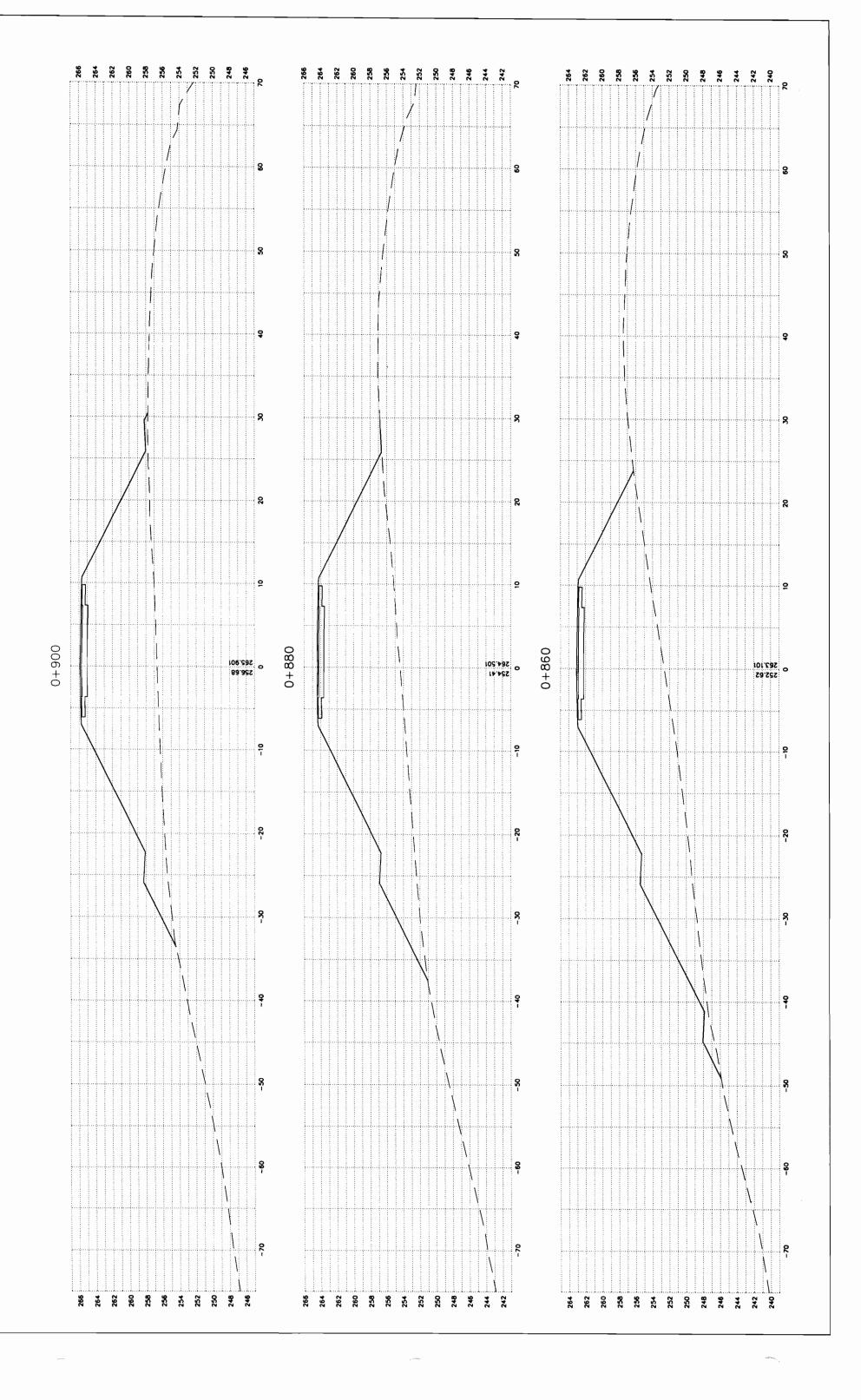


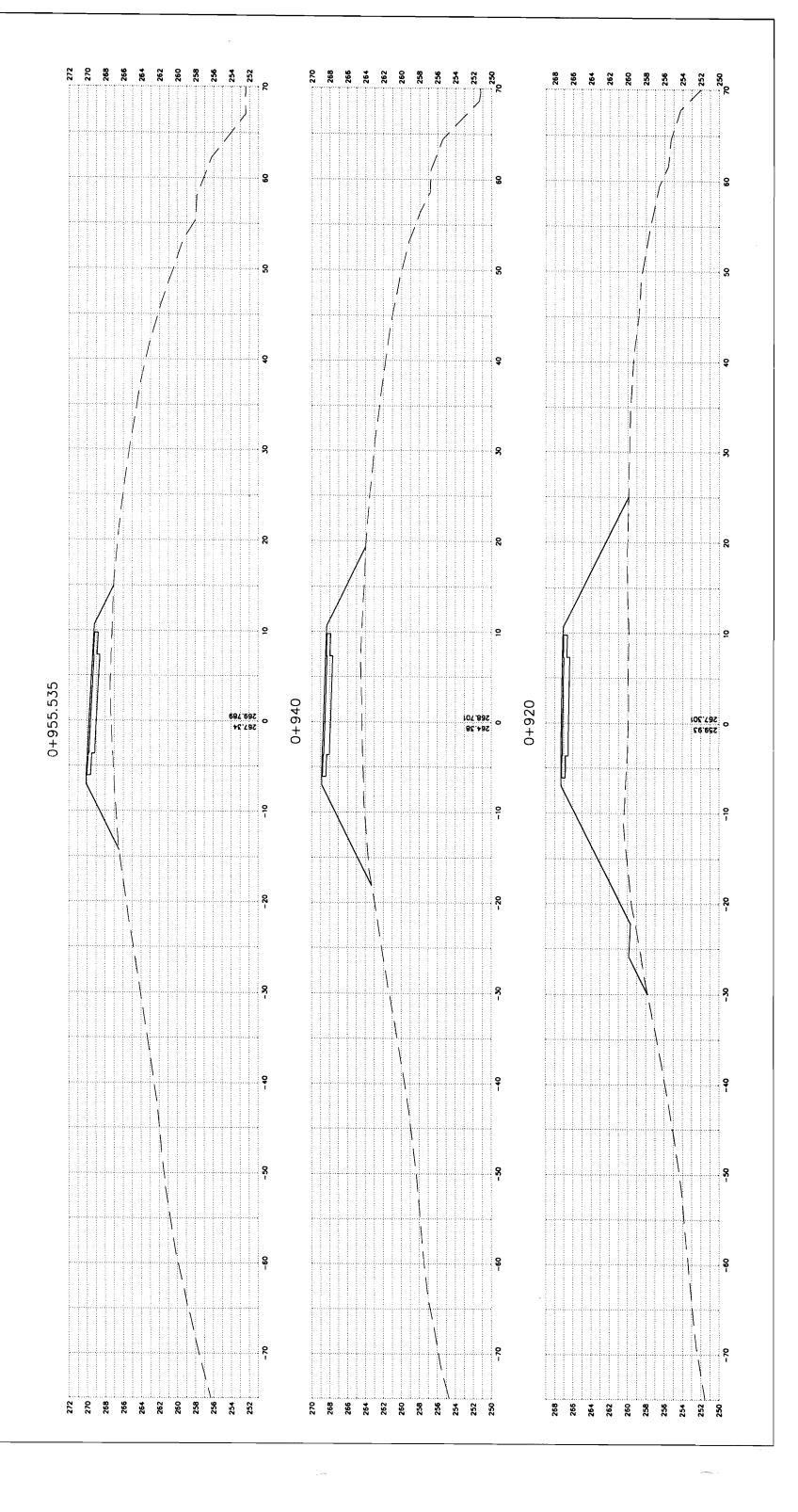


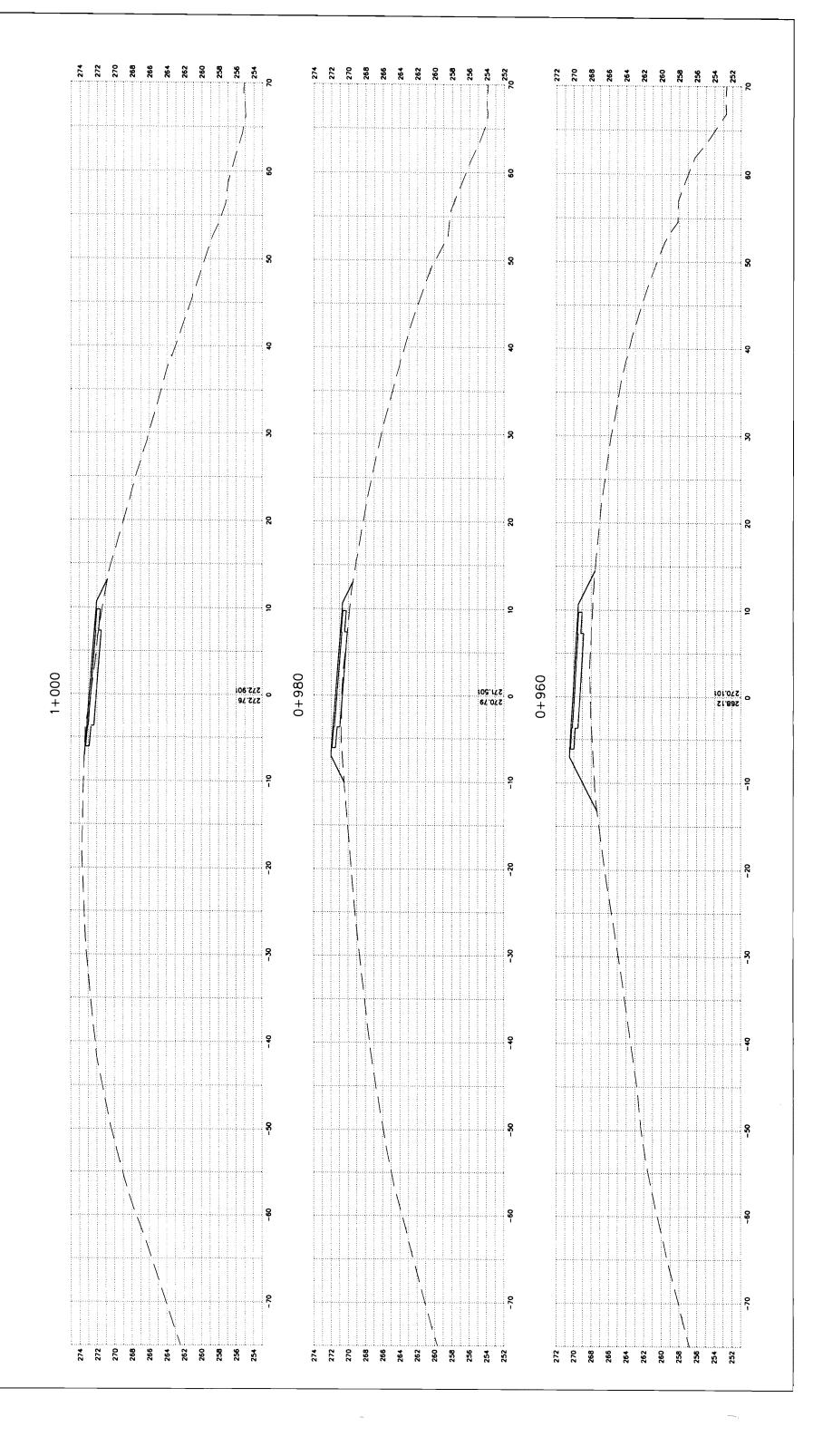


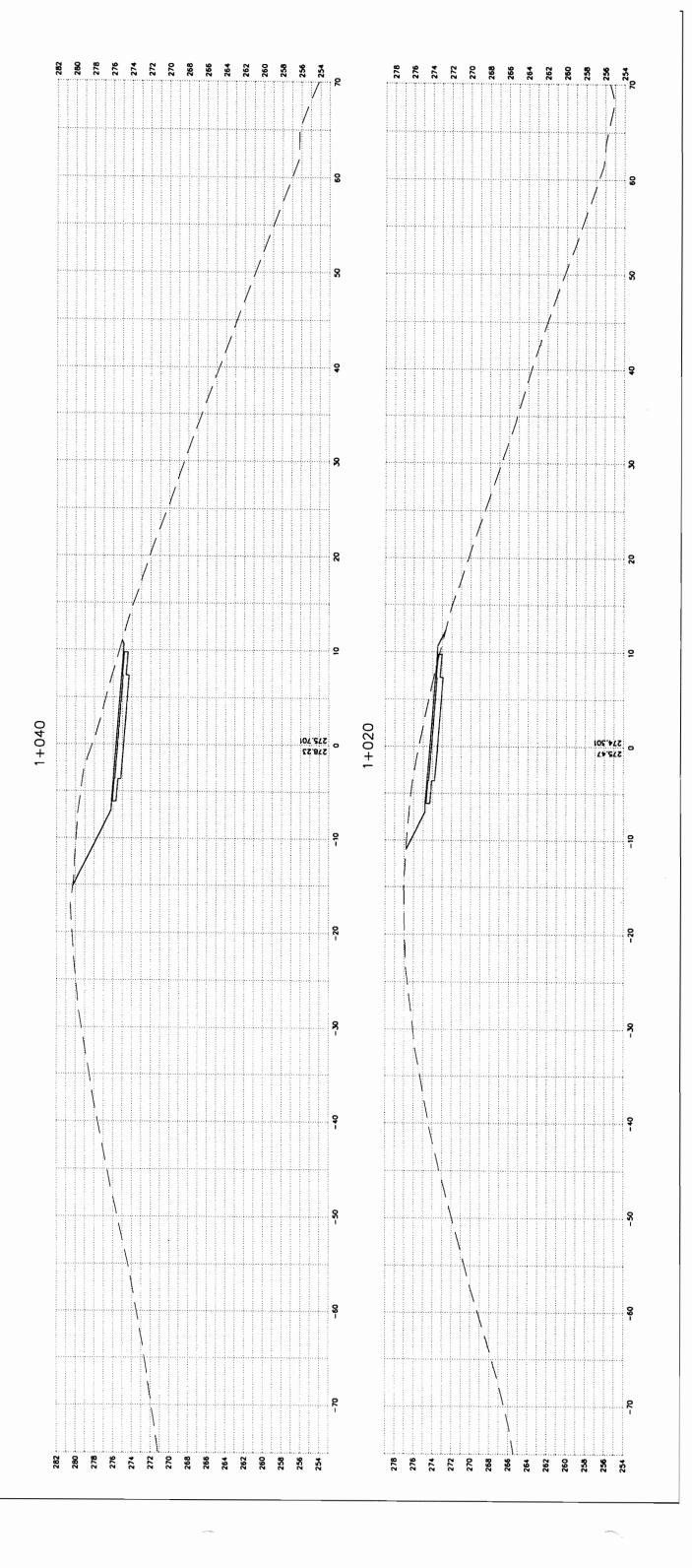


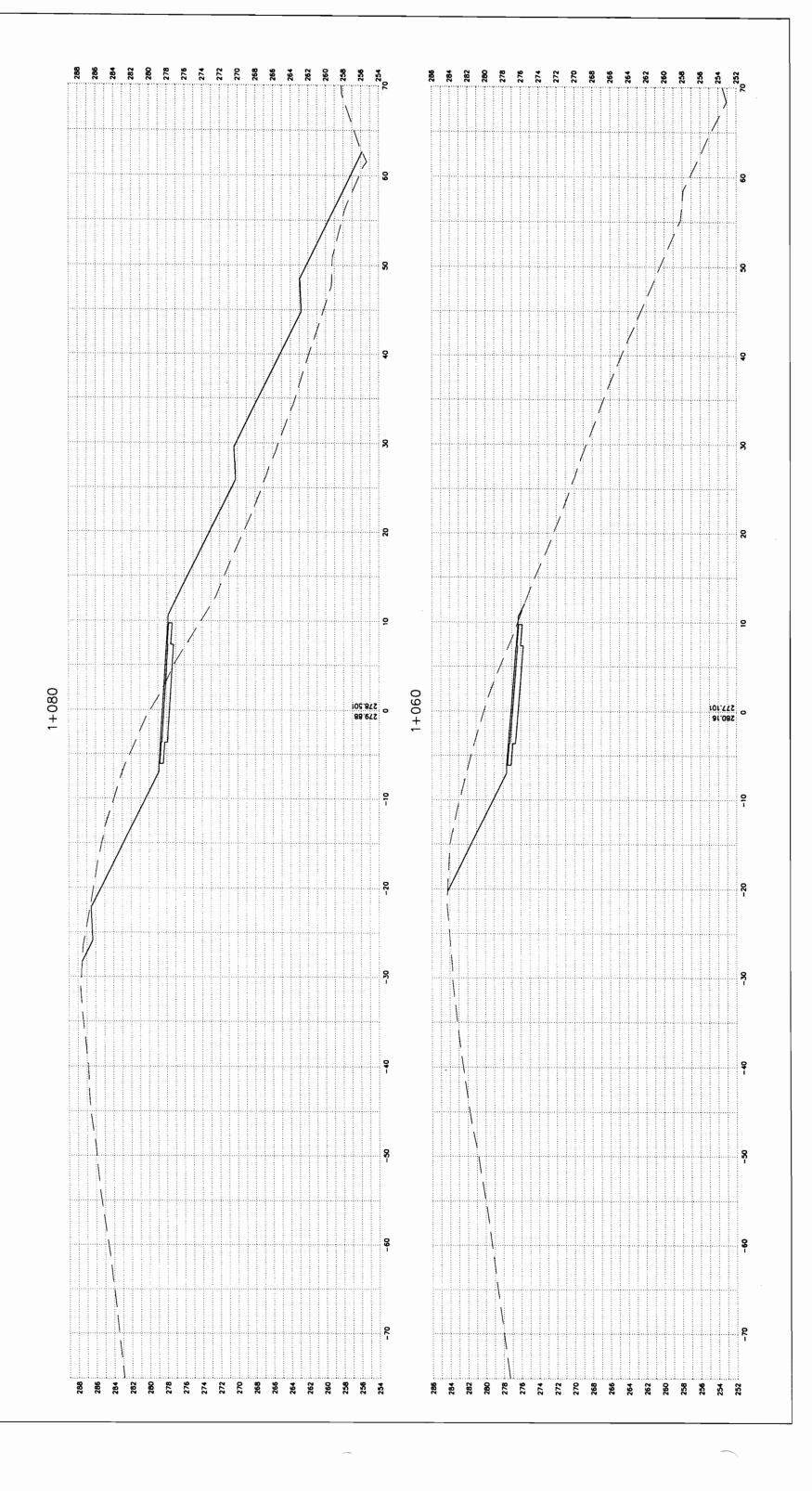


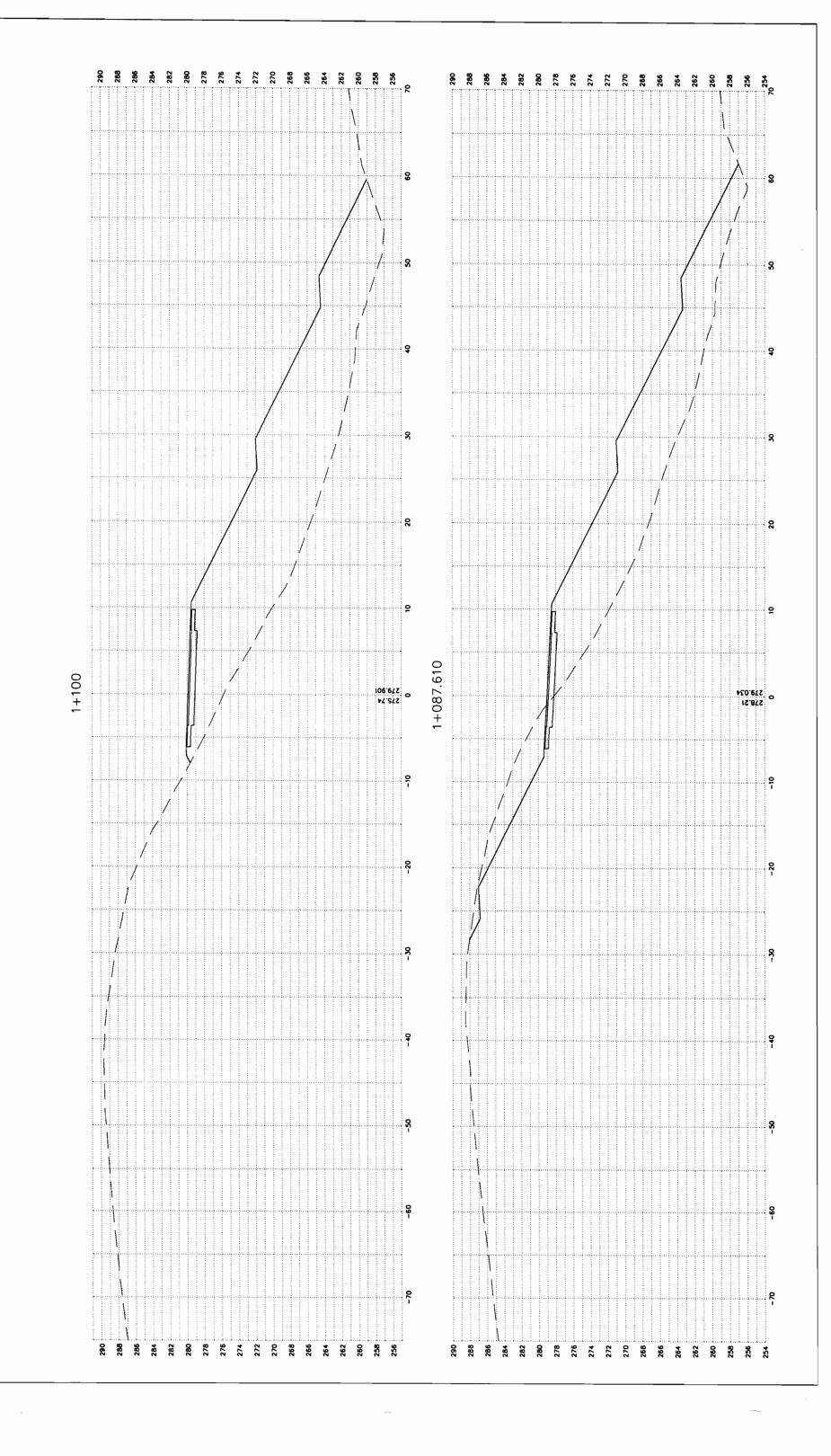


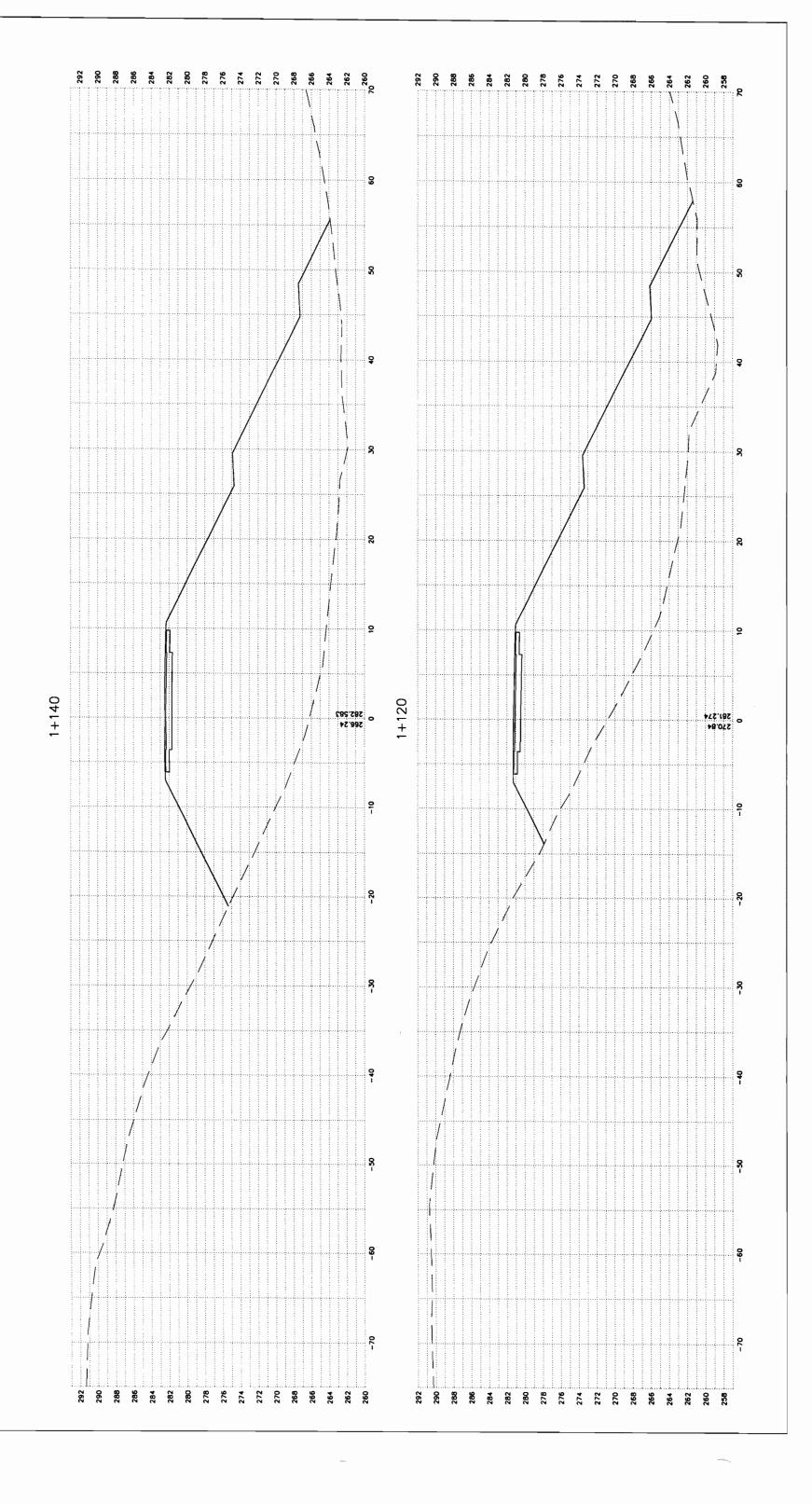


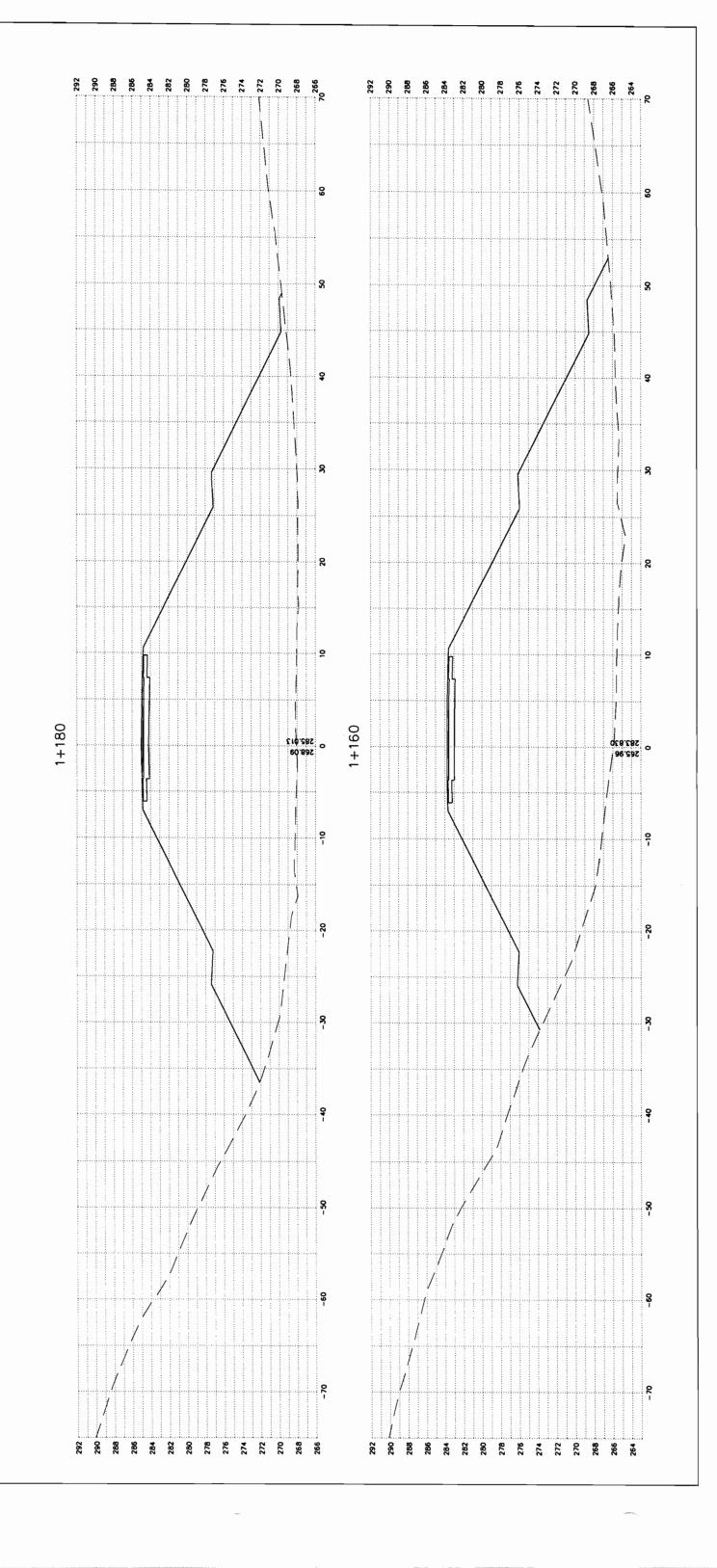


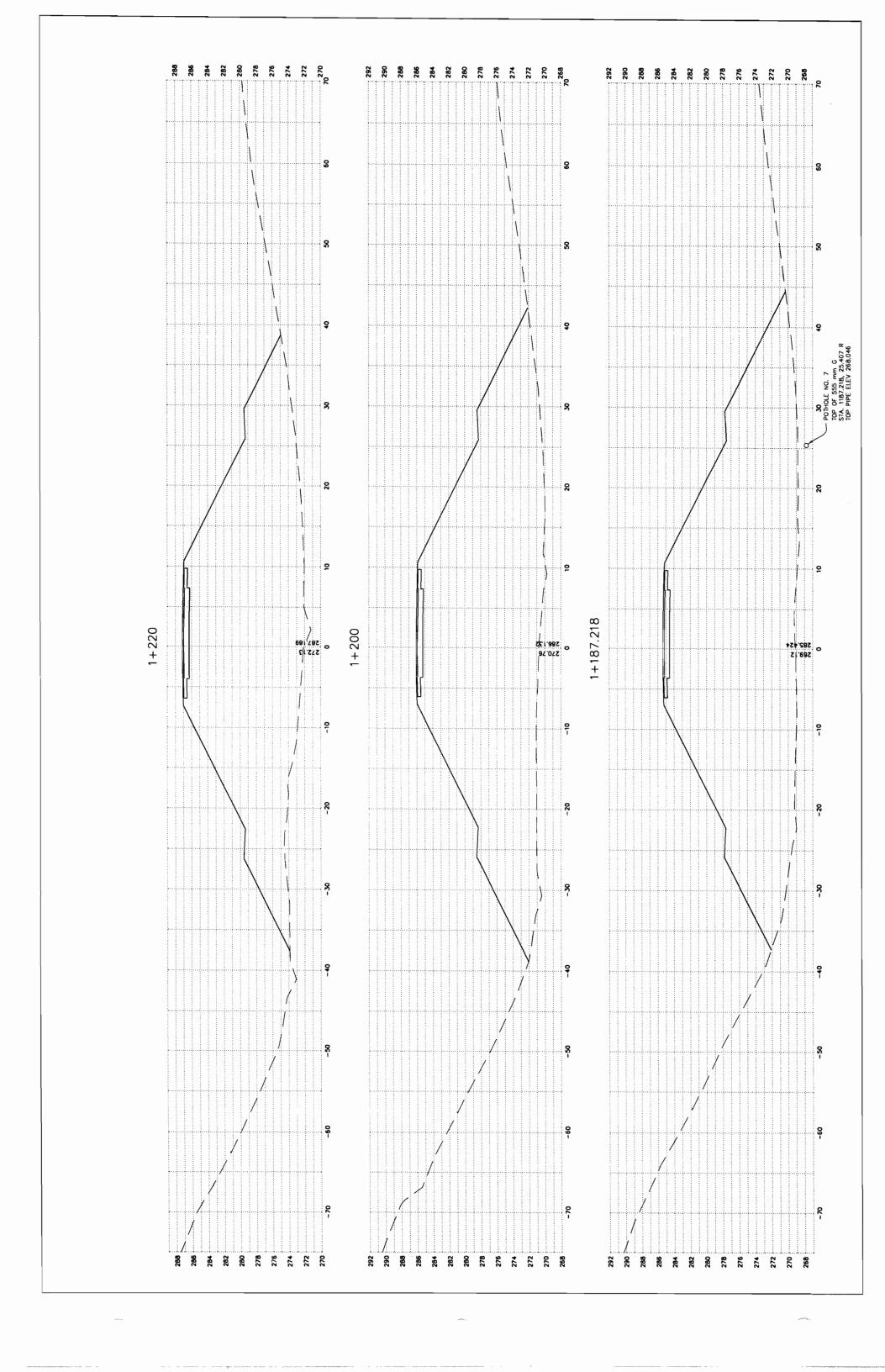


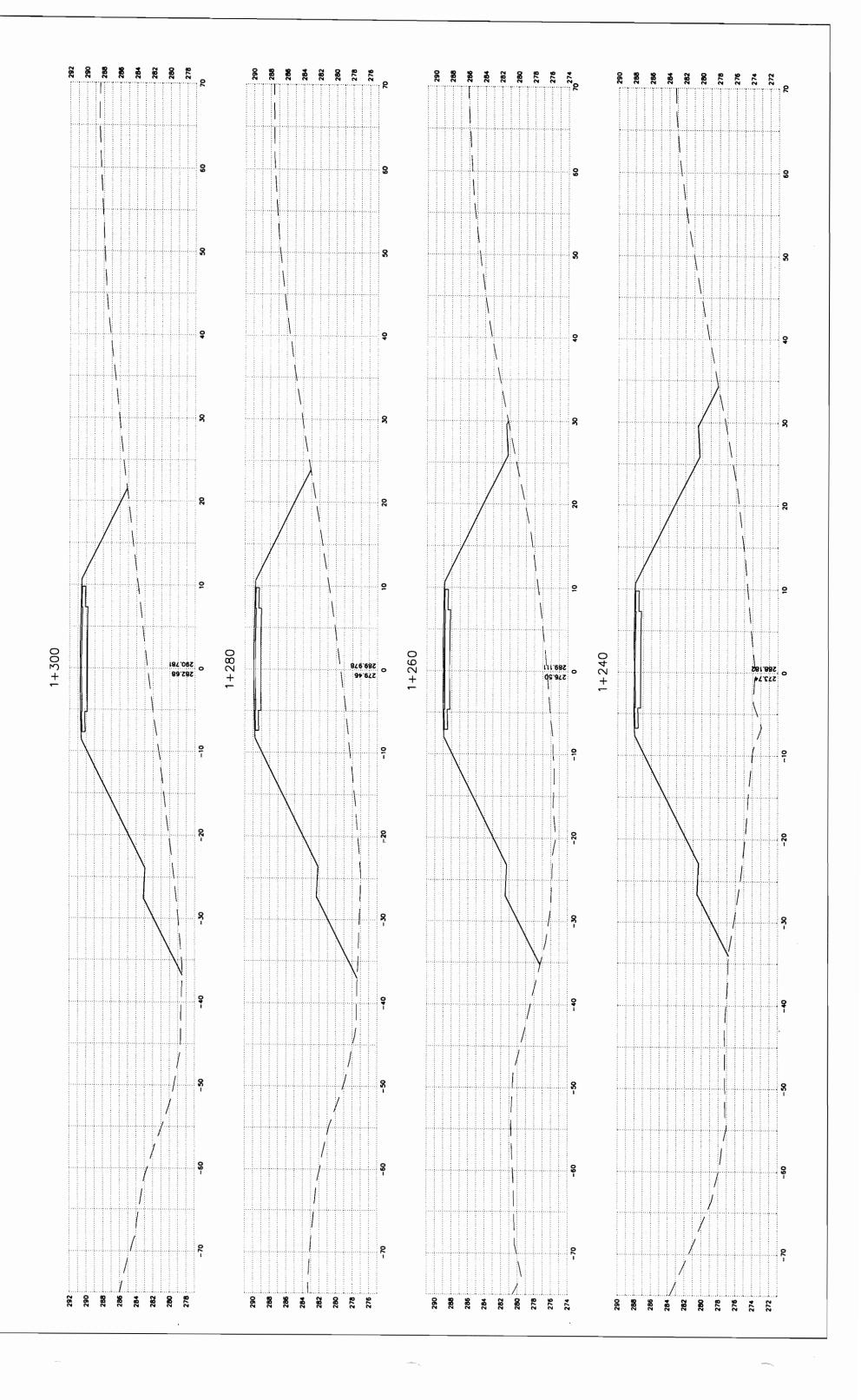


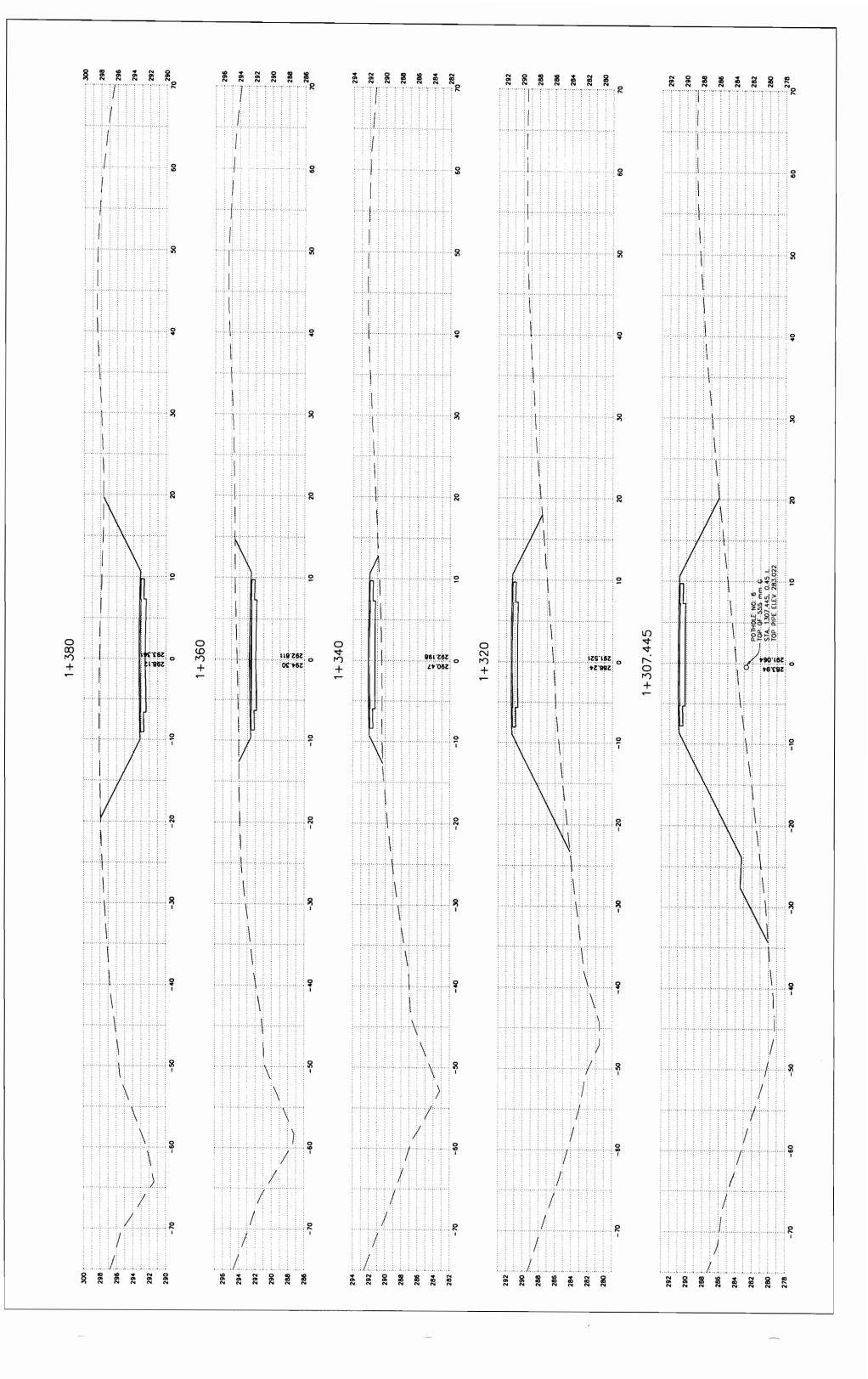


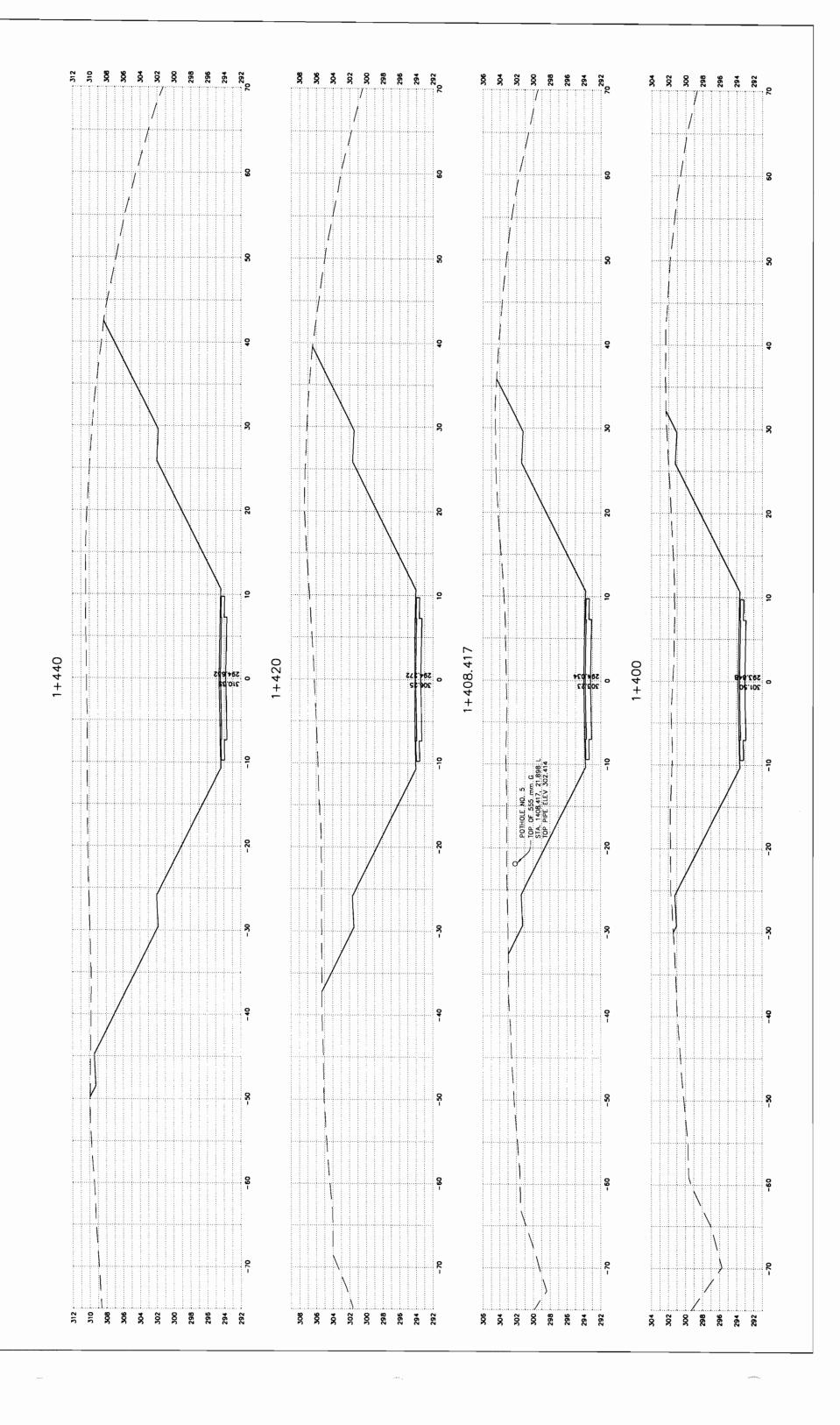


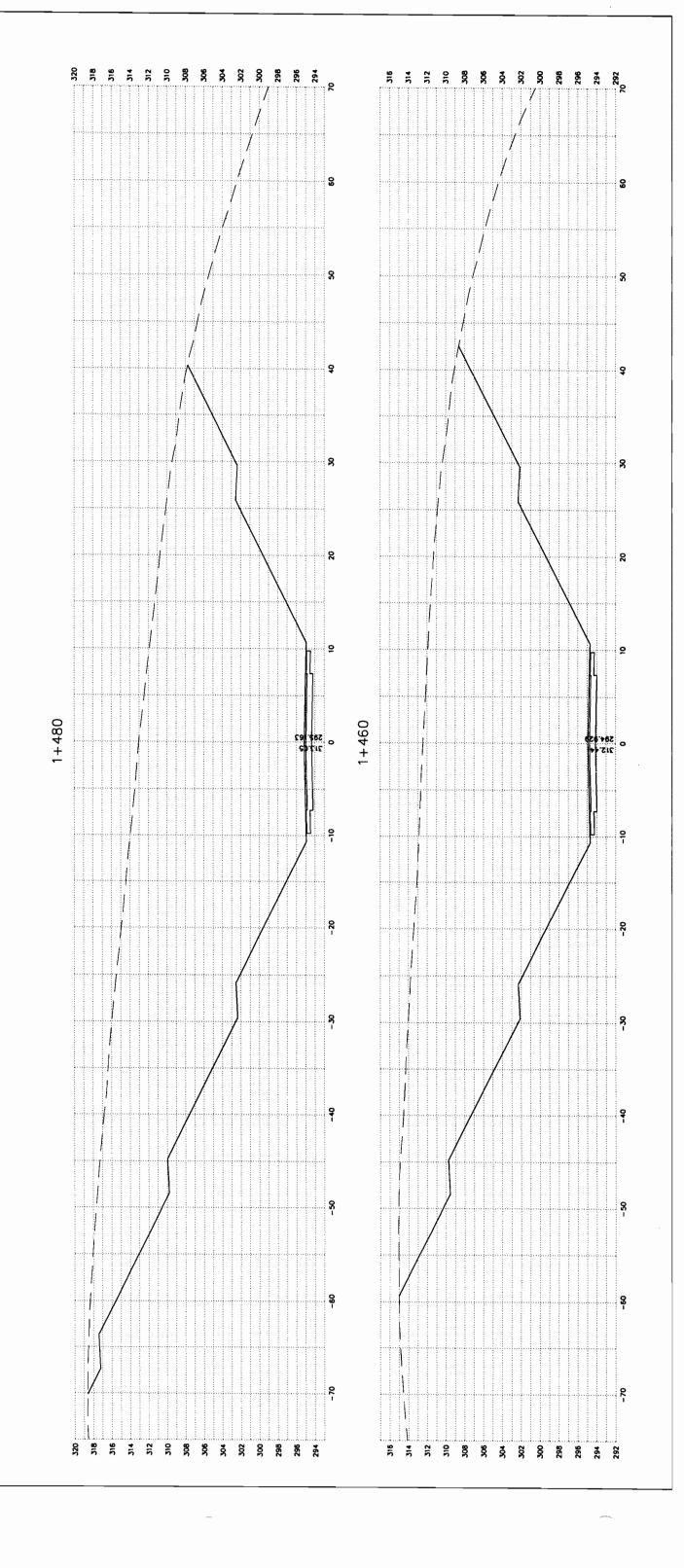


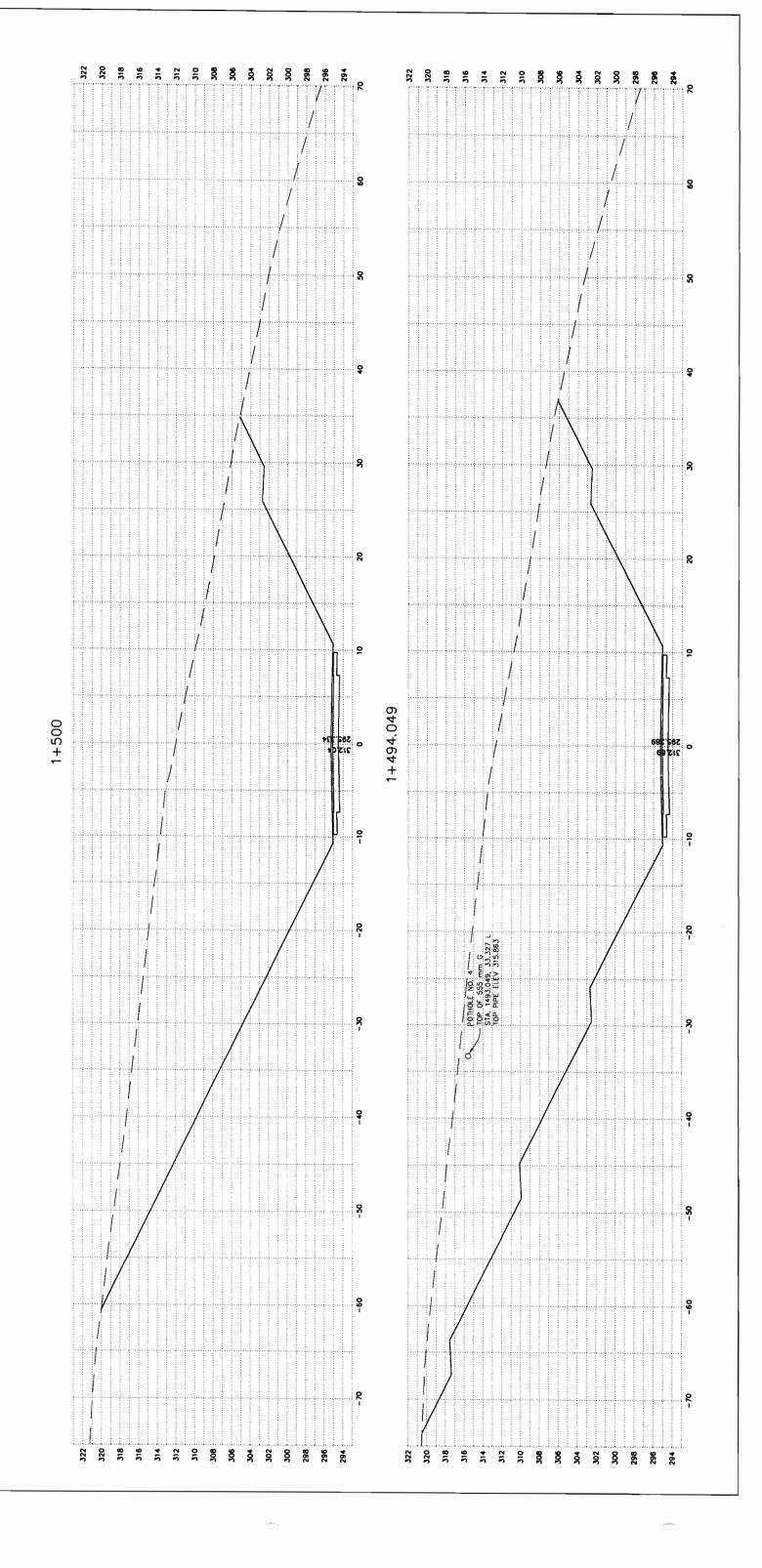


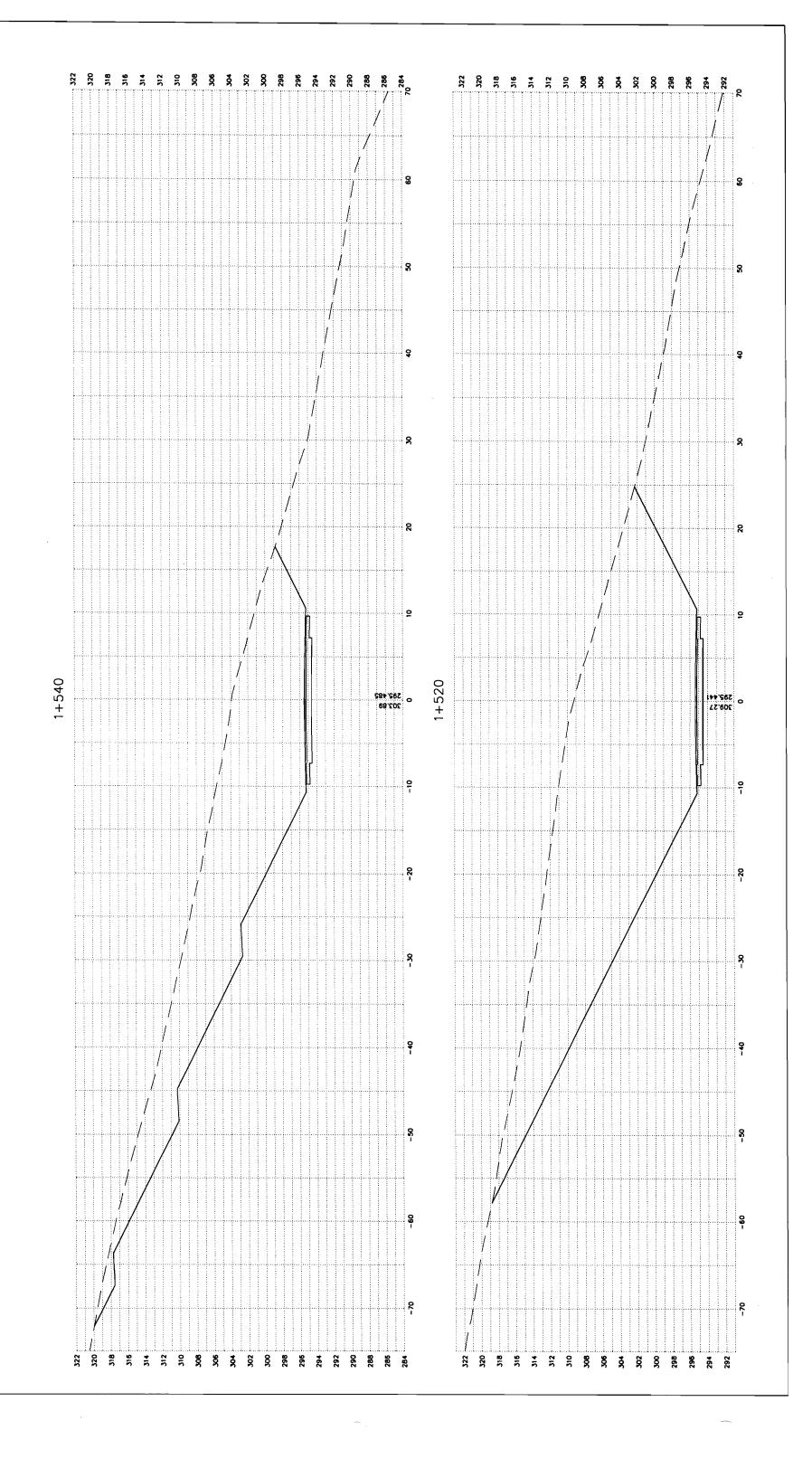


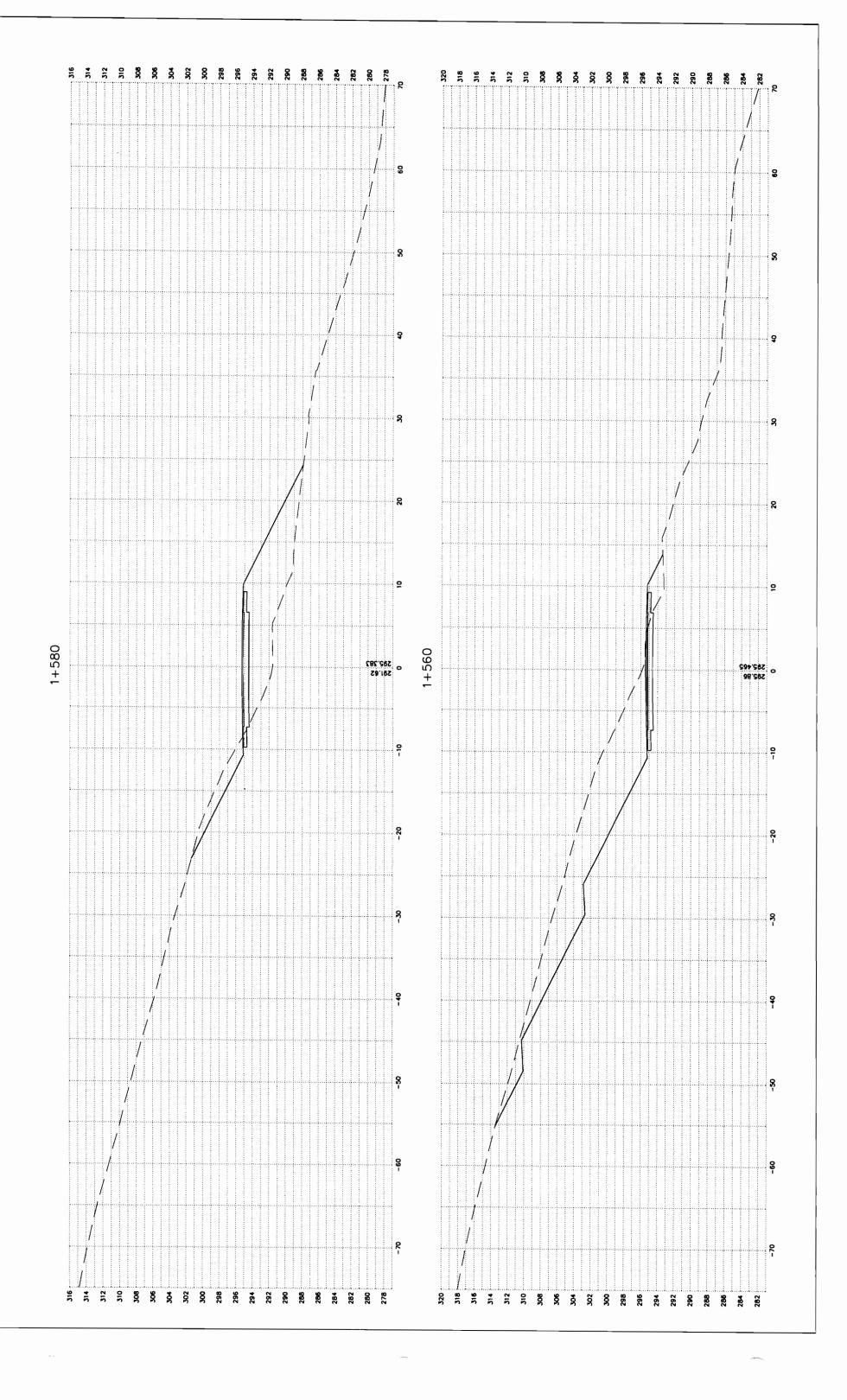


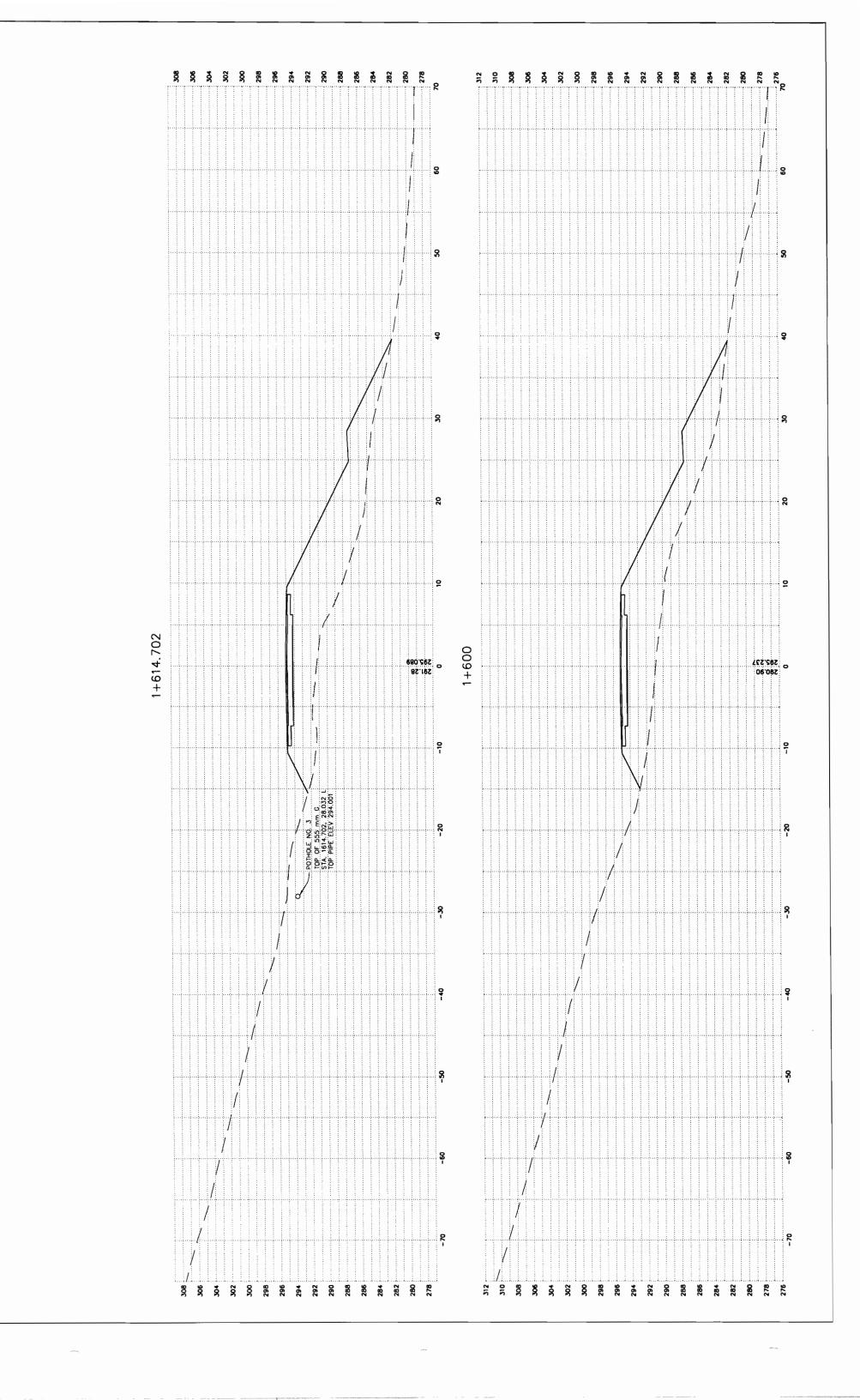


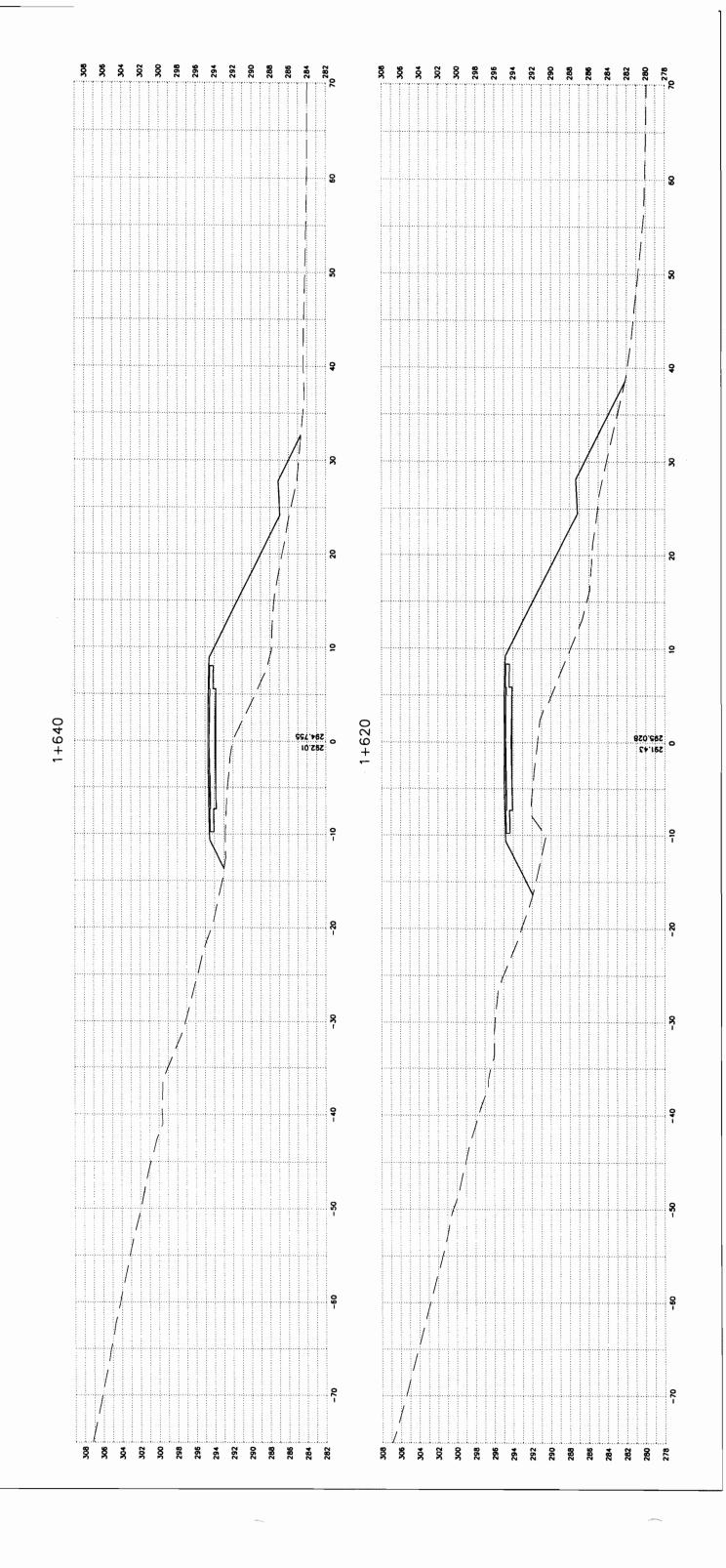


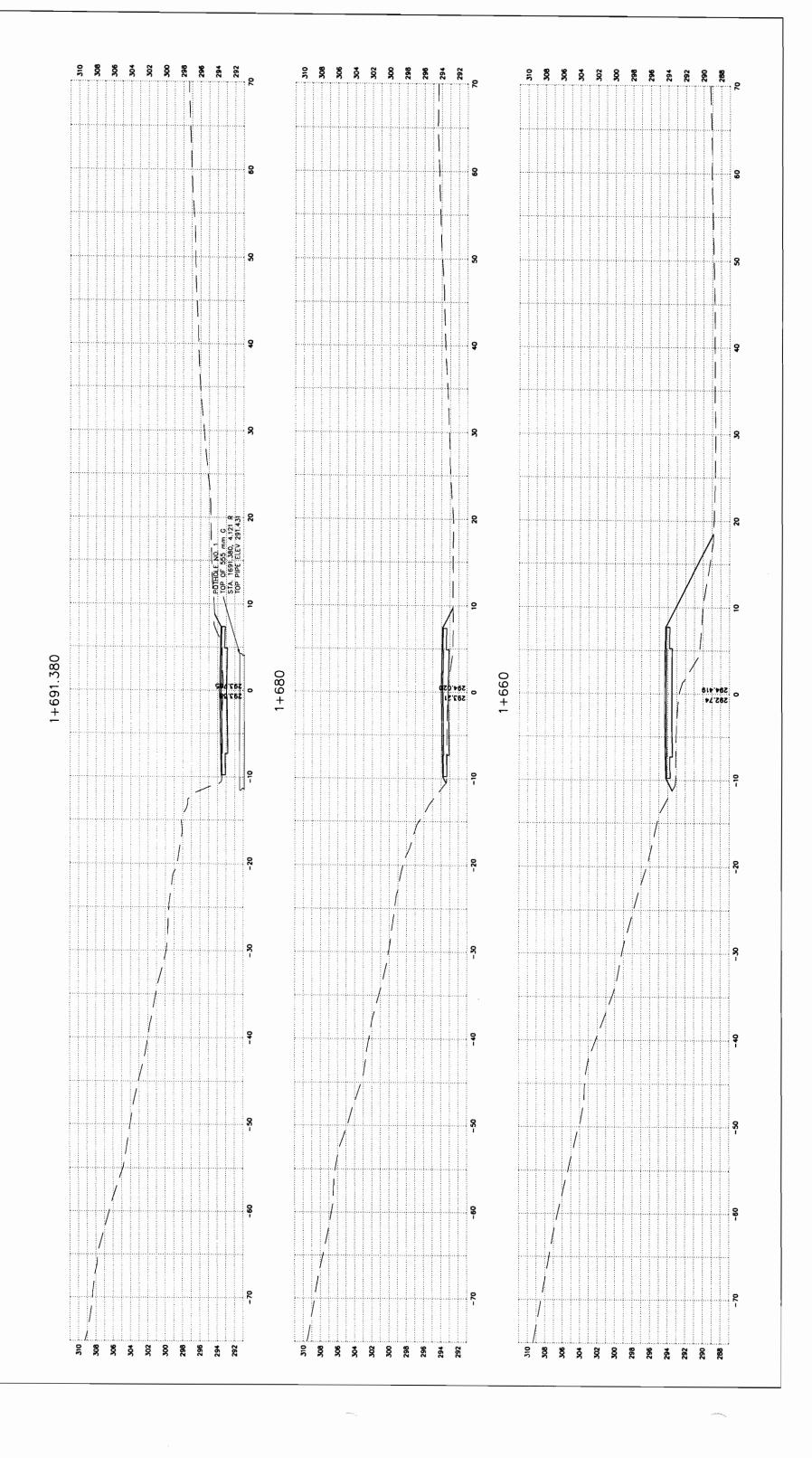


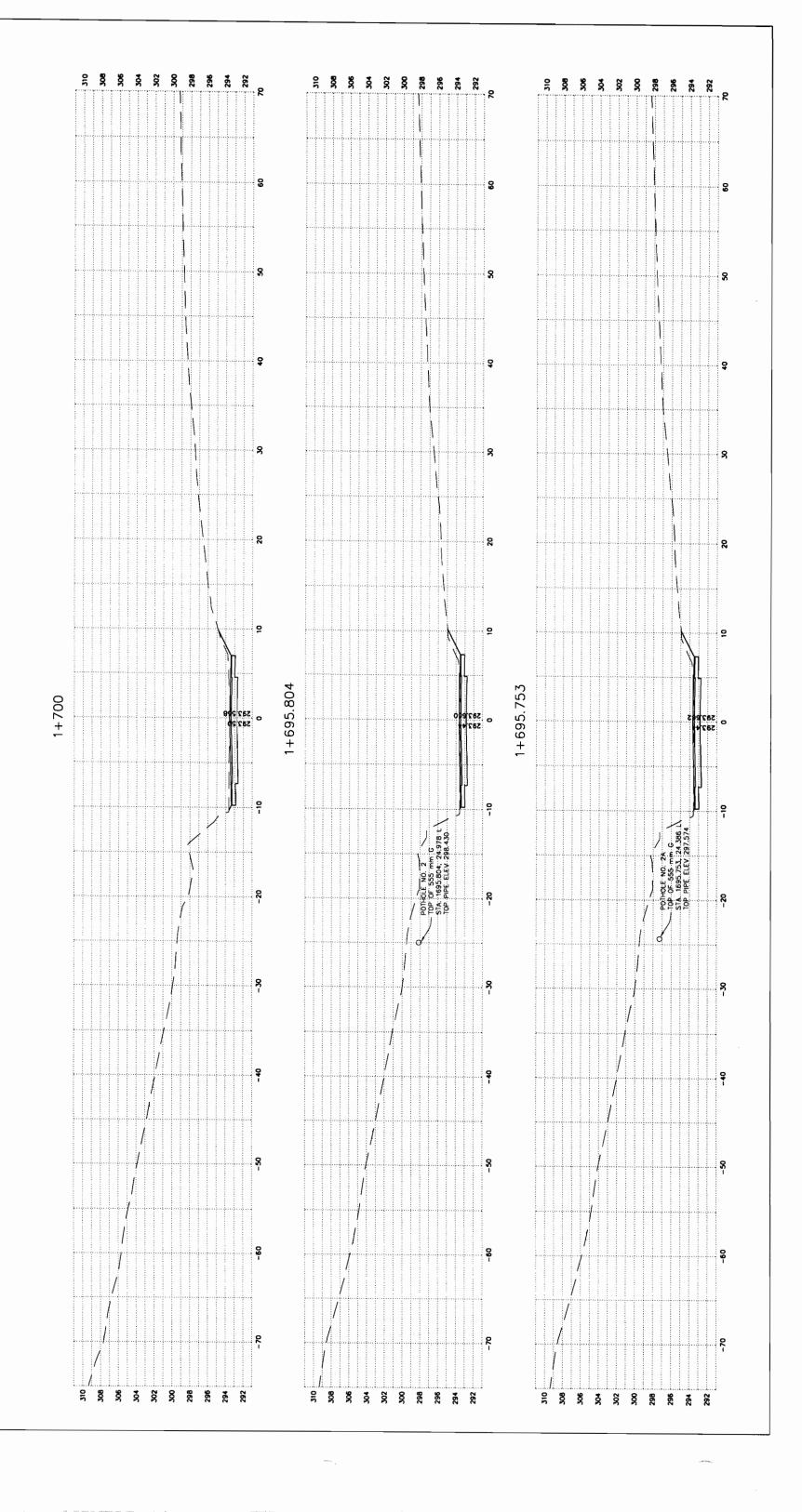


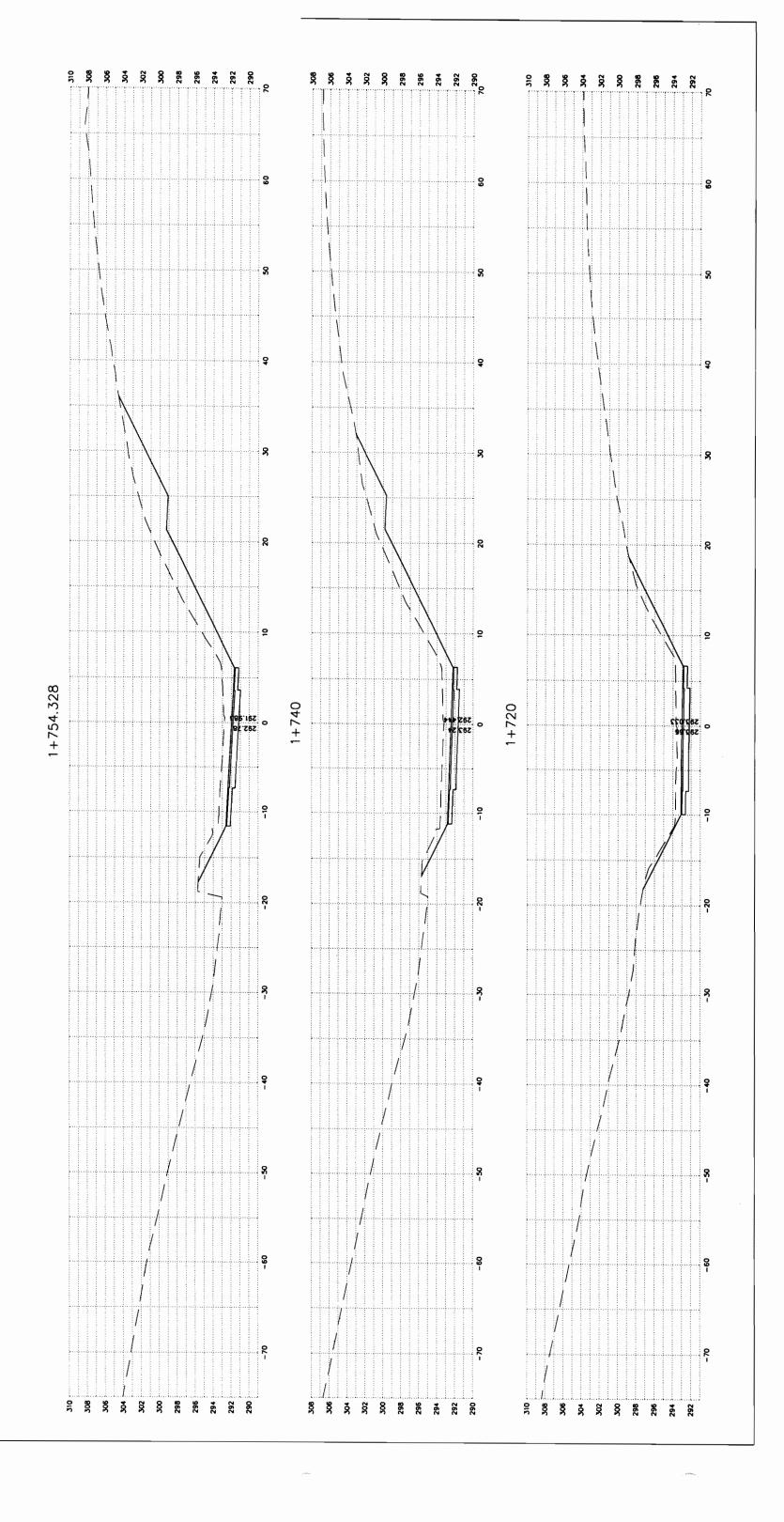


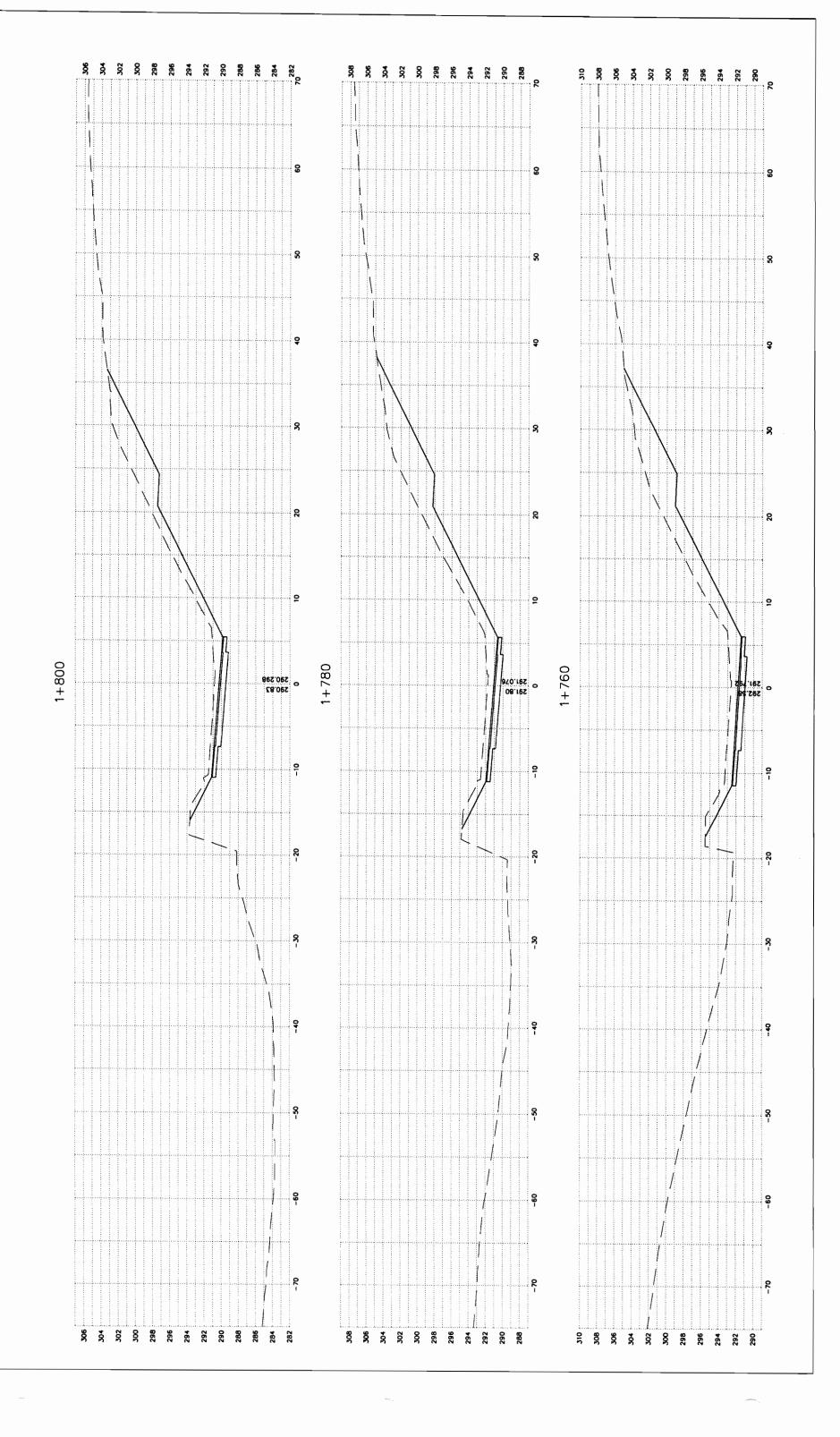


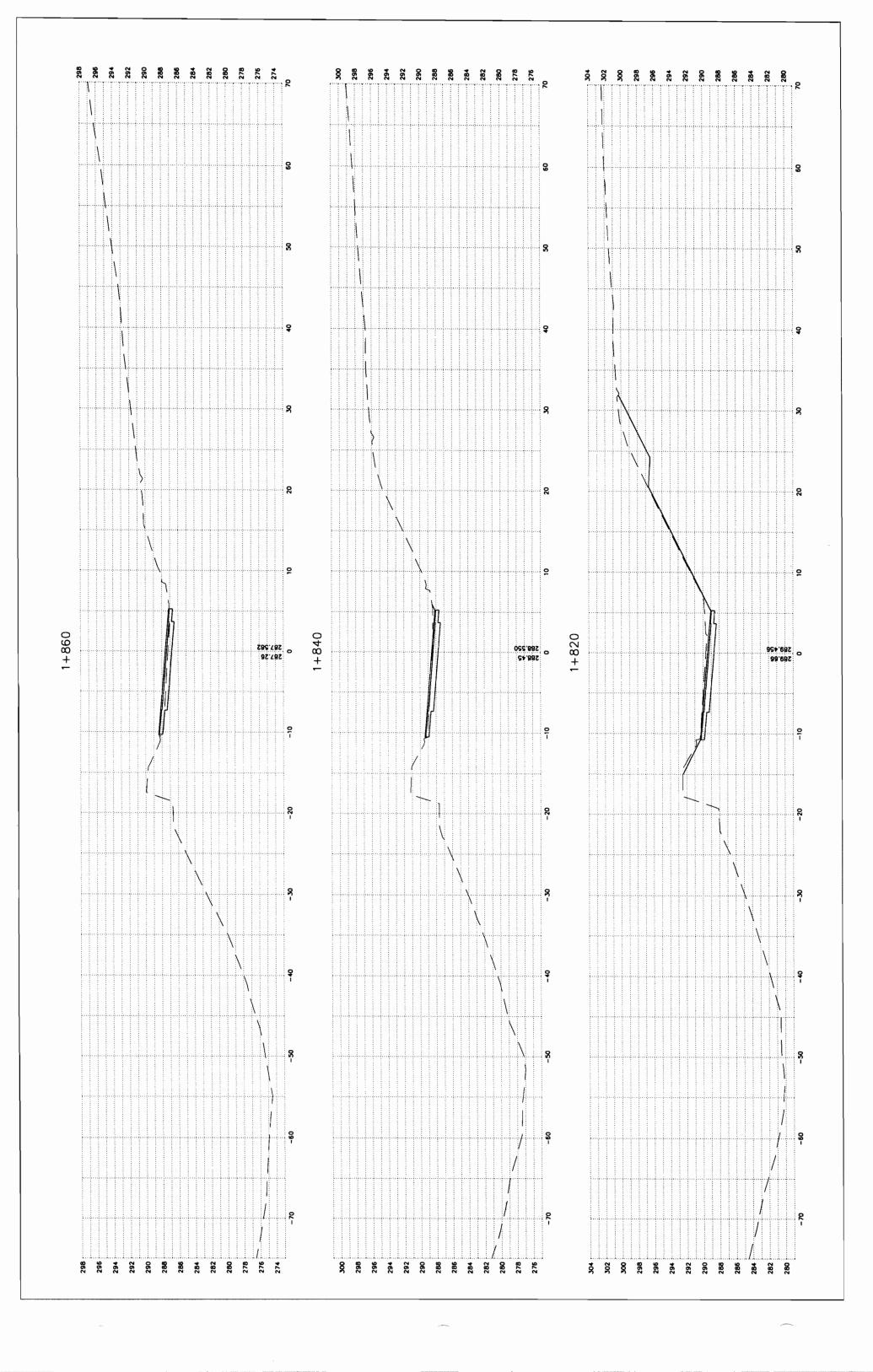


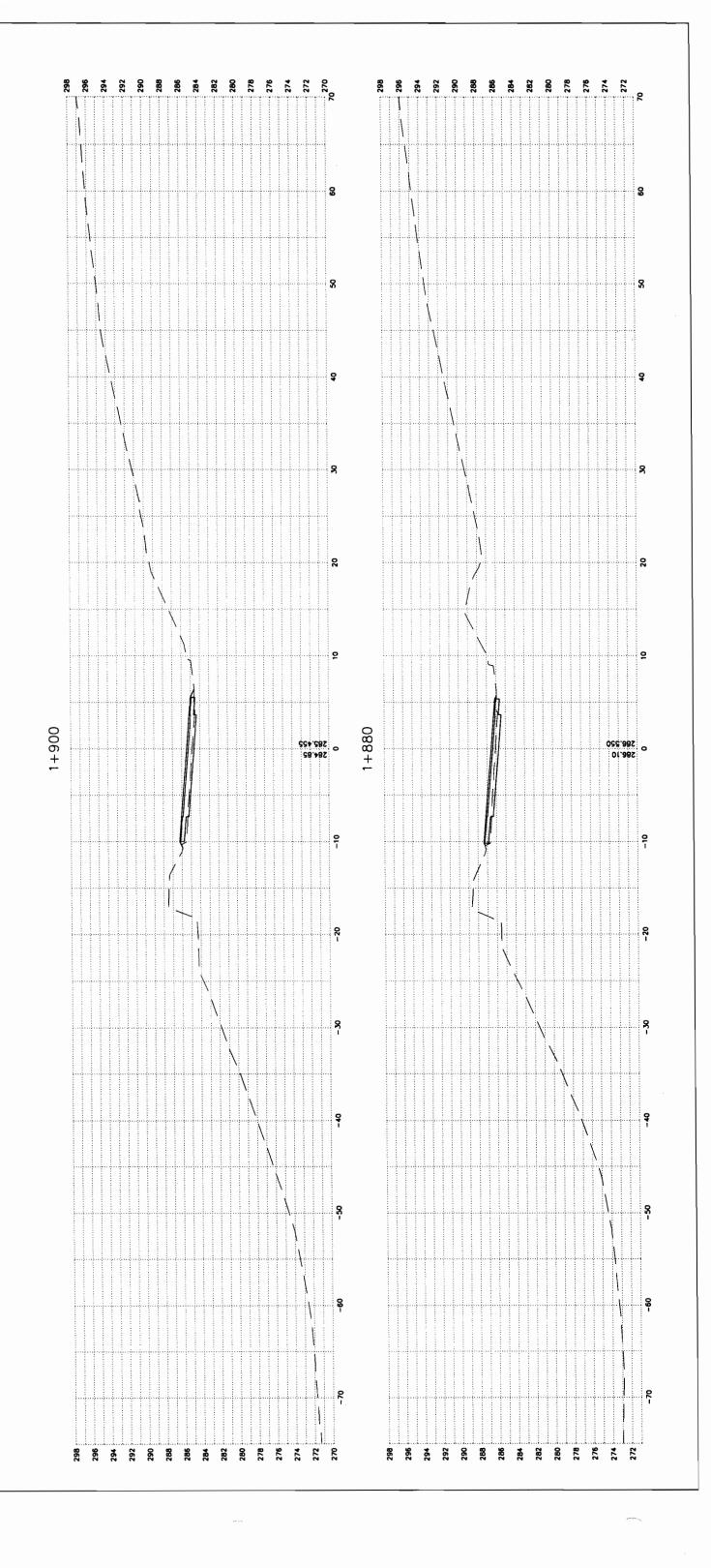


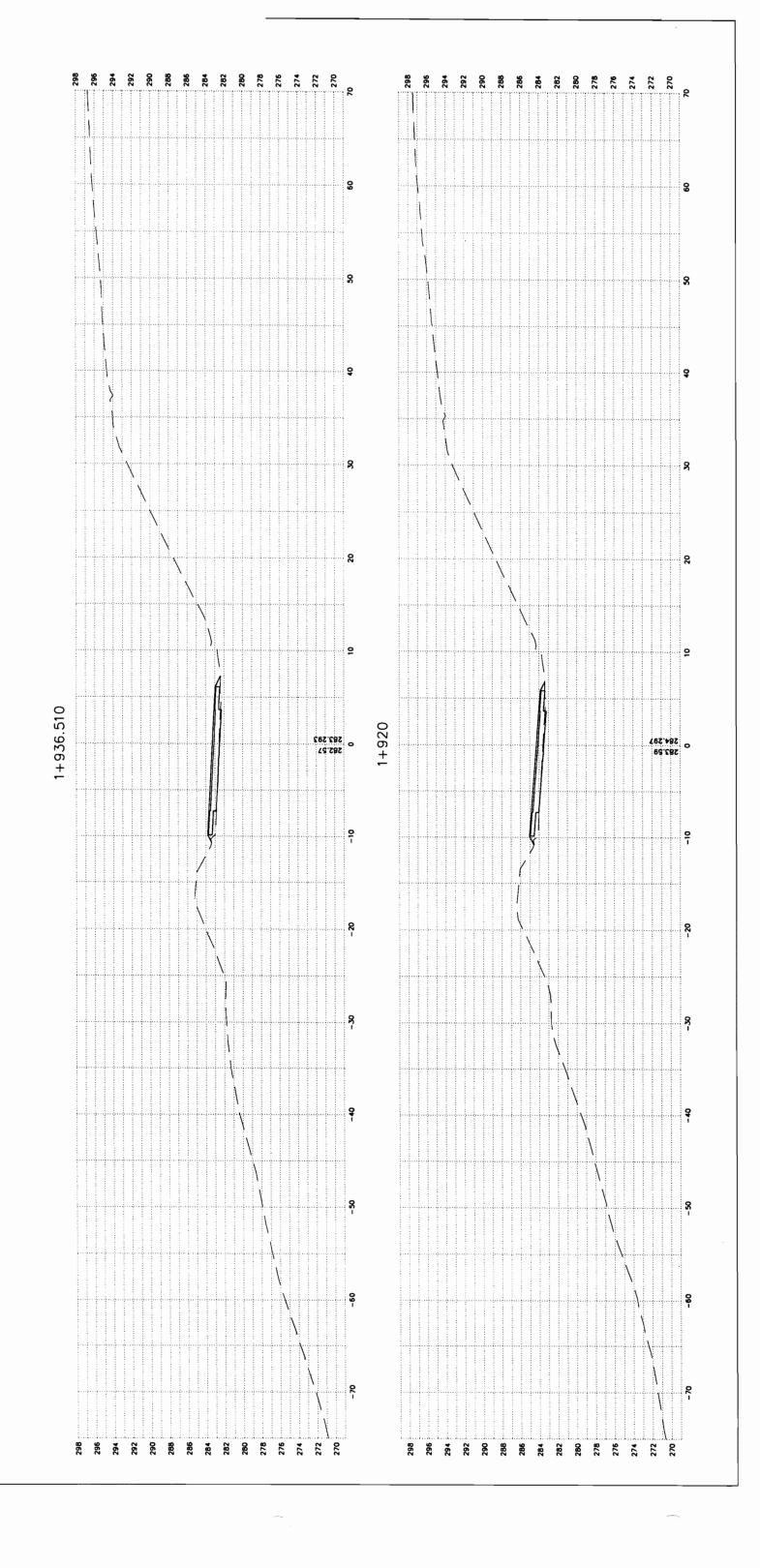


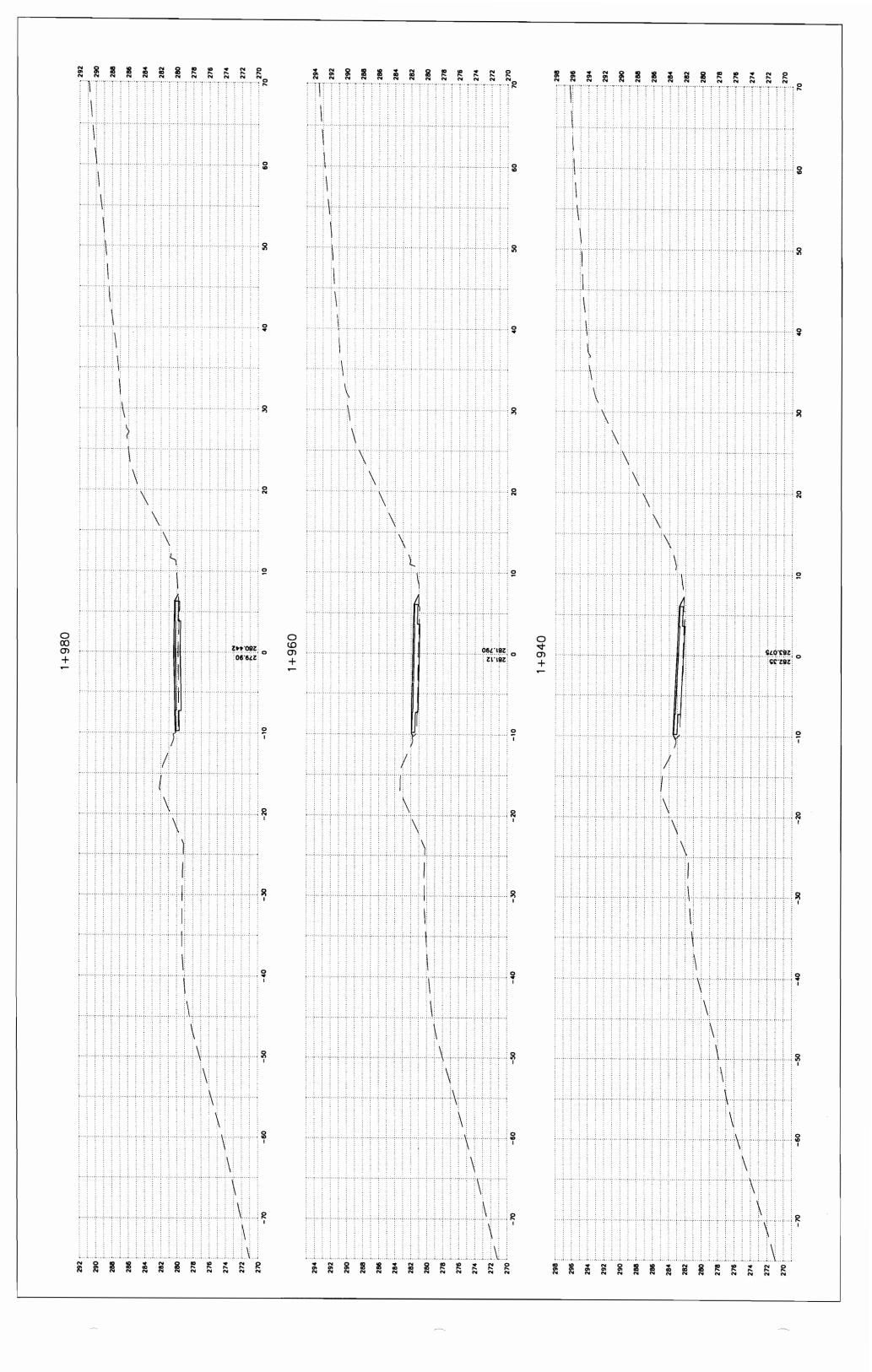


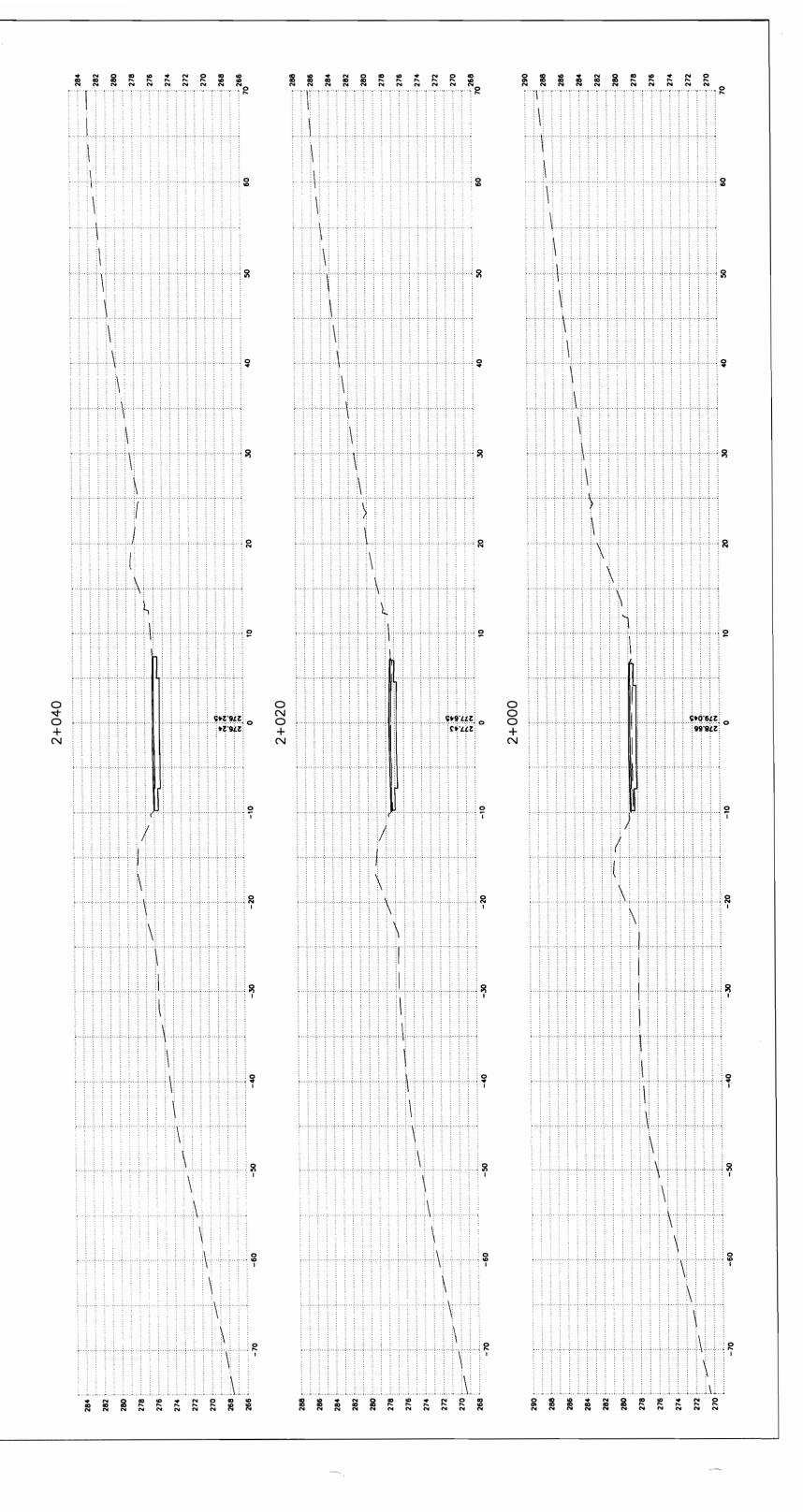


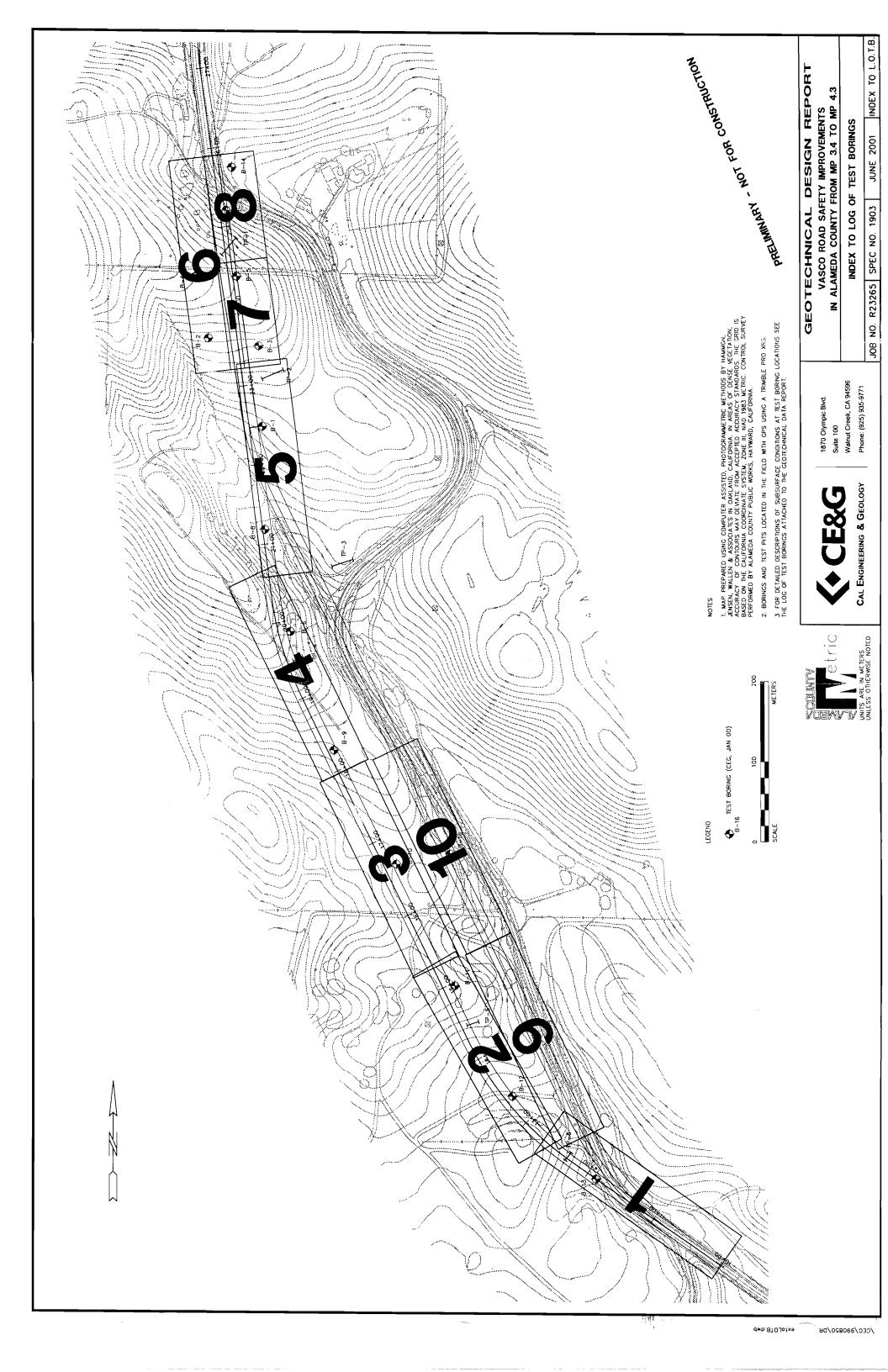


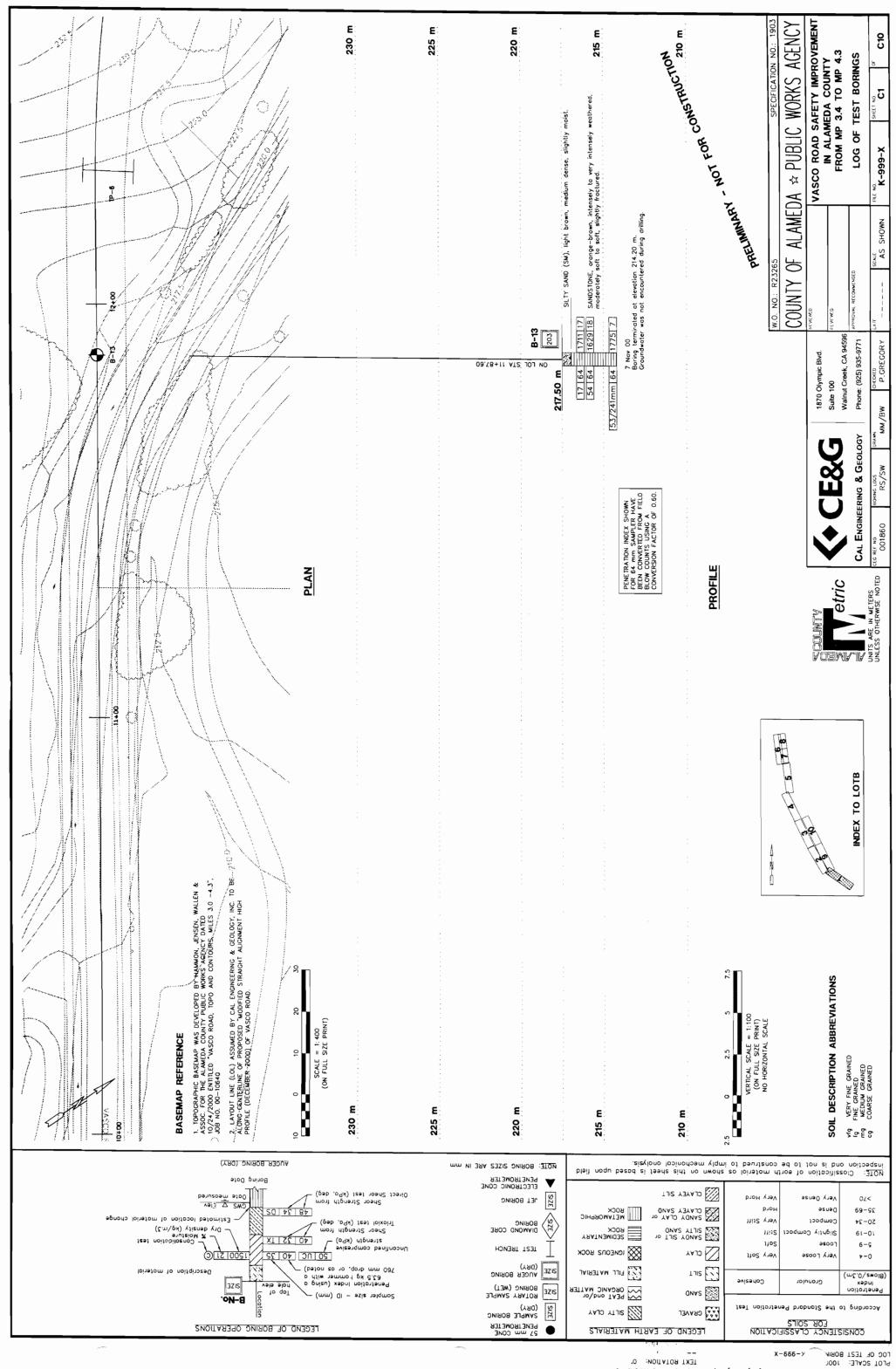


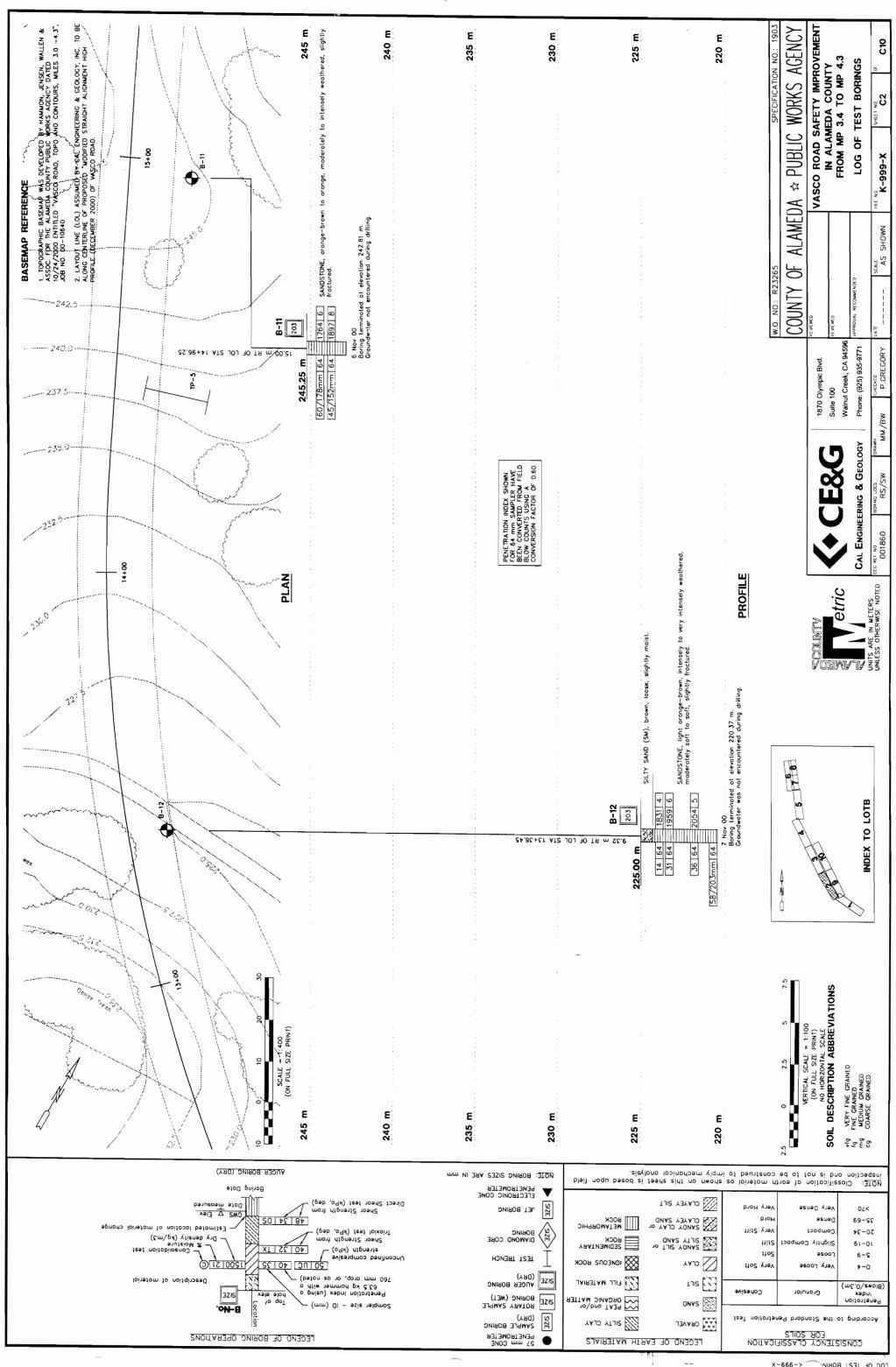


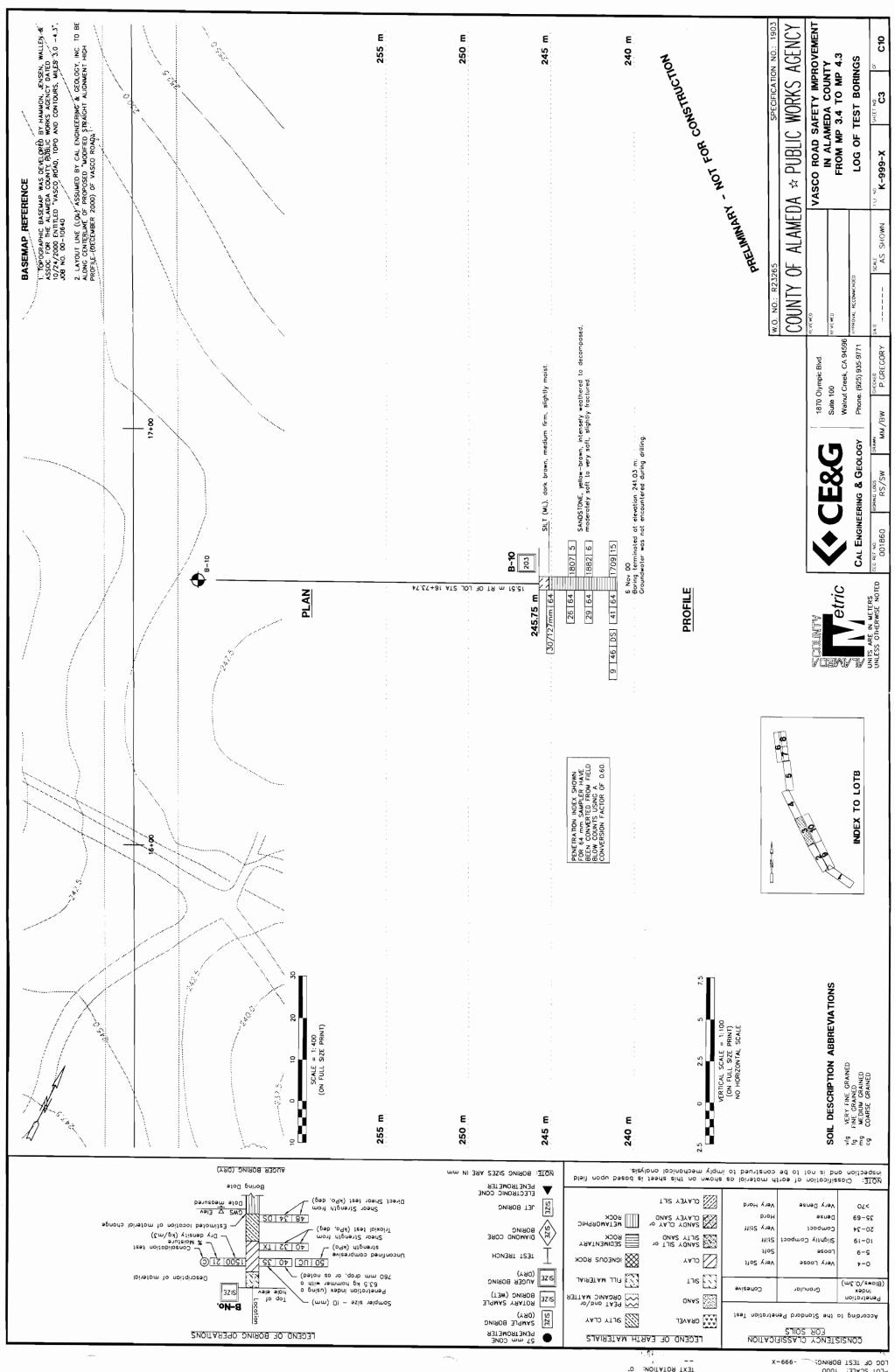


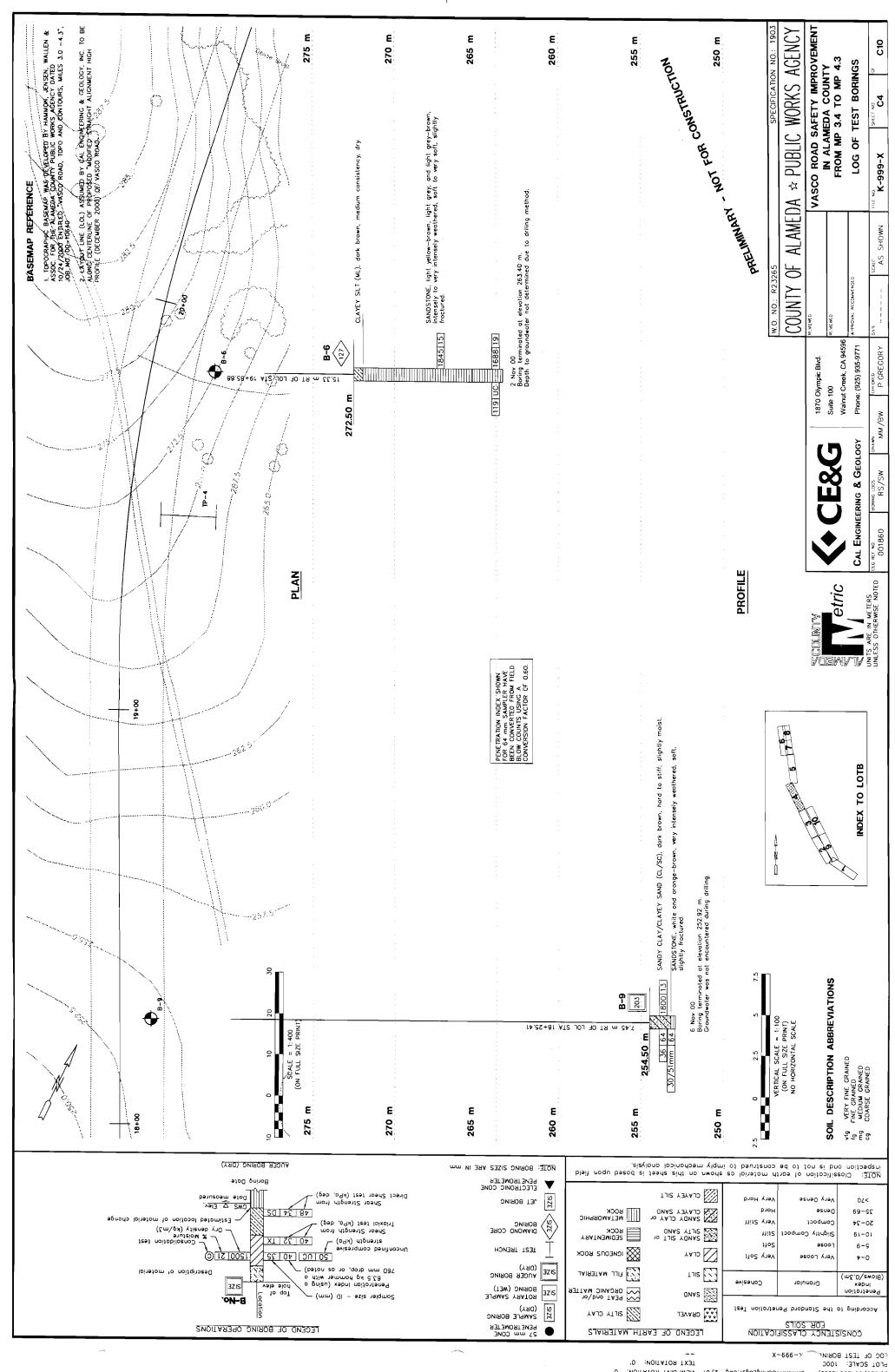




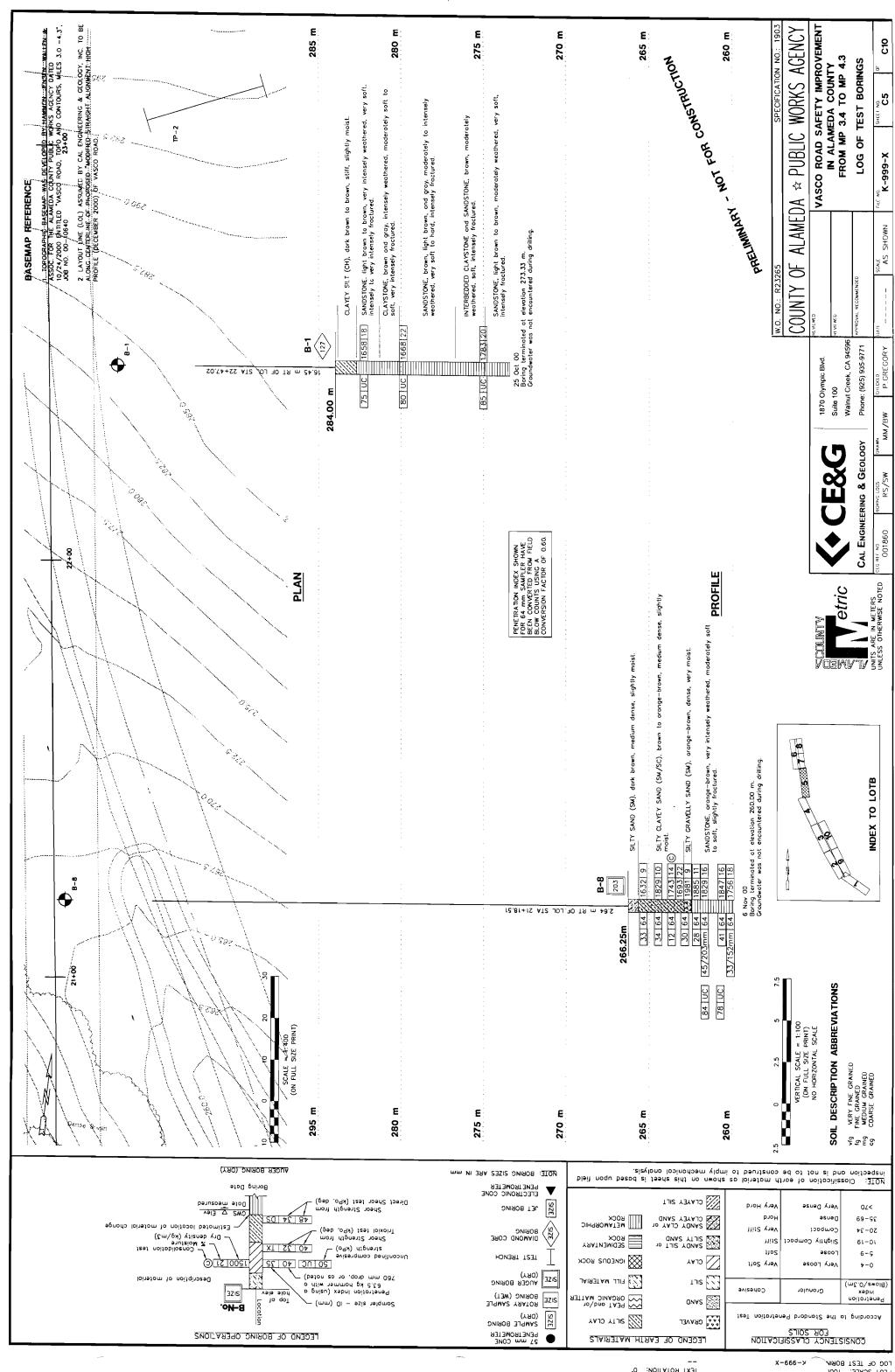


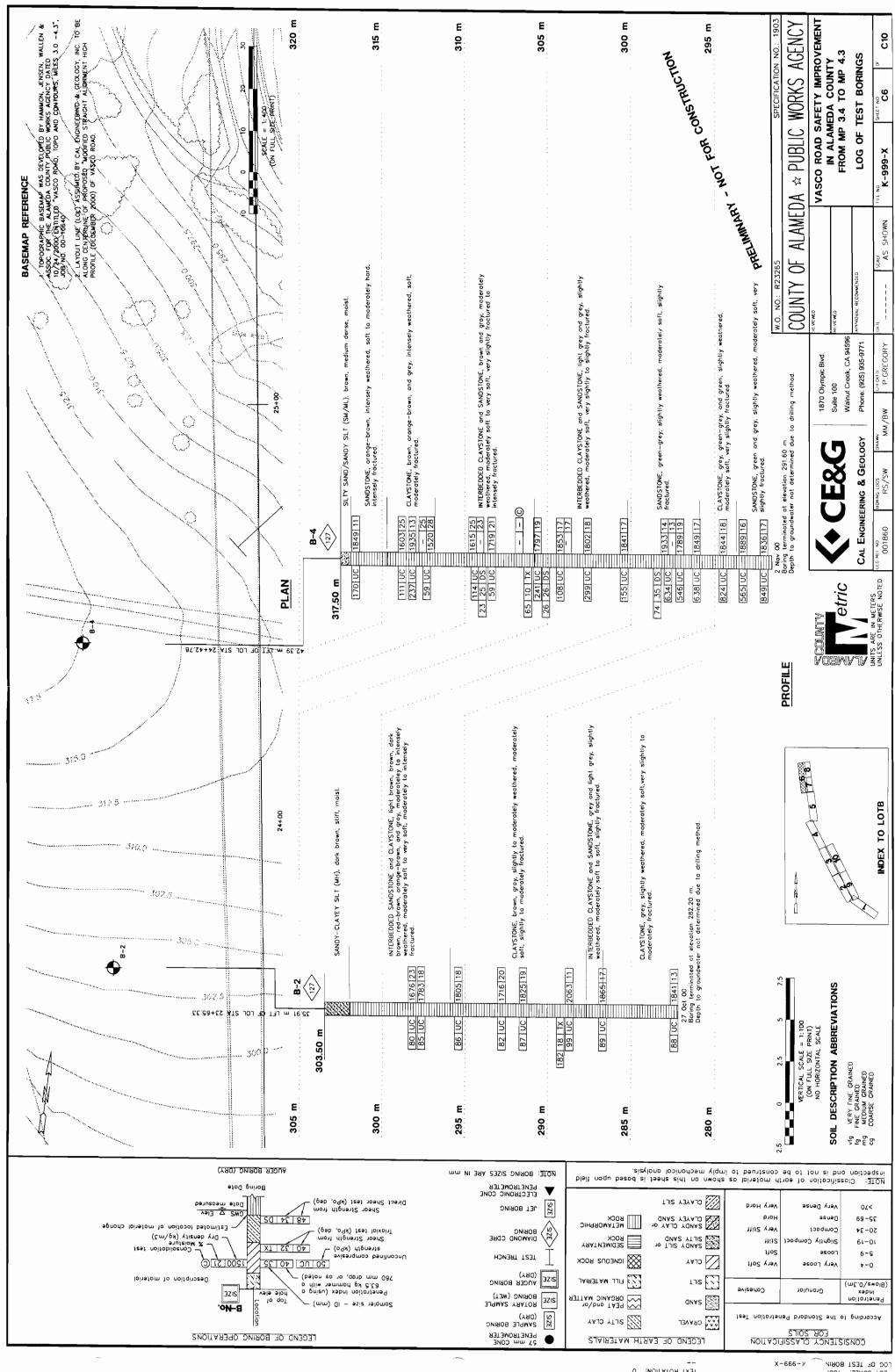




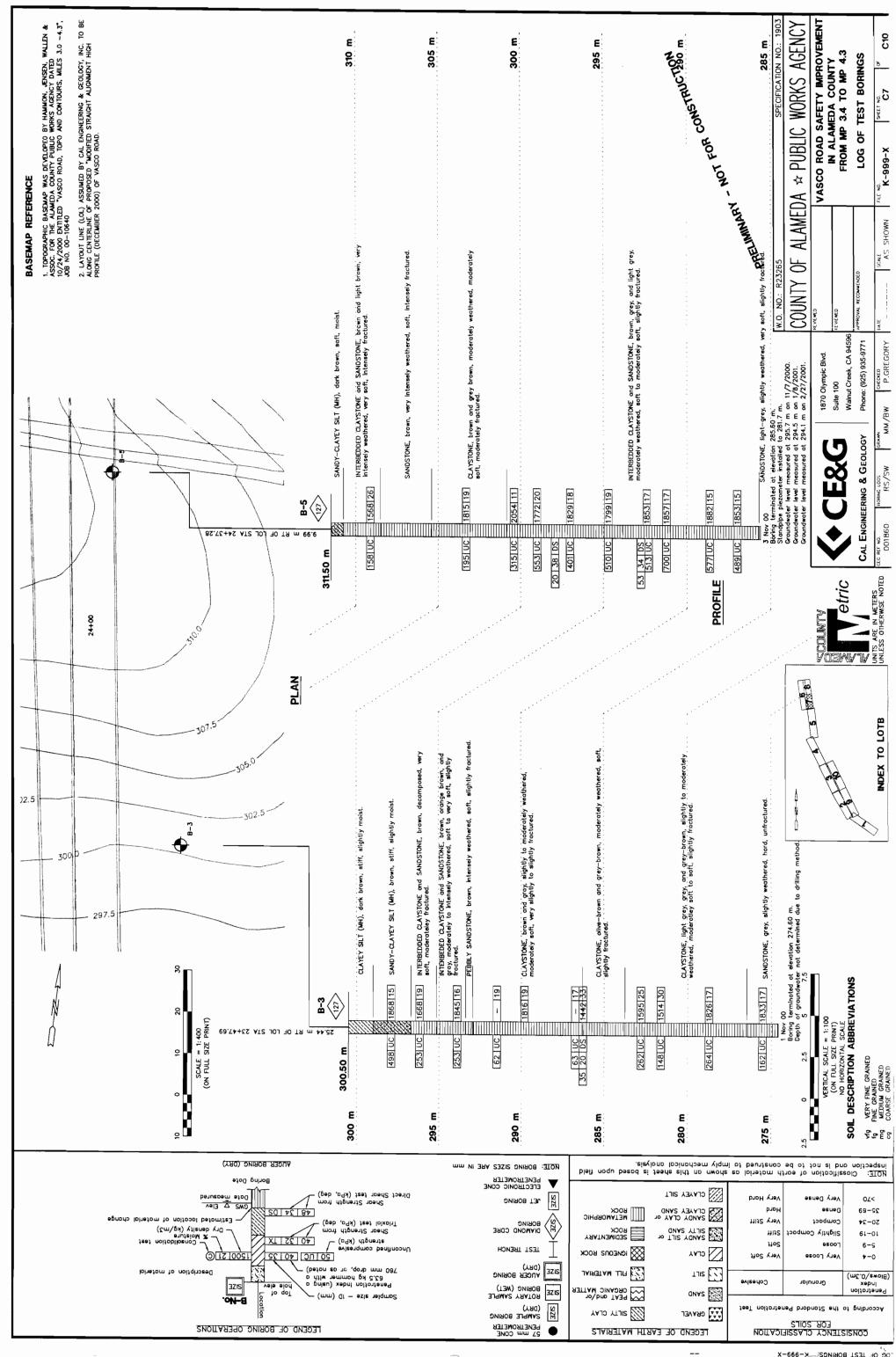


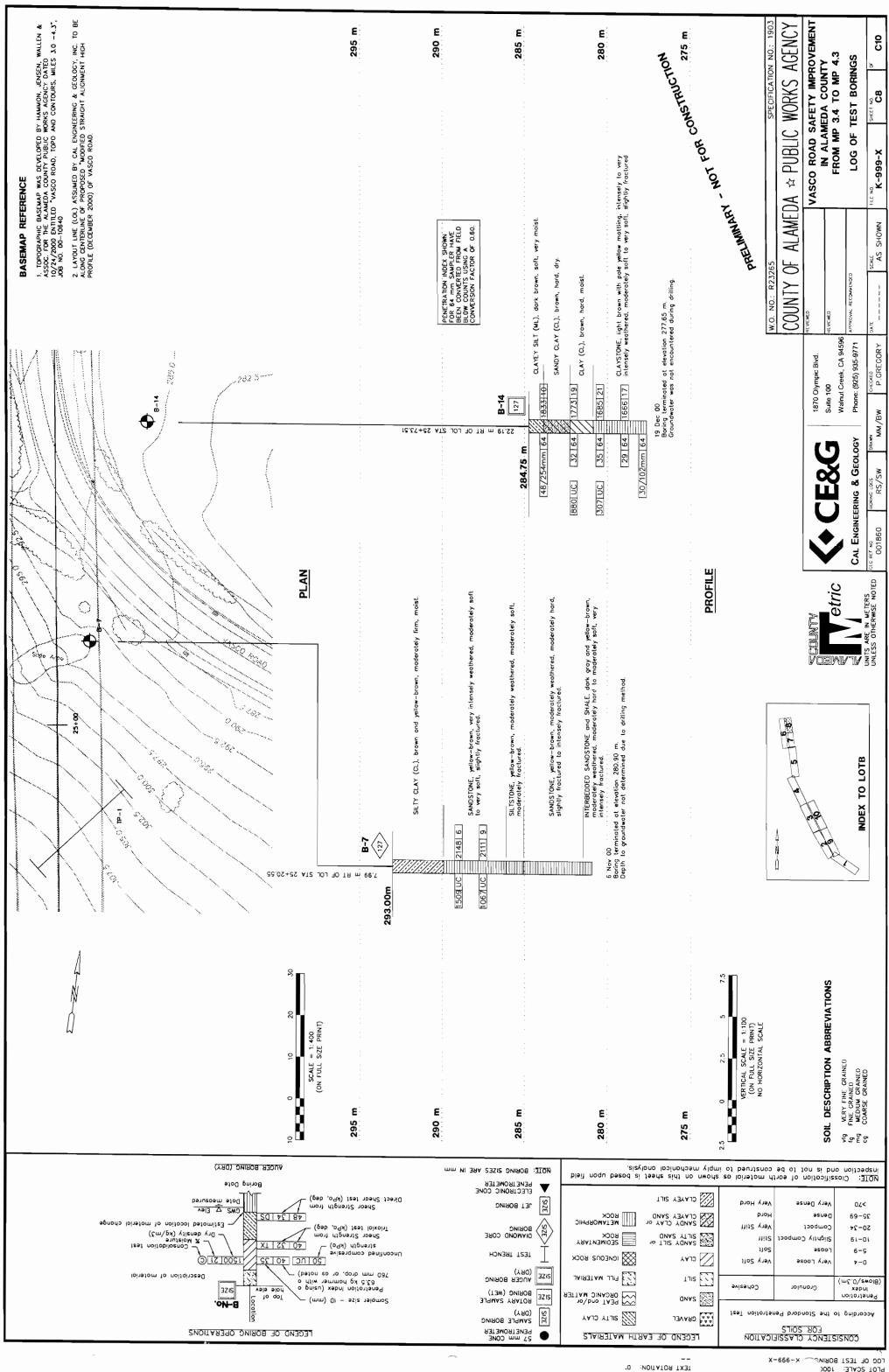
\\CEC\001860Vosco\PRELIMINARYBoringLogs1.dwg 2\01 VIEWPOINT ROTATION: 0

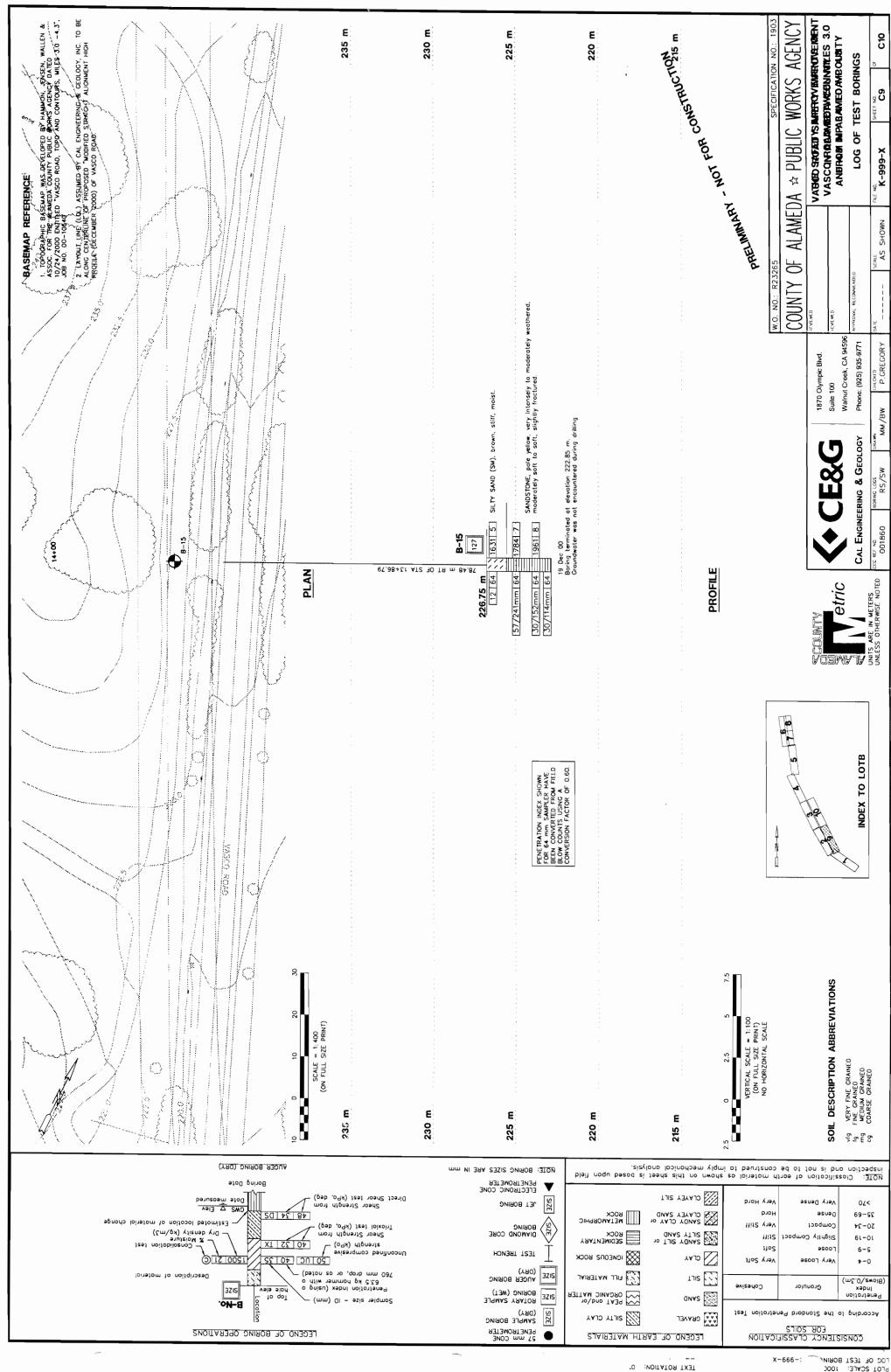


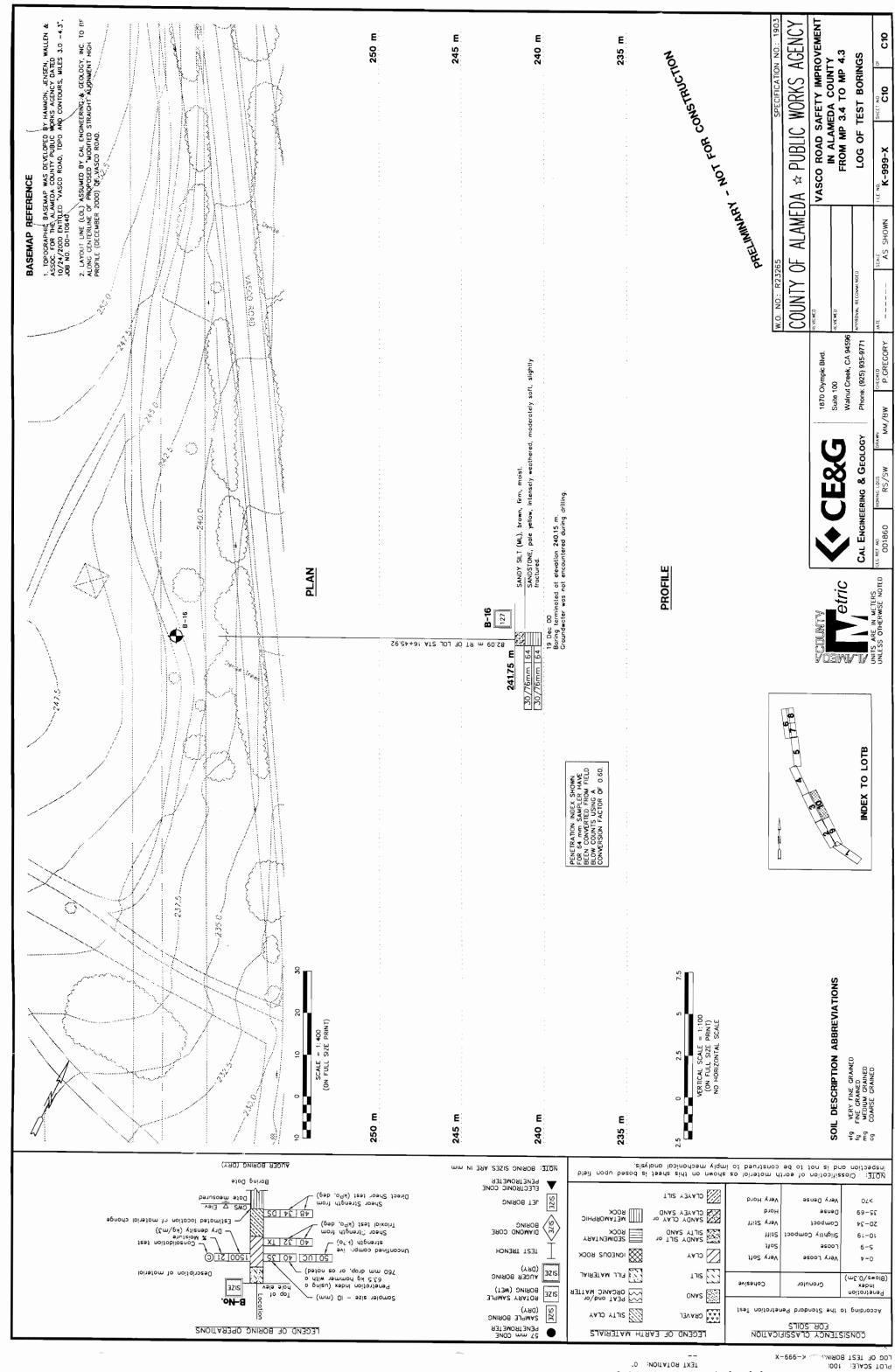

TEXT ROTATION: 0. PLOT SCALE: 1000 //CEC/001860Vosco/Pr~ 'MINARYBoringLogs1.d*g 2/01 NEWPOINT ROTATION: D'

PLOT SCALE: 100C TEXT ROTATION: 0.

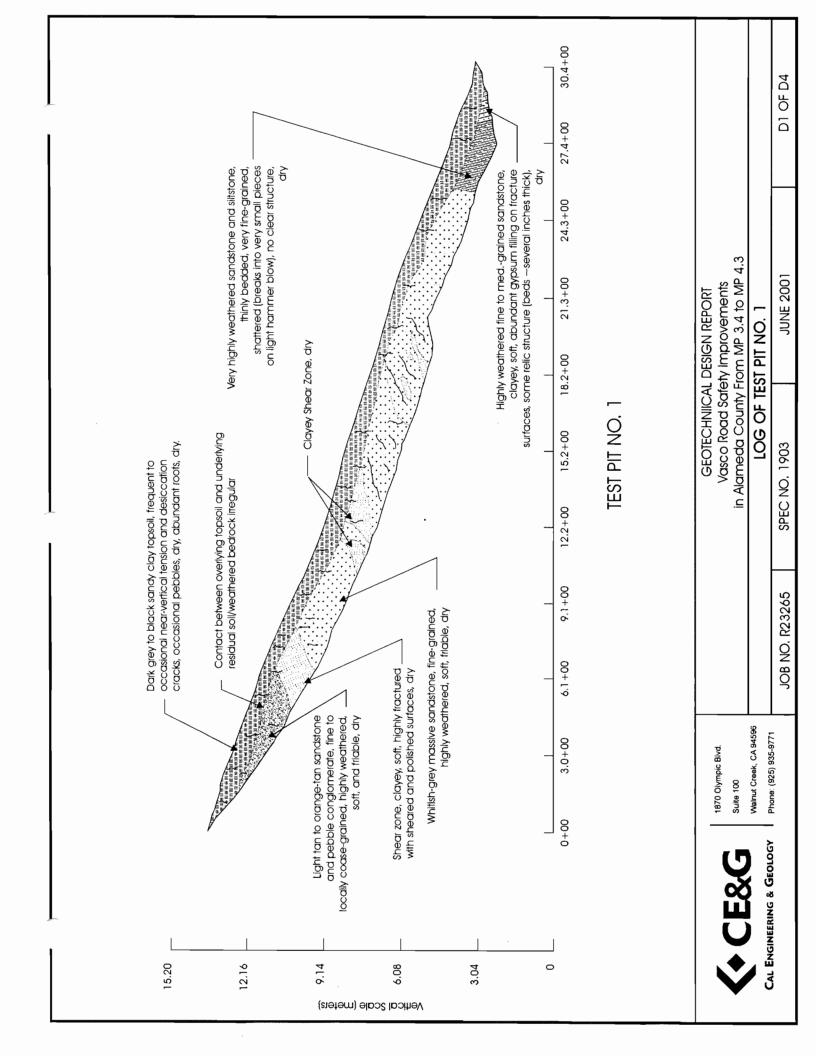

//CEC/001860vosco/preliminary YBoringlogs1.dwg 2/01 VIEWPOINT ROTATION: 0.

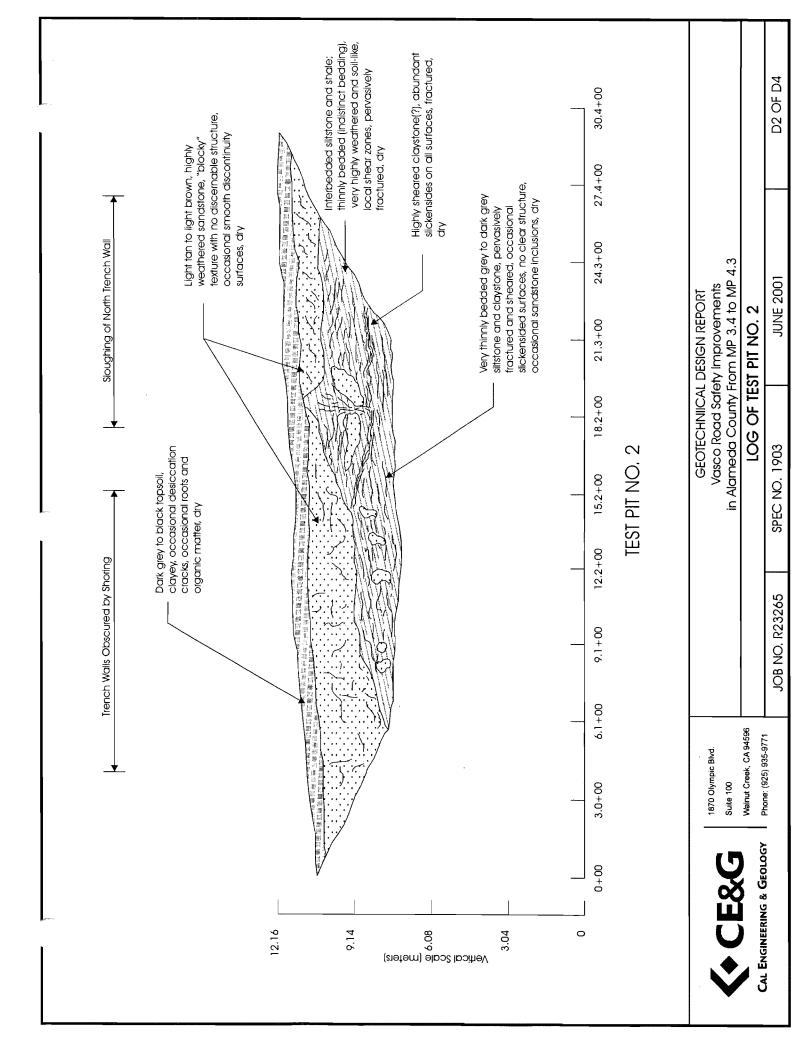

VCEC/001860Vosco/PRELIMINARYBoringLogs1.d*g 2/01 VIEWPOINT ROTATION; 0.

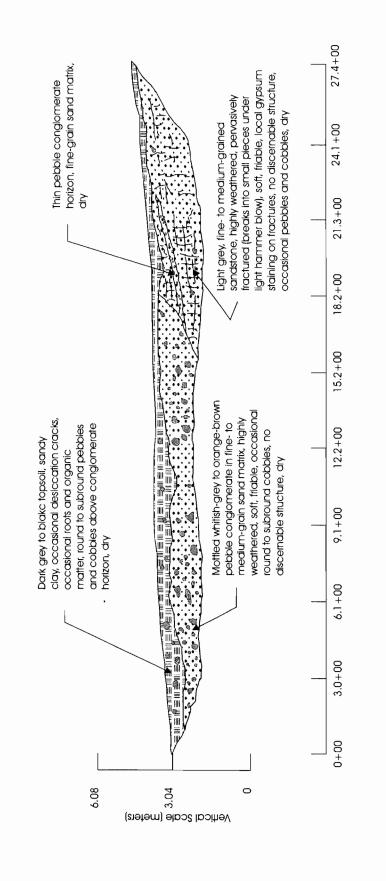

TEXT ROTATION; 0.


© OF TEST BORINGS K-999-X OCOL SCALE: 1000 \\CEC\001880A08co\

TEXT ROTATION: 0' AND TANDOLING LOGAT. COMP. LOGAL BOTATION: 0.





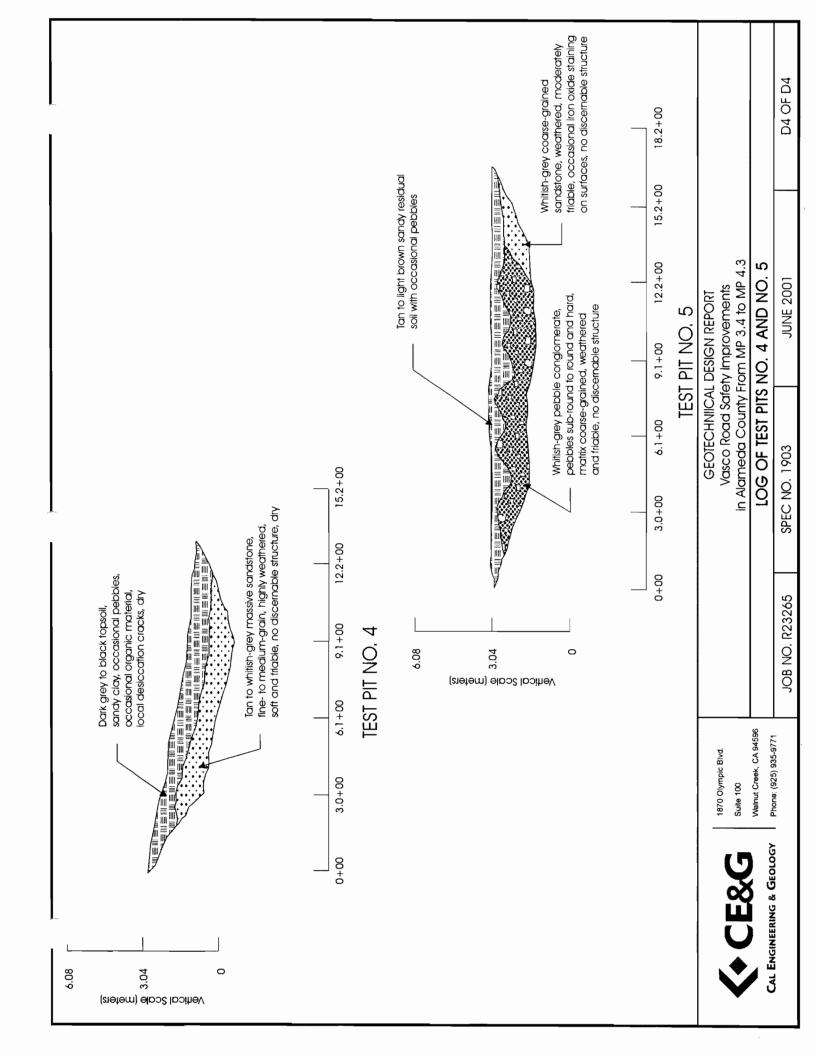

PLOT SCALE: 1000 \\CEC\001860Voscc = 1MINARYBaringLags1.dwg 2/D1 VIEWPOINT ROTATION: 0"

\\CEC\001860Vosco \ ... \ IMINARYBoringLogs1.dwg \ Z\01 \ VEWPOINT ROTATION: D'

1870 Olympic Blvd.
Suite 100
Walnut Creek, CA 94596

Phone: (925) 935-9771

GEOTECHNIICAL DESIGN REPORT
Vasco Road Safety Improvements
in Alameda County From MP 3.4 to MP 4.3


LOG OF TEST PIT NO. 3

JUNE 2001

SPEC NO. 1903

JOB NO. R23265

D3 OF D4

JR ASSOCIATES

Engineering Geophysics 1886 Emory Street San Jose, CA 95126 (408) 293-7390

SEISMIC REFRACTION SURVEY AT THE VASCO ROAD REALIGNMENT, PHASE I CONTRA COSTA COUNTY, CALIFORNIA

January 17, 2001

for

Cal Engineering and Geology 1870 Olympic Boulevard, Suite 100 Walnut Creek, California, 94596

by

James Rezowalli. GP-921

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS	iii
I INTRODUCTION	1
A. Site Conditions	1
II METHODOLOGY	2
A. Field Procedures B. Instrumentation C. Data Reduction	2 2 3
III RESULTS	4
A. Seismic Layering B. Rippability C. Limitations	4 5 5
IV DRAWINGS	
V APPENDIX A Vibration Monitoring	

LIST OF ILLUSTRATIONS

Drawing 1 Vicinity Map

Drawing 2 Site Map

Drawing 3 Refraction Profiles 1 ant 2

Drawing 4 Ripper Chart

I INTRODUCTION

This report presents the results of a seismic refraction investigation performed at the proposed Vasco Road realignment north of Livermore, California. The investigation was performed for Cal Engineering and Geology by J R Associates. The purpose of the investigation was to measure bedrock depth and rippability. James Rezowalli, Principal Geophysicist, and Robert Wing, Technician, of J R Associates performed the field work in January of 2001.

A. Site Conditions

The site is on the west side of Vasco Road approximately 3.5 miles north of Highway 580 in Livermore, California (Drawing 1). The geology at the site consists of a thin soil cover overlying marine sandstone. Realigning Vasco Road requires excavation into the hill side. Shallow bedrock could make excavating difficult. The purpose of this investigation was to determine the depth and rippability of the bedrock along the proposed new road alignment.

II METHODOLOGY

Seismic refraction data are used to help determine the depth and strength of bedrock. Studies by tractor companies show a relationship between rock strength and seismic compressional (P) wave velocities. The studies show that rocks with fast P-wave velocities are more difficult to rip than rocks with slow P-wave velocities. Both the Caterpillar and Komatsu tractor handbooks contain tables of P-wave velocities versus ripping ease.

A. Field Procedures

Data were collected along two seismic refraction lines (Drawing 2). The locations of the refraction lines were marked with wooden stakes in the field. The lines were 800 feet long and contained 24 geophones and 3 shot points. The shot points were at the beginning, the end and in the middle of the lines. Small charges consisting of 2/3 pounds of ammonium-nitrate based explosives were used to create seismic energy at the shot points.

Vibrations were monitored along a PG&E gas transmission line during the seismic survey. Vibration monitoring was performed to provide documentation that vibrations from the shot points did not exceed levels acceptable to PG&E. The results of the vibration monitoring are presented in Appendix A.

B. Instrumentation

Litton LRS-1011 14-Hz geophones detected the seismic signals. A cable connected the geophones to a pair of Geometrics, Incorporated, 1210F signal enhancement seismographs. The

seismographs filtered, stacked and recorded the signals. A 60-Hz notch filter attenuated signals associated with the high voltage power lines. A CRT displayed the seismograph recordings in the field for quality control and a strip chart recorder printed permanent records.

C. Data Reduction

Data reduction began by picking the arrival times from the seismograph recordings. An arrival time is the time a P-wave spent traveling from shot point to geophone. The wave could either travel along the ground surface or be refracted from an interface between materials. For a refraction to occur, the materials below the interface must have a greater P-wave velocity than the materials above the interface. The arrival times were entered into a computer program with elevation, location and layer control information.

The interpretation program, FSIP, performs a first approximation delineation of the refracting horizons using a delay-time method. The approximation is then tested and improved by the program's ray-tracing procedure in which ray travel times computed for the model are compared against measured travel times. The model is subsequently adjusted iteratively to minimize the discrepancy between the computed and measured travel times. A Bureau of Mines Report of Investigation describes the program¹.

¹Scott, James H., Computer Analysis of Seismic Refraction Data, BuMines RI 7595, 1972.

III RESULTS

The results of the computer analysis of the refraction data are presented in Drawing 3 and Table 1. The drawing contains two-dimensional diagrams profiling the seismic layering and layer velocities measured along the refraction lines. Table 1 summarizes the results presented in the drawing.

Table 1. Summary of Refraction Results

Line Number	Depth to Layer 2 (feet)	Depth to Layer 3 (feet)	Layer 1 Velocity (fps)	Layer 2 Velocity (fps)	Layer 3 Velocity (fps)
1	7 to 26	61 to 88	1100	3500	9100
2	10 to 27	47 to 92	1300	5300	6900

A. Seismic Layering

We found three seismic layers beneath the refraction lines. The layers were distinguished by their compressional (P) wave velocities. Layer 1 included the ground surface and had a P-wave velocity ranging between 1100 and 1300 feet per second (fps). The P-wave velocity suggested the first seismic layer consisted of dry to partially saturated colluvium and highly weathered fractured bedrock.

The second seismic layer was distinguished by a P-wave velocity that ranged from 3500 to 5300 fps. The depth to the top of the second seismic layer ranged from 7 to 27 feet. The P-wave

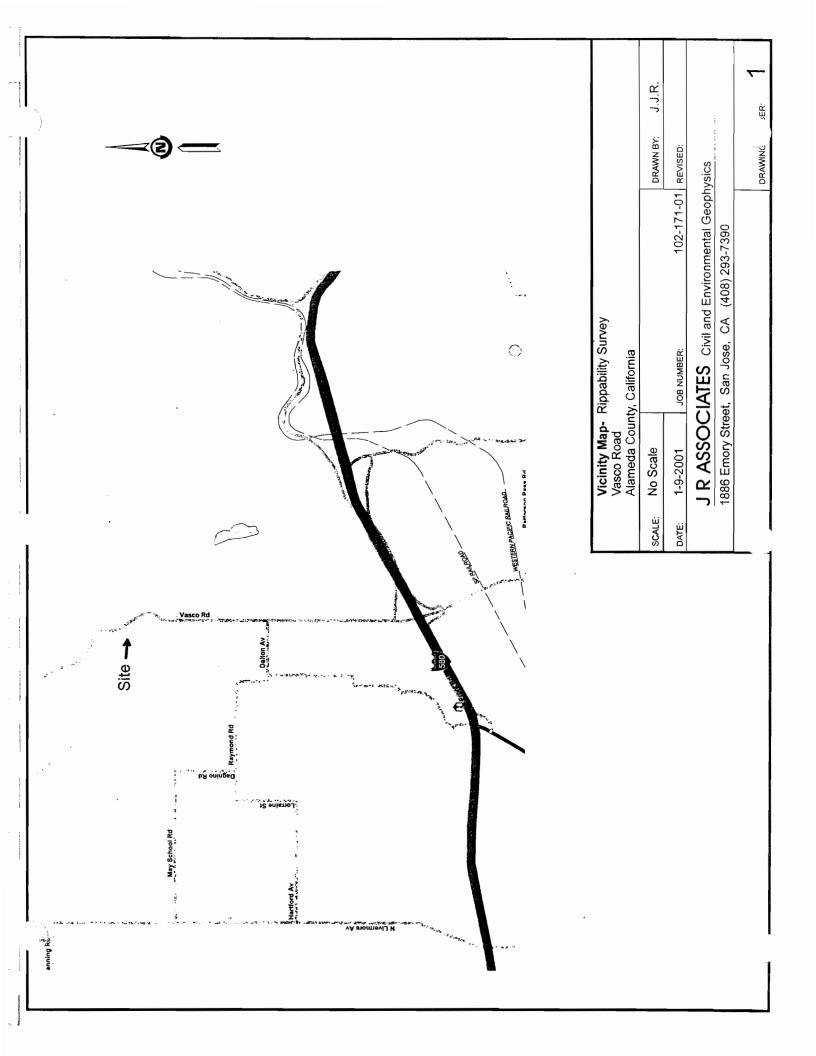
velocities suggest the second seismic layer consisted of moderately weathered and/or fractured sandstone.

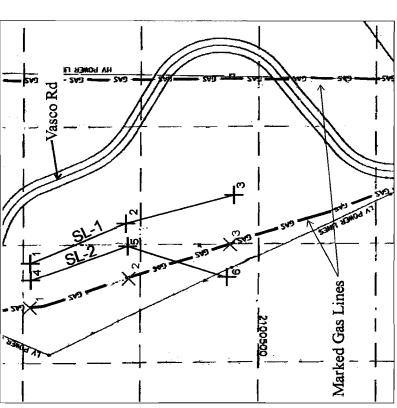
The third seismic layer was distinguished by a P-wave velocity that ranged from 6900 to 9100 fps. The depth to the top of the third seismic layer ranged from 47 to 92 feet. The P-wave velocities suggest the third seismic layer consisted of moderately weathered and/or fractured sandstone to relatively unweathered sandstone.

B. Rippability

Drawing 4 illustrates a rippability table presented in the 20th edition of the Caterpillar Performance Handbook for the D9N Tractor. Based on the measured P-wave velocities and the D9N table presented in the 20th edition of the Caterpillar Performance Handbook, the first and second seismic layers should be rippable given the proper combination of tractor and ripper.

The third seismic layer beneath refraction line SL-2 should be rippable with the right combination of tractor and ripper. The third seismic layer below refraction line SL-1 is marginally rippable to nonrippable.


C. Limitations


Seismic layers do not always correspond directly to lithologic changes that might be found in borehole or trenching data. A seismic layer is an interface between materials with different P-wave velocities. Factors such as weathering, cementation, induration, and saturation as well as lithologic changes can create changes in seismic velocities. Also, there can be lithologic changes without velocity changes. However, our field experience indicates that seismic layers

often correspond to major changes in lithology or saturation to within $\pm 20\%$ of the depth to the interface.

Factors that determine rippability include rock characteristics such as P-wave velocity and weathering, the type and condition of the tractor and ripper and the experience of the tractor operator. Our estimates of rippability based on P-wave velocities are obtained from the D9N ripper chart shown in the <u>Caterpillar Performance Handbook</u> published by the Caterpillar Tractor Company. There are other charts for other sized tractors. These performance charts were developed from field tests conducted in a variety of materials. Considering the extreme variations among materials and among rocks of a specific type, our estimate must be recognized as only one indicator of rippability.

IV DRAWINGS

Vibration Monitoring Location

Seismic Line

EXPLANATION:

Shot Point

Site Map- Rippability Survey Vasco Road Alameda County, California Scale: No Scale

DATE: 1-9-2001 JOB NUMBER: 102-171-01 REVISED:

J R ASSOCIATES Civil and Environmental Geophysics
1886 Emory Street, San Jose, CA (408) 293-7390

2

4 J.J.R. DRAWN BY: 102-171-010 | REVISED: J R ASSOCIATES Civil and Environmental Geophysics 1886 Emory Street, San Jose, CA (408) 293-7390 11-11 Rippers Ripper Chart- Rippability Survey NON-RIPPABLE KINITIN 4 Vasco Road Alameda County, California JOB NUMBER: 5 D9N Ripper Performance

• Multi or Single Shank No. 9 Ripper
• Estimated by Seismic Wave Velocities 2 1-09-2001 5 No Scale 6 SCALE DATE: MARGINAL

METAMORPHIC ROCKS

SCHIST

LIMESTONE BRECCIA

CALICHE

CONGLOMERATE

CLAYSTONE SILTSTONE

MINERALS & ORES

RIPPABLE

IRON ORE

THAP ROCK SEDIMENTARY ROCKS

SANDSTONE

SHALE

GLACIAL TILL IGNEOUS ROCKS

TOPSOIL

GRANITE

BASALT

Seismic Velocity
Meters Per Second × 1000
Feet Per Second × 1000

DRAWING N

V APPENDIX A

Vibration Monitoring

Vibration monitoring was performed along a PG&E gas transmission line that ran parallel to the two seismic refraction lines. PG&E requested an estimate of the expected vibration levels at the gas transmission line during the seismic shooting. The calculated vibration level at the pipeline from a 1-lb explosion 100 feet away was 0.1 inch per second (ips). This level was acceptable to PG&E. As a precaution, a Blastmate III vibration monitor was used to monitor vibrations at the transmission line during the seismic shooting. Vibrations were monitored at different locations along the transmission line. The locations were chosen so that the vibration monitoring occurred at the point along the transmission line closest to the shot point being detonated. Table 1A shows the peak vector sum particle velocity measured for each shot point. The output from the Blastmate III is given in the pages that follow.

Shot Number	Seismic Line Number	Peak Particle Velocity (ips)	Distance between Shot & Gas Line (feet)	
1	SL-1	0.02	140	
2	SL-1	0.03	170	
3	SL-1	0.06	115	
4	SL-2	0.07	100	
5	SL-2	0.06	100	
6	SL-2	0.07	100	
Backgrou	nd Level	0.007		

Vasco Road, Refraction Survey

Histogram Start Time 14:12:07 January 8, 2001 Histogram Finish Time 14:32:54 January 8, 2001 **Number of Intervals**

Range Sample Rate 20 at 1 minute Geo:1.25 in/s 1024sps

Serial Number BA7110 V 4.02-4.02 BlastMate III

Battery Level 6.4 Volts

June 6, 2000 by Instantel Inc. Calibration File Name

I1108D0A.470

Notes

Vasco sp1 Line 1 CE&G Client: User Name: Jim

General:

Extended Notes

Post Event Notes

Seismic Line 1, Shot Pint 1, Vibration Monitoring Location 1

Microphone

Linear Weighting

PSPL

0.00138 psi(L) on January 8, 2001 at 14:20:07

ZC Freq

28 Hz

Channel Test Passed (Freq = 19.7 Hz Amp = 579 mv)

	Tran	Vert	Long	
PPV	0.0187	0.0175	0.0144	in/s
ZC Freq	8.5	16	17	Hz
Date	Jan 8 /01	Jan 8 /01	Jan 8 /01	
Time	14:20:07	14:20:07	14:20:07	
Sensorcheck ®	Passed	Passed	Passed	

Peak Vector Sum 0.0200 in/s on January 8, 2001 at 14:20:07

Vasco Road, Refraction Survey

Histogram Start Time Histogram Finish Time 14:51:39 January 8, 2001 **Number of Intervals**

14:39:00 January 8, 2001

12 at 1 minute

Geo:1.25 in/s 1024sps

Serial Number BA7110 V 4.02-4.02 BlastMate III

Battery Level 6.3 Volts

Calibration June 6, 2000 by Instantel Inc. File Name

I1108D0B.D00

Notes

Range

Sample Rate

Vasco SP 2 Line 1 CE&G Client:

General:

User Name: Jim

Extended Notes

Post Event Notes

Seismic Line 1, Shot Point 2, Vibration Monitoring Location 2

Microphone

Linear Weighting

PSPL

0.00134 psi(L) on January 8, 2001 at 14:43:00

ZC Freq

43 Hz

Channel Test Passed (Freq = 19.7 Hz Amp = 627 mv)

	Tran	Vert	Long	
PPV	0.0269	0.0175	0.0225	in/s
ZC Freq	9.3	13	13	Hz
Date	Jan 8 /01	Jan 8 /01	Jan 8 /01	
Time	14:43:00	14:43:00	14:43:00	
Sensorcheck ®	Passed	Passed	Passed	

Peak Vector Sum 0.0306 in/s on January 8, 2001 at 14:43:00

Vasco Road, Refraction Survey

Calibration

Histogram Start Time 14:57:14 January 8, 2001

Histogram Finish Time 15:17:49 January 8, 2001 Number of Intervals

1024sps

Range Sample Rate 20 at 1 minute Geo:1.25 in/s

Serial Number BA7110 V 4.02-4.02 BlastMate III Battery Level 6.3 Volts

June 6, 2000 by Instantel Inc.

I1108D0C.7E0 File Name

Notes

Vasco SP 3 Line 1 CE&G Client: User Name: Jim

General:

Extended Notes

Post Event Notes

Seismic Line 1, Shot Point 3, Vibration Monitoring Location 3

Microphone

Linear Weighting

PSPL

0.00174 psi(L) on January 8, 2001 at 15:03:14

ZC Freq 43 Hz

Channel Test Passed (Freq = 19.7 Hz Amp = 630 mv)

	Tran	Vert	Long	
PPV	0.0481	0.0381	0.0575	in/s
ZC Freq	16	20	18	Hz
Date	Jan 8 /01	Jan 8 /01	Jan 8 /01	
Time	15:03:14	15:03:14	15:03:14	
Sensorcheck ®	Passed	Passed	Passed	

Printed: January 19, 2001 (V 4.02 - 4.02)

Peak Vector Sum 0.0581 in/s on January 8, 2001 at 15:03:14

Format Copyrighted 1996-1999

action Survey

12:59:06 January 9, 2001 13:41:31 January 9, 2001 42 at 1 minute Geo :1.25 in/s 1024sps Histogram Start Time Histogram Finish Time Number of Intervals Range Sample Rate

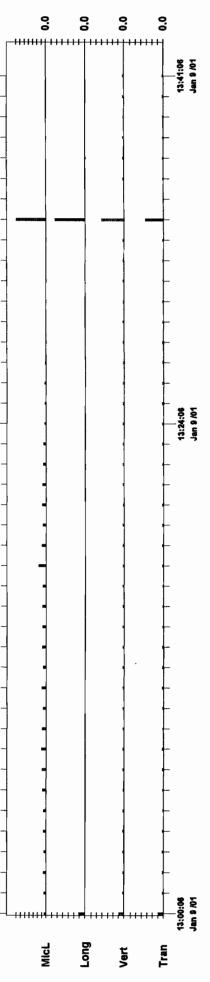
BA7110 V 4.02-4.02 BlastMate III 6.3 Volts June 6, 2000 by Instantel Inc. 11108D21.EI0 Battery Level Calibration File Name Serial Number

> CE&G Jim Rezowallii Vasco Line 2 User Name: Cllent Notes

Monitoring PG&E Line

General:

Extended Notes


Post Event Notes Seismic Line 2, Shot Point 4, Vibration Monitoring Location 1

Linear Weighting 0.00714 psi(L) on January 9, 2001 at 13:34:06 51 Hz Passed (Freq = 19.7 Hz Amp = 643 mv) PSPL ZC Freq Channel Test Microphone

Long Ver Tran

₹ 5. 13:34:06 Jan 9 /01 Jan 9 /01 13:34:06 0.0419 Passed Jan 9 /01 13:34:06 Passed 0.0337 Sensorcheck ® PPV ZC Freq Date

Peak Vector Sum 0.0684 in/s on January 9, 2001 at 13:34:06

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.01000 in/s/div Mic: 0.00100 psi(L)/div

Serial Number Battery Level Callbration File Name 13:46:46 January 9, 2001 14:05:38 January 9, 2001 18 at 1 minute Geo :1.25 in/s Histogram Start Time Histogram Finish Time Number of Intervals Range

r BA7110 V 4.02-4.02 BlastMate III 6.3 Volts June 6, 2000 by Instantel Inc. I1108D23.LY0

Sample Rate

1024sps

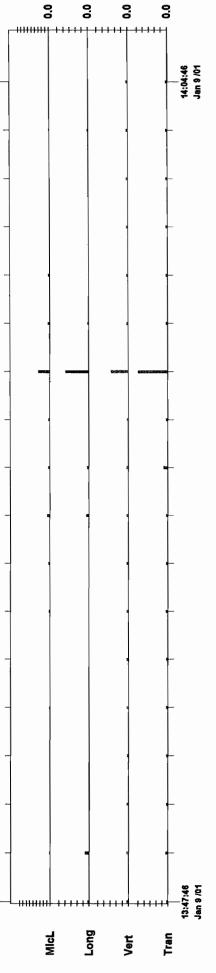
CE&G SP5 Notes Vasco Line 2

Clerit

Monitoring PG&E Line Jim Rezowallii User Name: General:

Extended Notes

Post Event Notes Seismic Line 2, Shot Point 5, Vibration Monitoring Location 2


Linear Weighting 0.00170 psi(L) on January 9, 2001 at 13:58:46 47 Hz Passed (Freq = 19.7 Hz Amp = 649 mv) PSPL ZC Freq Channel Test Microphone

₹ ₹ 0.0394 Long 0.0287 Vert 0.0500 Tran PPV ZC Freq

Jan 9 /01 13:58:46 Passed 19 Jan 9 /01 13:58:46 Passed Jan 9 /01 13:58:46 Passed Date Time

Sensorcheck ®

Peak Vector Sum 0.0584 in/s on January 9, 2001 at 13:58:46

Serial Number 14:10:06 January 9, 2001 14:32:43 January 9, 2001 22 at 1 minute Geo :1.25 in/s Histogram Finish Time Histogram Start Time Number of Intervals Range Sample Rate

Battery Level Calibration File Name

1024sps

BA7110 V 4.02-4.02 BlastMate III 6.3 Volts June 6, 2000 by Instantel Inc. 11108D24.0U0

CE&G Vasco Line 2 Clent Notes

Jim Rezowaliii User Name:

General:

Monitoring PG&E Line

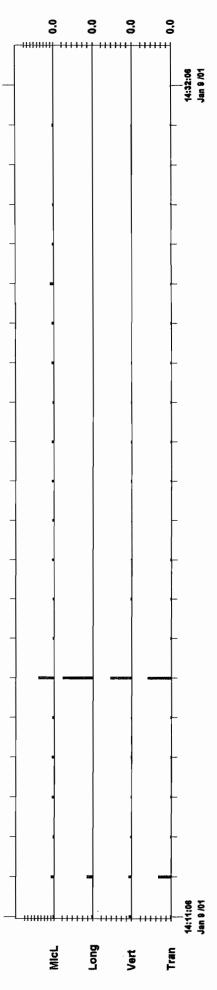
Extended Notes

Post Event Notes

Seismic Line 2, Shot Point 6, Vibration Monitoring Location 3

Linear Weighting 0.00243 psi(L) on January 9, 2001 at 14:17:06 73 Hz PSPL ZC Freq Channel Test Microphone

Passed (Freq = 19.7 Hz Amp = 581 mv)


충 Long Vert Tran

Jan 9 /01 14:17:06 Passed 0.0594 <u>ტ</u> Jan 9 /01 14:17:06 0.0425 22 Jan 9 /01 14:17:06 Passed 0.0469 22 PPV ZC Freq Time Date

Peak Vector Sum 0.0732 in/s on January 9, 2001 at 14:17:06

Passed

Sensorcheck ®

Time Scale: 1 minute /div Amplitude Scale: Geo: 0.01000 in/s/div Mic: 0.00050 psi(L)/div

Printed: January 19, 2001 (V 4.02 - 4.02)

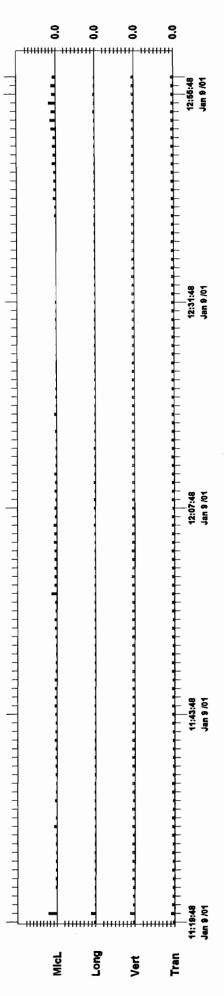
BA7110 V 4.02-4.02 BlastMate III June 6, 2000 by Instantel Inc. 11108D1W.RC0 6.3 Volts Serlal Number Battery Level Calibration File Name 11:18:48 January 9, 2001 12:58:33 January 9, 2001 99 at 1 minute Geo :1.25 in/s 1024sps Histogram Finish Time Histogram Start Time Number of Intervals Range Sample Rate

CESG Vasco Line 2 Client: **Notes**

Jim Rezowallii User Name:

Monitoring PG&E Line General:

Extended Notes


Backgound monitoring at vibration location 1 No shot points were detonated during this period Post Event Notes

Linear Weighting 0.00127 psi(L) on January 9, 2001 at 11:20:48 >100 Hz Passed (Freq = 19.7 Hz Amp = 668 mv) 2C Freq Channel Test Microphone PSPL

ĭ ₹ 0.00625 39 Long **2** 0.00625 Vert 0.00437 ×100 Tran PPV ZC Freq

Jan 9 /01 11:20:48 Passed Jan 9 /01 11:20:48 Passed 11:20:48 Passed Jan 9 /01 Sensorcheck ® Date Time

Peak Vector Sum 0.00742 in/s on January 9, 2001 at 11:20:48

3 Scale: 1 minute /div Amplitude Scale: Geo: 0.00500 in/s/div Mic: 0.00050 psi

CLIENT:	CAL Engine	ring and	Coology	(L./	ABIMDT.XLS	}			T
	Vasco Road		Geology					1	
PROJ. NO		, 						 	
DATE:	02/21/2000								_
DATE.	02/21/2000			1					
D	- I		<u> </u>	1					
Boring	Depth		Diameter	Cup Wt.		Dry+Cup		Dry Dens.	
B-1	5.5	5.03							
B-1	13.5	5.91	2.41						0.215
B-1	29.5	5.41	2.40	13.7	869.3	728.8			0.196
							#DIV/0!	#DIV/0!	#DIV/0!
E-2	17.5	5.87	2.39						0.233
B-2	19.0	5.93	2.41						0.178
B-2	26.5	5.49	2.40						0.175
B-2	35.0	5.68	2.39		1	729.9			0.204
B-2	39.5	5.52	2.37	14.4	878.1	742.7			0.186
B-2	48.5	5.89	2.40	14.2	1017.1	915.0	143.4	128.8	0.113
B-2	55.0	5.86	2.39	13.6	955.1	816.9	136.4	116.4	0.172
B-2	69.0	4.27	2.41	13.9	679.4	601.3	130.2	114.9	0.133
							#DIV/0!	#DIV/0!	#DIV/0!
B-3	8.5	5.99	2.39	16.0	958.8	838.6	133.7	116.6	0.146
B-3	14.0	5.98	2.39	13.4	884.5	746.3	123.7	104.1	0.189
B-3	21.5	5.40	2.39	16.4	865.5	748.8	133.5	115.2	0.159
B-3	35.0	5.82	2.40	13.7	944.7	797.5		113.4	0.188
B-3	46.5	4.76	2.37	13.2	674.1	509.2	119.9	90.0	0.332
B-3	58.0	5.64	2.39	14.6	843.8	676.3	124.9	99.6	0.253
B-3	62.0	5.08	2.39	13.7	749.6	578.9	123.0	94.5	0.302
B-3	71.5	5.96	2.40	16.1	963.1	822.7	133.8	114.0	0.174
B-3	82.0	5.92	2.40	13.6	957.3	818.1	134.3	114.4	0.173
				_					
Dry Dens. I	Backcalc.						Insert		
	Depth			Cup Wt.	Wet+Cup	Dry+Cup		Dry Dens.	Moisture
	- 4-			- 35		, <u></u>		#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIVIU:	ILDIAIO:

				(L/	ABMD1.XLS	S)			
CLIENT:	CAL Engine		Geology						
	Vasco Road	i							
PROJ. NO	001860	_							
DATE:	02/21/2000								
Boring	Depth	Length	Diameter	Cup Wt.	Wet+Cup	Dry+Cup	Wet Dens	Dry Dens.	Moisture
B-4	3.0	4.77	2.41	13.5	743.4	672.4	127.8	115.4	0.108
B-4	12.0	5.99	2.40	13.8	903.8	725.8	125.1	100.1	0.250
B-4	14.0	4.95	2.40	13.7	814.0	723.8	136.2	120.8	0.127
B-4	17.5	4.90	2.37	13.2	701.9	551.7	121.4	94.9	0.279
B-4	27.0	4.60	2.41	13.4	705.0	568.5	125.6	100.8	0.246
B-4	30.0	5.99	2.40	16.0	942.1	779.3	130.2	107.3	0.213
B-4	39.0	5.98	2.38	14.2	943.7	798.0	133.1	112.2	
B-4	44.0	5.92	2.39	13.7	959.7	820.5			
B-4	49.0	5.98	2.41	13.7		819.6			
B-4	56.0	5.99	2.41	14.4	980.0	838.6	134.6	114.9	ł
B-4	64.5	5.92	2.39	13.8	971.1	855.3	137.3	120.7	
B-4	66.5	5.36	2.40	13.4	862.4	724.2	133.4	111.7	
							#DIV/0!	#DIV/0!	#DIV/0!
B-4	70.5	5.95	2.39	14.2		822.7	135.4	115.4	0.173
B-4	75.5	5.94	2.37	13.8	944.1	805.4	135.3	115.1	0.175
B-4	79.5	5.04	2.37	14.0	809.0	702.3	136.2	117.9	0.155
B-4	83.5	5.97	2.39	13.2	952.5	818.9	133.6	114.6	0.166
					_		#DIV/0!	#DIV/0!	#DIV/0!
B-5	8.0	5.97	2.38	13.4	870.1	695.9	122.9	97.9	0.255
B-5	27.0	4.77	2.39	16.1	771.8	652.5	134.5	113.3	0.187
B-5	36.5	5.57	2.37	16.5	933.8	843.2	142.2	128.2	0.110
B-5	41.0	5.11	2.31	14.6	759.8	636.1	132.6	110.6	0.199
B-5	47.5	5.29	2.39	13.7	852.4	725.1	134.6	114.2	0.179
B-5	55.0	5.68	2.28	14.3	827.4	697.7	133.6	112.3	0.190
B-5	62.5	5.98	2.39	13.2	965.6	827.9	135.3	115.7	0.169
B-5	66.5	5.98	2.39	13.7	969.7	829.8	135.8	115.9	0.171
B-5	75.0	5.80	2.31	16.4	880.1	765.9	135.4	117.5	0.152
B-5	80.5	5.94	2.34	14.4	903.8	790.3	132.7	115.7	0.146
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
Dry Dens. E							Insert		
Boring [Depth			Cup Wt.	Wet+Cup	Dry+Cup	Wet Dens.	Dry Dens.	Moisture
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!

				181	DIVID I.VEO	<i>l</i>	· ····		
CLIENT:	CAL Enginering and Geology								
	Vasco Road	1							
PROJ. NO	001860								
DATE:	02/21/2000								
Boring	Depth	Length	Diameter	Cup Wt.	Wet+Cup	Dry+Cup	Wet Dens.	Dry Dens.	Moisture
B-6	17.5	3.33	2.41	13.8	541.7	473.0	132.4	115.2	0.150
B-6	28.5	4.38	2.40	13.7	663.5	562.0	124.9	105.4	
							#DIV/0!	#DIV/0!	#DIV/0!
B-7	13.0	5.87	2.38	13.5	986.7	933.1	142.0	134.1	0.058
B-7	18.0	5.87	2.38	16.0	997.5	919.7	143.2	131.8	0.086
							#DIV/0!	#DIV/0!	#DIV/0!
		٠,					#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
	-1-						#DIV/0!	#DIV/0!	#DIV/0!
			*				#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
		•					#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
·			-				#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
-							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
Dry Dens.	Backcalc.						Insert		
	Depth			Cup Wt.	Wet+Cup	Dry+Cup		Dry Dens.	Moisture
	- F			,	I.	,		#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
	I								

				\	ABIMUT.XLS	<u>'/</u>			
CLIENT:	CAL Engine	ring and	Geology						
	Vasco Rd.								
PROJ. NO	001860								
DATE:	03/05/2001								
Boring	Depth	Length	Diameter	Cup Wt.	Wet+Cup	Dry+Cup	Wet Dens.	Dry Dens.	Moisture
B-8	3.0	5.43	2.41	13.7	735.7	676.4	111.1	101.9	0.089
B-8	6.0	5.56	2.41	15.9	848.9	776.2	125.1	114.2	0.096
B-8	8.5	3.67	2.42	13.9	565.4	495.9	124.5	108.8	0.144
B-8	10.5	5.58	2.42	16.0	881.3	727.8	128.5	105.7	0.216
B-8	11.0	5.43	2.42	13.2	898.0	823.9	135.0	123.7	0.091
B-8	13.5	5.80	2.42	16.0	930.6	839.9	130.6	117.7	0.110
B-8	15.3	5.87	2.42	13.7	951.7	823.1	132.4	114.2	0.159
B-8	18.5	5.75	2.42	16.0	943.6	816.4	133.6	115.3	0.159
B-8	20.0	5.22	2.42	13.5	828.4	704.0	129.3	109.6	0.180
							#DIV/0!	#DIV/0!	#DIV/0!
B-9	3.5	2.91	2.39	14.2	449.6	399.4	127.1	112.4	0.130
							#DIV/0!	#DIV/0!	#DIV/0!
B-10	6.5	5.76	2.42	16.0	842.3	800.3	118.8	112.8	0.054
B-10	10.0	5.56	2.42	13.5	849.4	802.0	124.5	117.5	0.060
B-10	14.5	5.37	2.42	16.0	810.9	backcalc	122.6	#VALUE!	#VALUE!
							#DIV/0!	#DIV/0!	#DIV/0!
B-11 .	2.5	3.51	2.42	13.6	508.2	480.3	116.7	110.1	0.060
B-11	5.0	4.31	2.42	13.8	679.4	630.1	127.9	118.4	0.080
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
Dry Dens.	Backcalc.						Insert		
Boring	Depth			Cup Wt.	Wet+Cup	Dry+Cup	Wet Dens.	Dry Dens.	Moisture
B-10	14.5			13.6	446.4	390.1	122.6	106.7	0.150
				_		i		#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!

CLIENT:	CAL Engine	ring and	Geology	\L/	ABMD1.XLS	2/		т —	T
	Vasco Rd.		Jeology			-			
PROJ. NO					 	-	 	 	
DATE:	03/05/2001							 	-
DAIL.	03/03/2001				-			 	
Boring	Depth	Length	Diameter	Cup Wt.	Mot Cup	D=-11 C++=	Wat Dage	D D	<u> </u>
B-12	3.5	5.47	2.42					Dry Dens.	
B-12	5.5	5.21	2.42	_					
B-12	10.5	5.86	2.42	_					
10-12	10.5	5.00	2.42	10.5	967.5	923.6			
B-13	3.5	5.14	2.44	40.0	704.0	074.0	#DIV/0!	#DIV/0!	#DIV/0!
B-13	5.5		2.41	13.9					
B-13		4.06	2.42	13.6					
D-13	10.5	4.05	2.42	14.4	593.9	556.3			
D 44	- 20	F 00	. 0.40	40.0			#DIV/0!	#DIV/0!	#DIV/0!
B-14	3.0	5.20	2.42	16.0					0.102
B-14	9.0	5.68	2.37	13.6					0.186
B-14	14.0	5.76	2.38	13.5					0.212
B-14	19.0	4.32	2.42	16.1	650.7	558.8			0.169
5.45							#DIV/0!	#DIV/0!	#DIV/0!
B-15	1.0	5.83	2.42	13.7	762.7			101.8	0.045
B-15	6.0	5.32	2.42	16.0		1		111.4	0.068
B-15	10.0	2.33	2.42	16.0	386.2	360.4	131.6	122.4	0.075
	·· -						#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
	·						#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
							#DIV/0!	#DIV/0!	#DIV/0!
Dry Dens.							Insert		· -
	Depth			Cup Wt.	Wet+Cup	Dry+Cup	Wet Dens.	Dry Dens.	Moisture
B-10	14.5			13.6	446.4	390.1	122.6	106.7	0.150
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!
								#DIV/0!	#DIV/0!

MOISTURE CONT NO DRY DENSITY

Client Name: CALENGNOERING 4 GEOLOGY
Project Name: VASCO RV
Client Project No: 80 (860

Date Received Date Sampled: Date
Date Tested: 2/19/0/
Tested by: RLE

Material Description	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	LFOLV 13RN SILTY SAND STONDE/ VFC SANDY SILTSTONDE	SANDY SILTSTONE /SILTY SANDSTONE							Civil and Geotechnical Engineering, Geotechnical Testing
Moisture Content	(%)	8'1/	21.5	19.6						eotechnical E
Sample Dry	Density (pcf)	103,5	104.1	111.3						Civil and G
Dry Weight	+ Cup (g)	7424 632.2	7.057	728.8						
Wet	+ Cup (g)	H272	908,2							
Cup Weight	(g)	6'81	<u>5</u>	13,7						
Oup No.		F-25	F-31	F-60						RAYMOND L. FISHER, P.E.
Sample Diameter	(in)	2.40	2.41	2.40						RAYMOND L
Sample Length	(in)	5.03	5.41	5.41						
Depth (ft)		5'5	13,5	29.5						
Boring No.		B						,		moisden3.xls

MOISTURE CONTENT OND DRY DENSITY

Date Received

Date Sampled: Date Date Tested: 2/18/01/

ENGINEERING + GEROOM Project Name: VAS CO RD Client Name:

Client Project No: 00/860

			\$ 		- 1					M		 			 	_
Material Description (Soil type is based on visual/manual examination;	classification test results may modify soil type.)	LTOLVBRNW/YER BIRN SHOWOY	SILTSTONES/SILTY + CLAMBET SANDSTONE VI	LY OLUBRA WYEL BARA CLATSTONES	ITOLVBRN WYER BAN CLAYSTONE	W/SANDY MUCLUSIONS	OLN BRN W/YER BAN CLAYSTONE	BUC VOK GAY CHAYSTONE	BLC+VORGRY SANDY CLAYSTONES	BUC CLASTONE WIR PERBUES	GRY+OKGRY SANDSTONE VEG					
Moisture Content (%)		C 20	20.0	17.8	17.5	()	1602	18,6	11.3	77.7	13.3					
Sample Dry Density	(bct)	1777	104,6	11/3		112,5 116,1	101.1	113,9	8'82/	116,4	6'411					
Dry Weight + Cup	(a)	721	101.7 1000 104.6	804.1 11.13	7,001	170,0	1.701 9.857	878.1 742.7 113.9	915,0	816.9	601.3	-				
Wet Weight + Cup	(a)	GAUS	りたら	97F.8	27.2	0 (%)	876.1	878.1	1.7101	955,1816.9	679.4 601.3					
Cup Weight (g)		- 61	15.	13,6		/ ^/ /	13,6	14,4	14,2	13,6	13,9					
Cup No.		9	27-7	17/9	1	0/1	F-103	F-33	12-21	12-101	F-24					
Sample Diameter (in)		2 70	Co 27	7.41	2//5	0.10	2,39	2,37	7.40	2.39	14,2					
Sample Length (in)		7 07	700	5.93	740	し、フィ	5.68	5,52	5,89	5,86	4.27					
Depth (ft)		7 1	000	19.0	1/1	10,01	35,0	34.5	18,5	55,0 5,86	69.0					
Boring No.		7	7.0													

RAYMOND L. FISHER, P.E.

moisden3.xls

MOISTURE CONT JAND DRY DENSITY

Client Name: CAL ENCANGERING + GEOLOGY Project Name: VASCO RD

Client Project No: 00/860

Date Received Date Tested: 2(17/01 Date Sampled: Tested by:

							9700G	L	77	Ы	٠.			
Material Description	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	BRN CLAYSTONE/SANDY CLAY RESID SOIL WWT PRECIP,	LT CLUBAN WYLE BRN CLATYET	CHYBAN 4-CT YER BRN	DK GRN GRY CLAYSTONE	DK OLV GRAY W/YER BRN	BLIC + DR GRY CLAYSTONE W SANDSTONG	DROBEN GROY+DRAPPY CLAPY	2 15 62.	DK GRN GRY W/ DK GRY CLAYSTONE				
Moisture Content	(%)	9'61	18.9	6'51	18.8	33,2	25,3	3,2	17.4			į.		
Sample	Density (pcf)	9'9//	ı	1/5/2	113H	90.0	9.86	94.5	114.0	114,4				
Dry Weight	+ Cup (g)	9588 836	884,5 746,3 104.1	865.5 748.8 115,2	797.5	509.2	6.929	749,6 578.9	822.7	1818				
Weight	+ Cup (g)	958.8	884,5	865,5	944.7 797.5	674.1 509.2	843.8 676.3	749,6	963,1					
Cup	(g)	16.0	13,4	16,4	13,7	/3,2	14.6	13.7	1.91	13,6				
Cup No.		F85	F-105	F-202	F-72	16-31	F-34	F-67	F-82	F.102			 - 	
Sample Diameter	(in)	2,39	2.39	2.39	2.40	75.5	2,39	2,39	2,40	2,40				
Sample	(in)	5.99	5,48	2:40	5.82		F)'S	5.08	96'5	5.92				
Depth (ff)		8,5	0.41	5/2	35.0	46,5 4,76	58,0	62,0	71.5	82,0			-	
Boring No.		8-3												

moisden3.xls

RAYMOND L. FISHER, P.E.

MOISTURE CONTE AND DRY DENSITY

Client Name: CAL ENGINETRING 4 GROOCY Project Name: VASCO RD

Date Received

Date Tested: 2/8/01

Tested by:

Date Sampled:_

Client Project No: 00 (860

6 %	WIO7 (4.4) DKGKN CACH SATION CACH STANDY CACHSTONE CIVIL and Geotechnical Engineering, Geotechnical Testing	19,4	WI.7	862.4 724.2 111.7 Civil and Ge	862.4	13,4	2,40 F-99 RAYMOND L. FISHER, P.E.	2,40 RAYMOND L.	57.36	6,5
A.V.	DEGRN GRYTORN GRY CLAYLY SANDSTONE SANDY CLAYSTONE, INTERBED SANDY+ CLAYS	13.8	120,7	855.3	971.1	13,8	15-63	2,39	- 27	2615
and an extra	BLIS WESTFASTED CLATSTONS	212	1149	838,6	980.0	14.4	F-23	14.2	0	5,99
	VOX GRY/BLK CLAUSTONDS W/SAND LENSESS	18,3	112,5	819,6	966.7	13,7	F-62	2.41	Ø	5,98
	VOK GAY CLAYSTONES WITH	17.3	115,7	820.5	959.7	13.7	F-68	2,39	12	5.92
	V DK GRY CIKYSTONE	18,6	112.2	798,0 112.2	943,7	14,2	F-28	2,38	5,98	3
	CLISKA MAST WYGEL GRA WESTATH CLINTSTONE TR VICT SULVD	21,3	101.3	779.3	942.1	16,0	18-7	2,40	19	5.99
							-			
	CHYEL BRN W/BRNYER SANDY	24.6	100,8	705,0 568,5 100,8	705,0	13.4	F-98	2.41	20	4,60
* }	CHAYSAN WIBAN YEL WETHOWD &	27.9	44,9	557,7	701.9	13.2	F-95	2.37	4.90	4.
	ITYPL BRN WYFIL BAN SANDSTONS FRIMBLE/WITH , VFG	7.21	120.8	814.0 723,8 120.8	814.0	13,7	F-73	2.40	4.95	4.
	KOLVBRN WHELBAN CLAYSTONDE (WEXTANDED)	25,0	1001	725,8 100.1	903.8	13,8	F-69	2.40	5	5,99
7	DKYELBEN WEATH SHANDSTONE, FRABLE, WEATH, GRANCK!", SUCKAYEY	10.8	115.4	672.4	743.4	13,5	12-97	2.41	7	4.77
	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	Content (%)		Weight + Cup (g)	Weight + Cup (g)	Weight (g)	No.	Diameter (in)	th.	Length (in)
	Material Description	Moisture	e	Dry	Wet	dno	Cup	Sample	əjd	Sample

AND DRY DENSITY MOISTURE CONT

CAL CNGTNEEDING + GREACES VASCO RD Project Name: Client Name:

Client Project No: 001860

Date Received 10/8 Tested by:

Material Description	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	XX GRN GRY SANDY CLAYSTONE	DIX GRINGAY SANDY CLAY STONE	DK GAN GRY SANOY CLAYSTONE	DX GRU GRY CLANSTONE +						
Moisture Content	(%)	17,3	17,5	15'5	16,6						
Sample	Density (pcf)	115.4	1157	6'111	114.6		,				
Dry Weight	+ Cup (g)	P222,7	805,4	702.3	88.4						
Wet		962,8 822,7	944.1	809.0	352,5						
Cup Weight	(g)	14,2	13,8	(4,0	13,2						
So.		F-20	F-64	15-22	1-94						
Sample Diameter	(in)	2,39	2,37	2,37	2,39						
Sample		5.45	Hb'5	5.04	1-65						
Depth (ft)	`	70,5		79,5	83.5				,		
Boring No.		B-4									•

Civil and Geotechnical Engineering, Geotechnical Testing

RAYMOND L. FISHER, P.E.

moisden3.xls

MOISTURE CONT! AND DRY DENSITY

Client Name: CAL ENGINERERING + GREDICA

Project Name: WASCO RD

Client Project No: @ 1860

Date Sampled: Date Received Date Tested: $\frac{2/16/0}{\text{RLF}}$

Material Description	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	VER BRAN MOT W/DK BRN + GALY CLAMSTONS W/WT TUFF INCLUSIONS	TR VFG SAUD - PEBBL	LT YELDEN + YEL BAN SANDSTONE VFU-FOR	LY OLU BAN W/YEL BRN SANDY CLAYSTONE, VFC	VEL BRN MOT WARH BRN	YES BAN SANDY CLAYSTONE	YEL BEN CLAYET SANDSTONE VFG-MG. TR WTARD	SAND STONE WYSEL CLANSY		9			Civil and Geotechnical Engineering, Geotechnical Testing
Moisture	(%)	52.52	18,7	11.0	6'61	6'21	0'61	6'9/	121	2'51	941			otechnical E
Sample	Density (pcf)	626	1/3.3	128,2	110,6	114,2	2'211	115,7	115,9	5'11	1.15.1			Civil and G
Dry Weight	4 Cup (9)	65569	652.5	933,8 843,2	636.1	725.1	827.4 697.7	827.9	829.8	6.591	790.3			
Wet		870.1	771.8	933,8	759.8	852,4	827.4	7.5%	4.639	1650,1 765,9	8'506			
Cup	(a)	13,4	16.1	16.5	14.6	13,7	£'h1	13,2	13.7	p.91	1-1-1-1			
Cup		F-100	1.87	F-201	F-32	12-71	F-27	F-92	01-7	507-1	927			RAYMOND L. FISHER, P.E.
Sample	(in)	2,38	2.39	2.37	2.31	2.39	2,28	2,39	2,39	18'2	h5'2			RAYMOND L
Sample	(in)	5.97	4,77	5,57	5.11	5,29	5,68	5.48	86'5	5,80	2,94	,		
Depth (#)	() ()	00	27.0		41,0	47.5	0'55	5'29	5'99	0'54	8.5			
Boring	į	8-5									, in the second			moisden3.xls

AND DRY DENSITY MOISTURE CON7

Client Name: CAL ENKINGZER INVA + GEROSEL Project Name: VASCO RD

Client Project No: 🛇 (860)

Date Received Date Sampled:_

		η. Σ.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, PD 2	Ŕ					, <u>, , , , , , , , , , , , , , , , , , </u>			_
Material Description (Soil type is based on visual/manual examination; classification test results may modify soil type.)	BRN SILTY SAND (SM) VFG - FG TRNIG-CE, MODO CEM, SL BURDUS, W/V FINE ROTS, Y DENSE		DK YOL EAN CLAYEN SAND &C) YCLAYDY R FG-MG TE CG, VMONST PP=35, SOME NONICHARY?	(SC) VMOIST FG-MG ALT CLAY MON CLAY ZONES F	DKYEZ BRN CLAHBY SANDSTONE/CONGLAMORATE, FG-CG, W/BRANTO I" W/WTFUTE SOMM, VAREIST	DIC YELL BRN & GRY BRN CLAYETSANDSTONE	DKYELBEN CLAYBY SANDSTONE, FG-MG	15-9 DKYEL BAN CLAYBY SANDSTONE, FR-MC	18,0 WEATH, FRINGE NOOTS, FONTE		449.6 399.4 112,4 13,0 DK BRN SANDY CLAY (CH) V STIFF.			
Moisture Content (%)	8,4	9,6	14,4	21.6	9.1	11.0	6'51	15-9	18,0		(3,0			
Sample Dry Density (pcf)	101.9	114,2	108.8	105,7	123,7	117.7	114,2	1/5/3	109,6		112,4			
Dry Weight + Cup (9)	676.4	776.2	565.4 495.9 108.8	727.8 105.7	898.0 823.9 123,7	839,9	951.7 823.1 114.2	943,6 1816.4	704.0 109.6		399,4			
Wet Weight + Cup (g)	735,7	848.4	565.4	881,3	898.0	930.6 839,9	951.7	943,6	828.4		449.6			
Cup Weight (g)	13.7	15.9	13,9	(6,0	(3,2	16,0	13,7	16.0	13.5		14.2			
Cup No.	F-74	1-306	1.3	F-307	F-93	E.80	F-304	F-308	F-302		F.21		-	
Sample Diameter (in)	1.4.2	2.41	2.42	2,42	2,42	2,42	2,42	2,42	2,42	-	2,39			
Sample Length (in)	5.43	5.56	3,67	5,85	5,43	5,80	5.87	5,75	5,22		2.9.			
Depth (ft)	3.0	Ó	&o ∧i	10.5	0'11	13.5	15,25	18,5	20,02		3.5			
Boring No.	8-8										8-9	·		

moisden3.xls

Civil and Geotechnical Engineering, Geotechnical Testing

RAYMOND L. FISHER, P.E.

MOISTURE CONT! JAND DRY DENSITY

ENGINDERING TREOTOGY Client Name: CAT EA Project Name: VASCO

Client Project No: 20/060

Date Received Date Sampled: Tested by:

		J ₂			7 %	3		· · · · · · · · · · · · · · · · · · ·	1 1	T = 1	, ,
Material Description (Soil type is based on visual/manual examination; classification test results may modify soil type.)	41 W PALLE YEL SHANDS TOO USE, WENTHERRED VEGETE FEB 1 FER 1 413 LOS	DSTONCE, WENTH			STR BRN + PME YEL SANDSTONE (ORN BRN) FG -MK, TR CG, MOD LEM						15,0 M/C FAR SACKCALC
Moisture Content (%)	5,4	0,9	15,0		6,0	0'8					15,0
Sample Dry Density (pcf)	6/2/1	117.5	106.7		110,1	118,4)
Dry Weight + Cup (g)	800,3	8020	BACKGACC		508,2 480,3	679.4 630.1 118.4					446.4 390.1
Wet Weight + Cup (g)	842.3	B49.4	8109		508,2	679.4					446.4
Cup Weight (g)	(6.0	13.5	(6.0		13.5	13.8					13.6
Cup No.	F-309	F-301	F-313		F-103	F-65	, .				6-203
Sample Diameter (in)	2H2	2,42	2,42		2,42	24.2					1
Sample Length (in)	5.76	5,56	5.37		3.51	15.4					
Depth (ft)	6.5'	0.01	14.5		5.5	2.0			•		14,5
Boring No.	01-8				8-11						B-10

moisden3.xls

RAYMOND L. FISHER, P.E.

MOISTURE CONT JAND DRY DENSITY

Client Name: CAL ENGINEER ING 4 GROLOGY Project Name: VASCO RD

Client Project No: 00/060

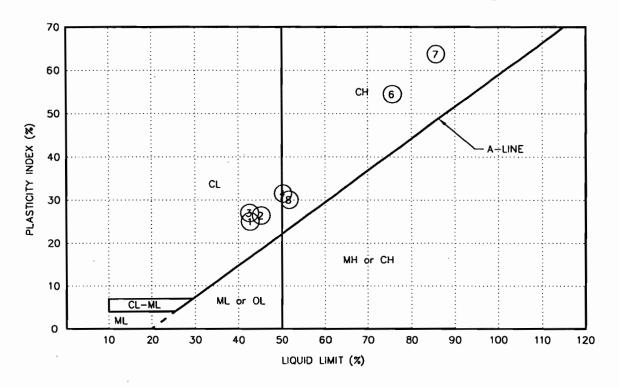
Date Received Date Sampled: Date Tested: _ Tested by: _

	ion;	100		म्बर्गम्स् इस्क्रिय		(A)	(Pars cou)	101 tr 18		3	(FE)			7
Material Description	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	LTBAN SILTY SAND WARRY (SOW) VFB-FB	HE CLO, TR GRAND (SM) VFG-FG,	YEL BRN + PRICE VET CLAYET CONGLOMISMATE/ SANDSTONE VFG-CG, GRAV < 2" CLAYET FORMES		BAN WYLL BAN 44 EZ SANDY CLAY STONE,	BRN WYLL+OW BRN FRO CLAYEN SANDSTANE VFG SLMWST (PAL	TOP 2" PALE GRN CLAMBY SANDSTONNE /SAND		BRD SANDY CLAY (CL/SC) FG-CG, WITH GRAY < B., VTGHT, MOIST FILL?	VDIX GRYBRN/OLVIBRN CLAY W/SAND(CH)		IT OLY CLAYSTONE, TR VEG SAND SL MOIST NOD WEATH	
Moisture	(%)	4.3	5.7	4.8		8.91	5'11	6'9		701	9'81	21/2	6.91	
Sample	Density (pcf)	114,3	122.3	2'82/		8.901	101.7	8'011		114,4	110,7	2'50)	104,0	
Dry Weight	+ Cup (g)	768.5 114,3	7828	923.6		671.3 106.8	512.0 101.7	5563 110,8		807.2 734.2 114,4	7.011 0.24 H.778	871.1 721,2 105,2	558,8 104,0	
Weight	+ Cup (g)	800,9	1.928	5.739		781.9	5993	893,9	-	807.2	877.4	871.1	650.7	
Cup Weight	(g)	13,7	13,4	16,5		13,9	13,6	14.4		0.9/	13,6	13.5	1,91	
Cup No.		F-61	F-100	1025		F-24	F-101	F-33		F-311	1-104	F-300	F-314	
Sample Diameter	(in)	2,42	2,42	2,42		12,41	2.42	2,42		2,42	2,37	2,38	2,42	
Sample Length	(in)	5.47	5,2	38'5	·	5.14	4,06	4,05		5,20	5.68	5.76	75.H	
Depth (#)) (2)	3,5'	5.5	10.5		3,5	5.5	10,5		3,0	9,0	14,0	0.61	
Boring No.		B-12				B-13				H-8				- Cacheior

moisden3.xls

RAYMOND L. FISHER, P.E.

MOISTURE CONTE JAND DRY DENSITY


Client Name: CAL ENGINEERING + GEOLOGY

Project Name: VASCO 名D Client Project No: CO 1860

Date Received Date Sampled: Discourse Sampled: Discourse Tested: Discourse Disco

Material Description (Soil type is based on visual/manual examination; classification test results may modify soil type.)	BRN SILTY SAND (SM) VFB-FG	PALLE YEL YERY SANDSTONIE, VFG-FG WORN BRN YO" CLAY FLUED FRACT/SHEAR	LIYELBAN SANDSTONE, VFG,							Civil and Geotechnical Engineering, Geotechnical Testing
Moisture Content (%)	4,5	6,8	7.5							eotechnical
Sample Dry Density (pcf)	8°101	111.4	122,4							Civil and G
Dry Weight + Cup (g)	730.3	7314	386,2 360,4	-	,					
Wet Weight + Cup (g)	762.7 730.3	786.3	386,2							
Cup Weight (g)	13.7	0,91	16.0							
Oup No.	F-305	F-312	F-310					,		RAYMOND L. FISHER, P.E.
Sample Diameter (in)	2,42	2,42	2,42							RAYMOND L
Sample Length (in)	5,83	5.32	2.33		**					
Depth (ft)	<u>"</u>	0.0	0,0	,			-			
Boring No.	8-15									moisden3.xls

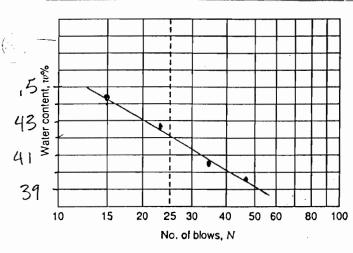
NUMBER	BORING	DEPTH (FT)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
1	B-2	17.5	42	18	24
2	B-3	14	45	19	26
3	B-3	21.5	42	16	26
4	B-3	. 35	50	19	31
5	B-3	46.5	99	20	79
6	B-3	58	75	21	54
7	B-3	62	86	23	63
8	B-3	71.5	51	21	30
9	B-3	82	56	18	38

1870 Olympic Blvd. Suite 100 Walnut Creek, CA 94596 Phone: (925) 935-9771 VASCO ROAD REALIGNMENT
ALAMEDA COUNTY PUBLIC WORKS AGENCY
ALAMEDA COUNTY, CALIFORNIA

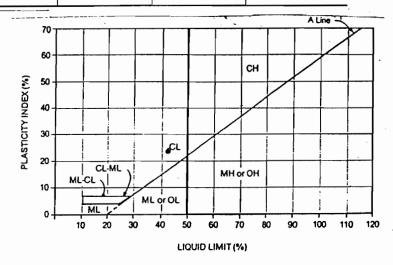
ATTERBERG LIMITS TEST RESULTS

JOB NO.: 001860 DATE: JUNE 2001 SHT 1 OF 2

NUMBER	BORING	DEPTH (FT)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
NUMBER	BURING	DEPTH (FT)	LIQUID LIMIT	PLASTIC LIMIT	PLASHCIT INDEX
10	B-4	12	65	18	47
11)	B-4	17.5	56	21	35
12	B-4	30	45	18	27
13	B-4	39	47	20	27
14)	B-4	44	42	20	22
15)	B-4	56	41	16	25
16	B- 4	64.5	36	12	24
17	B-4	66.5	. 46	15	31
18	B- 4	70.5	35	12	23
19	B-4	79.5	39	13	26

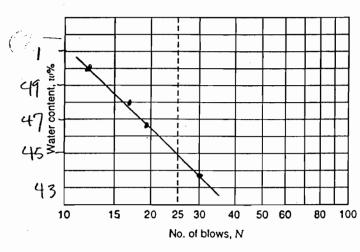


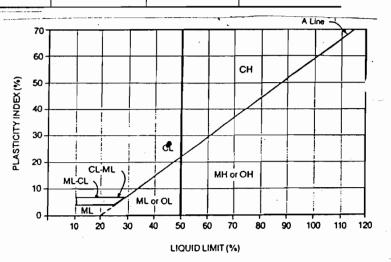
1870 Olympic Blvd. Suite 100 Walnut Creek, CA 94596 Phone: (925) 935-9771 VASCO ROAD REALIGNMENT
ALAMEDA COUNTY PUBLIC WORKS AGENCY
ALAMEDA COUNTY, CALIFORNIA


ATTERBERG LIMITS TEST RESULTS

JOB NO.: 001860 DATE: JUNE 2001 SHT 2 OF 2

Project VASCO	RD_	J	lob No. 0018	360		
Location of Project		E	Boring No. $_{\mathcal{B}^{-}}$	2 Sample N	lo	
Description of Soil 47	OZV BRN W	YELBR	N SANDY S	ILISTONE	/SANDY CLA	14570NE
Depth of Sample	17.5	Tested By	RIF	Date	3/2/01	
Liquid Limit Determination						
Can no.	F-107	F-49	F-102	F-41		
Mass of wet soil + can	39.4	36.0	39,9	45.2		•
Mass of dry soil + can	30.4	27.9	30.3	33.7		
Mass of can	7.7	7.9	7.8	7.8		
Mass of dry soil	22.7	20.0	22.5	25.9		
Mass of moisture	9,0	8,1	9,6	11.5		
Water content, w%	39.6	40.5	42.7	44.4		
No. of blows N	46	33	23	15		




Penetration D, mm

Can no.	F-106	F-2	 Flow index $F_i = \frac{1}{100}$
Mass of wet soil + can	23.9	22.4	Liquid limit = 42
Mass of dry soil + can	21,5	20.4	Plastic limit = 18
Mass of can	7.7	7.9	Plasticity index $I_P = $
Mass of dry soil	13.8	12.5	
Mass of moisture	2.4	2,2	
Water content, 10% = 10p	17.4	17.6	<u>. </u>

Project VASCO	RD	J	ob No	1860		-
Location of Project		E	Boring No. B -	3 Sample N	No	
Description of Soil LT	OLV BRN 1	W/YEL BR	N CLAYE	Y SANDS	FOUNE/SAND	1 CLAY ST
Depth of Sample	14.01	Tested By	, RLP	Date	3/2/01	_
Liquid Limit Determination						
Can no.	F-48	F-50	F-109	F-108		-
Mass of wet soil + can	41.6	37.7	33.3	39.5		_
Mass of dry soil + can	31.3	28.2	25,0	289		_
Mass of can	7.8	7.9	7.7	1.7		_
Mass of dry soil	23,5	20.3	17.3	21.2		_
Mass of moisture	10.3	9.5	8.3	10.6		- -
Water content, w%	43.8	46.8	48.0	50.0		_
No. of blows N	30	19	17	12		_
Penetration D. mm			,			_

Can no.	F-101	F-104	Flow index F _i =
Mass of wet soil + can	21.6	20.5	Liquid limit = $\frac{45}{16}$
Mass of dry soil + can	19.4	18.5	 Plastic limit = 7/0
Mass of can	79	7.8	Plasticity index $I_P = \frac{\sim V}{\sim V}$
Mass of dry soil	11.5	10.7	
Mass of moisture	2,2	2.0	
Water content, $w\% = w_p$	19.1	18.7	 <u>-</u>

Project VASCO		J	ob No	1860	
Location of Project					lo
Description of Soil DK	ornersh m	YEL BEN	CLAM STON	<u> </u>	
Depth of Sample	46.5	Tested By	, RLF	Date	2/20/01
Liquid Limit Determination					
Can no.	F-45	F-54	F-1	F-43	
Mass of wet soil + can	41.0	40.7	43.4	38.9	
Mass of dry soil + can	25.0	24.6	25,8	23.z	
Mass of can	7.8	7.9	7,9	7,8	
Mass of dry soil	17,2	16,7	17.9	15.4	
Mass of moisture	16,0	16.1	17.6	15,7	
Water content, w%	93.0	96.4	98,3	101,9	
No. of blows N	39	33	26	20	V
Penetration D, mm					
		-			A Line
		70			
		60-			
		-			СН
		→ × × × × ×			
		<u> </u>			
•		PLASTICITY INDEX (%)		α	
+++			CL-ML		

Plastic Limit Determination

20

25 30

No. of blows, N

40

50 60

80 100

049 800 801 Water content, 11%

92

90

10

15

Can no.	F-4	F-42		Flow index $F_i = $
Mass of wet soil + can	28.1	21.5		Liquid limit = 99
Mass of dry soil + can	24.7	19.2		Plastic limit = 20
Mass of can	7.9	7.9		Plasticity index $I_P = 11$
Mass of dry soil	16.8	11.3		
Mass of moisture	3.4	7.3		
Water content, $w\% = w_p$	20.2	20,4	AVE=203	-

10 -

CL-ML

ML

10

ML or OL

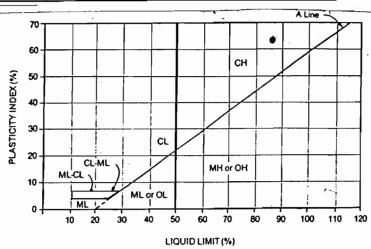
50 60 70

LIQUID LIMIT (%)

30 40 MH or OH

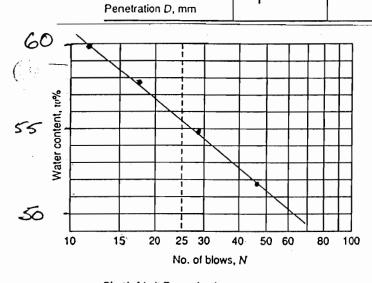
80 90 100 110 120

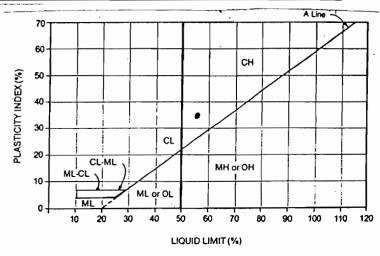
Project Vasco Rd	Job No. 001860
•	Boring No. 3 Sample No.
•	```


Description of Soil DK GRN GRY + DK GRY CLAY STONE

Depth of Sample 62.0 1 Tested By R4F Date 2/26/01

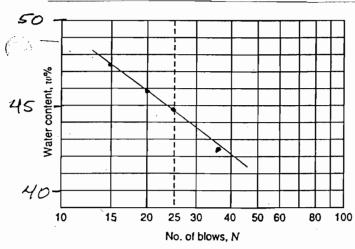
Liquid Limit Determination

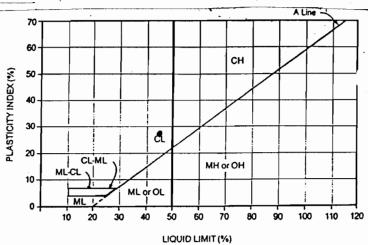

				1445	
Can no.	F-2	F-3	F-40	F-105	
Mass of wet soil + can	38,7	38.7	35,5	42,3	
Mass of dry soil + can	25.1	25.0	22.8	25.6	
Mass of can	7.9	7,9	7,8	7.7	
Mass of dry soil	17,2	17.1	15.0	17.9	
Mass of moisture	13.60	13,7	12.7	16.7	
Water content, w%	79.1	80,3	84.7	93.3	
No. of blows N	60	39	27	15	
Penetration D, mm		•	,		



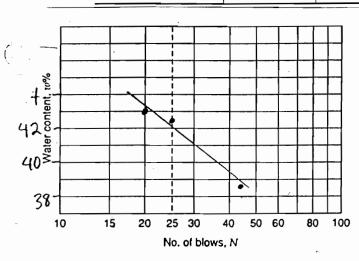
Can no.	F-100	F-300	Flow index F _i =
Mass of wet soil + can	23.3	26.3	 Liquid limit = $\frac{86}{2}$
Mass of dry soil + can	20.3	23.0	 Plastic limit = $\frac{23}{63}$
Mass of can	7.8	7.7	Plasticity index $I_p = 6.5$
Mass of dry soil	12.5	15.3	
Mass of moisture	3,0	3.3	
Water content, w% = wp	24.0	21.6	

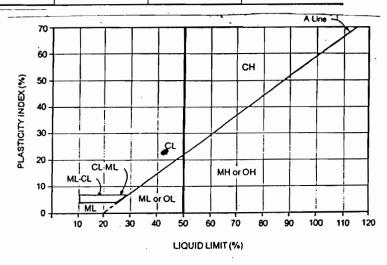
Project VASCO	RD	J	Job No. 001860					
Location of Project		B	Boring No. B-4 Sample No.					
Description of Soil LT OLV BRN W/BRN YEL WEATHERED CLAYSTONE								
Depth of Sample 17.5' Tested By RLF Date 2/15/01								
Liquid Limit Determination								
Can no.	F-47	F-107	F-104	F-43				
Mass of wet soil + can	38.6	34.8	34,0	40,1				
Mass of dry soil + can	28.1	25,2	24.4	28.0				
Mass of can	7,8	7.7	7,8	7.8				
Mass of dry soil	20.3	17.5	16.6	20.2				
Mass of moisture	10.5	9.6	9,6	12.1				
Water content, w%	51.7	54.9	57.8	59,9				



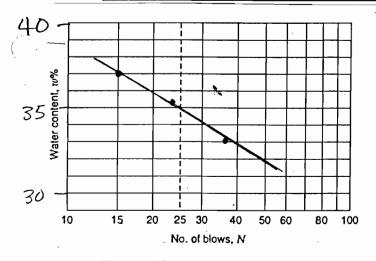

No. of blows N

Can no.	F-109	I- <u>-</u>	Flow index $F_i =$
Mass of wet soil + can	34.4		Liquid limit = :56
Mass of dry soil + can	29.8		Plastic limit = 2
Mass of can	7.7		Plasticity index $I_P = 35$
Mass of dry soil	22.1		
Mass of moisture	4.6		·
Water content, u% = up	20.8		


Project VASCO		Job No						
Location of Project		E	Boring No. B-4 Sample No.					
Description of Soil OLV BRN W/YEZ BRN CLAYSTONE W/TR VFG SAND								
Depth of Sample 3010 Tested By RLF Date 2/15/01								
Liquid Limit Determination								
Can no.	F-51	F-5	F-50	F-48				
Mass of wet soil + can	38,8	44.1	40.0	42.3				
Mass of dry soil + can	29.6	32.9	29.9	31.2				
Mass of can	7.9	7,9	7.9	7,8				
Mass of dry soil	21.7	25,0	22.0	23,4				
Mass of moisture	9.2	11,2	10.1	11.1				
Water content, w%	42.4	44.8	45.9	47.4				
No. of blows N	37	25	20	15				
Penetration D, mm		24?			,			

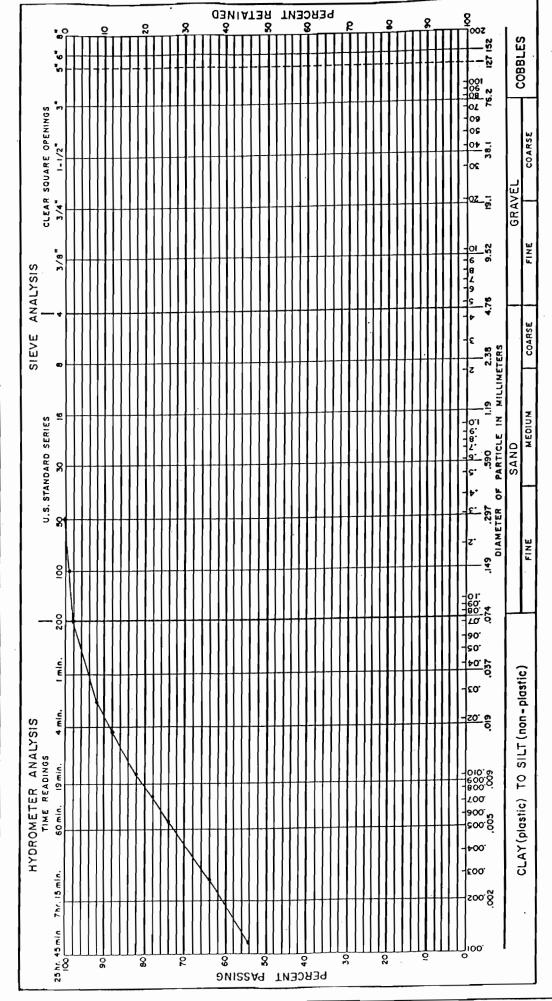


Can no.	F-45	Flow index F _i =
Mass of wet soil + can	35,3	Liquid limit = 45
Mass of dry soil + can	31.2	Plastic limit =
Mass of can	7.8	Plasticity index $I_P = 27$
Mass of dry soil	23.4	
Mass of moisture	4.1	
Water content, u% = up	17,5	


Project VASCO RD Job No. 001860									
Location of Project Boring No Sample No									
Description of Soil V DK GRY CLAYSTONE W/TR VFG SAND									
Depth of Sample	44.0'	Tested By	RLF	Date	2/15/01				
Liquid Limit Determination									
Can no.	F-102		F-106	F-54					
Mass of wet soil + can	41.4		36,9	38.8					
Mass of dry soil + can	32,0		28,2	29.5					
Mass of can	7,8		7.7	7,9					
Mass of dry soil	24.2		20,5	21.6					
Mass of moisture	9,4		8.7	9,3					
Water content, w%	38.8		42.4	43.0					
No. of blows N	44	1	25	20					
Penetration D, mm									

Can no.	F-3		Flow index $F_i = \frac{1}{2}$
Mass of wet soil + can	37,8		Liquid limit = $\frac{42}{2}$
Mass of dry soil + can	32.8		Plastic limit = $\frac{20}{20}$
Mass of can	7.8		Plasticity index $I_P = 22$
Mass of dry soil	25.0		
Mass of moisture	5.0		
Water content, $w\% = w_p$	20.D		

Project VASCO RD Job No. 001860									
Location of Project Boring No. B-4 Sample No									
Description of Soil DK GRN GRY SANDY CLAYSTONE									
Depth of Sample 70.5' Tested By RLF Date 2/15/01									
Liquid Limit Determination									
Can no.	F-42	F-4	F-4						
Mass of wet soil + can	44.2	44.4	40,4						
Mass of dry soil + can	35.2	34.9	31.6						
Mass of can	7,9	7.9	7.8						
Mass of dry soil	27.3	27.0	23.8						
Mass of moisture	9,0	9.5	8.8						
Water content, w%	33.0	35,2	37.0						
No. of blows N	36	23	: 15						
Penetration D, mm			-						


Can no.	F-101		Flow index $F_i = \frac{1}{2}$
Mass of wet soil + can	32.5	·	Liquid limit = 35
Mass of dry soil + can	29,8		Plastic limit = 12
Mass of can	7.9		Plasticity index $I_P = 25$
Mass of dry soil	21.9		1
Mass of moisture	2.7		1
Water content, u% = wp	12.3		

PROJECT VASCO ROAD

PROJECT NO. 00/860

SAMPLE NO. BORING 8-3 DEPTH 46.51

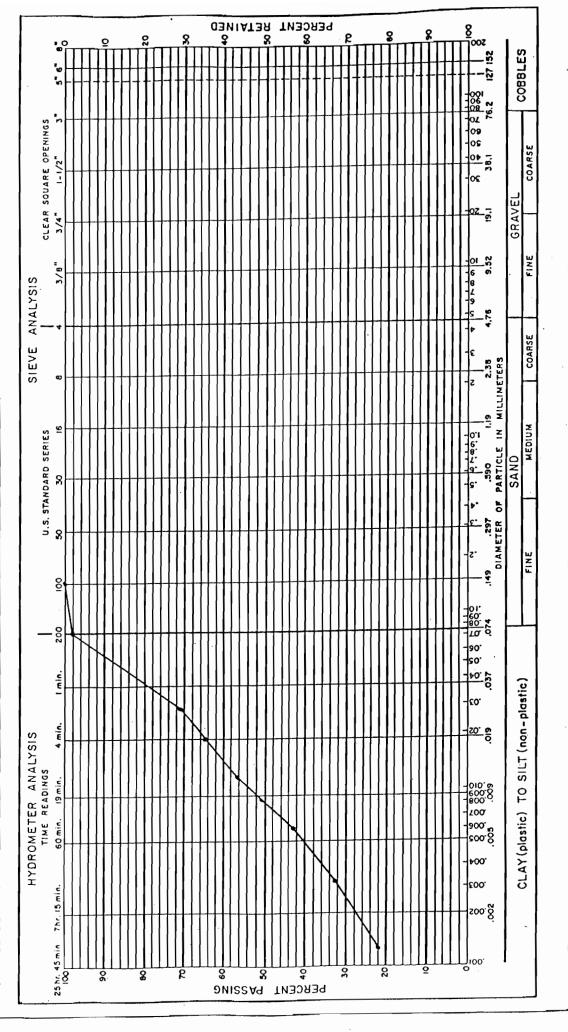
SAMPLE DESCRIPTION DK OLV GRY WYBL BRN CLAYSTONE

			.00	סאו סכ	•	بعر		_					
			Jo	ob Name	ر. لاـ: e	Asc	10	RD	>				
			В	oring No	P.∤ .	B-3	>	_ D	epth'				
			Da	ate $-\frac{2}{4}$	24/0	L		_ T	este	d by	RL	=	
Sample Description	on DK	OLV GRY	w/ye	L BRN	a	145	TON	کے				<u>. </u>	,
WHOLE SAMPLE Air Dry Sample Wt.		(A 1)		•	0.1	Interior		Y SIE		-10			
Air Dry Water Cor Cen no Wat + can	<u>'</u>							۲. ۲.		1.			
dry tosn					ndard re		Sample Wt. (SW)	d Sample F 200 only	ve Wt.	2 P	و	,	٦
w.c. (dec) Oven Dry Sample W		= <u>50.09</u> (A3)		U.S. Standard Sleve Size	Can No.	Sample	Corrected Sample V = SW-SCF (+18-+200 only)	Cumulati Retained	Cumulati	% Passing		
(NO. 10 PORTION					1*	•		X					
Air Dry Wt. Passing	No. 10 =	(B1)		•	3/4"			\times]	
Air Dry Water Cont	ent				3/8			\times]	
can no.					+4			>>					
wet+can					≠ 8			\times] .	
dry + can			•		≠10			\supset			100	Вв	
can wt					≠ 16						100:]	
w.c. (dec)	(82)			•	#30				•••		100.]	
Oven Dry Wt. Pasaing	No. 10 = -	B1 =50	.04 (B3) =	=W ,	₹40						100] .	
				. '	≠ 50;					1	100]	
Air Dry Wt. of Hydro	meter Sample	e =	(B4) _.		≠ 100		05		0,5	1.0	99		
Oven Dry Wt. of Hyd	drometer Sam	ple = B4	- =	_ (B5) :	+200		0.5		1.0	2.0	98] .	
SCF, Slave Correctle											21.5	0	
		4000		 - 1808			Ну	dromete	r Corr	ection_			To
HPF. Hydrometer Pe	rcentage Fac	tor =		B5/B6	-=			ear wate		-	2.0	(01)	, ,
Specific Gravity, G								ter 4 di		·	7.0 1.5		21,5
START 10 Am	424/01				p_!	Red vie		ter + die d Corr					5
Date	Hydrometer	Hydrometer	R Corrected	Temp. (C		P		K able 3,	T	L ble 2.		mm)	_
Time Elapsed Time	Reading	Correction	Reading			F • (R-1	1	93	PI	0. 92	D=K		
2/4 1020 2	5	-4,5	46,5	180		7.07		01378		.9	0,0		
3/24 10 3/Am 5	49	-4.5	44:5	-		8.11		1378	8	,3	0.01		
3/4 10 ⁴¹ Am 15	46	-4.5	41.5	Y		2.17		1378		18	0.0	106	
34 1056 Am 30	44	-4.5	39.5		79	3.21	0,0	1378	19	, 1	0.00		
	42	-4.5	37.5	¥ .	70	1.75	0,0	1378		.4	0.00		
354 Z20pm 240 (4h)	37-	4,5	32.5	200	6	4.35	-	2344	10	,2	0.00		
24 1026 1440 (24h)	32.	-4.5	27.5	180				21378	11.	-	0,00		

F-3 4200 WASH

L = 0.49 ASSUMED G5 = 2,70

54.45 0.01378


RESULTS GRACALION TEST

PROJECT MASCO RD

_PROJECT NO. 00/860

SAMPLE NO. BORING B-3 DEPTH 62.0'

SAMPLE DESCRIPTION DK GRN GRY AND DKGRY CLAYSTONE

HYDROMETER ANALYSIS

Sample No.

F-67

Job No. 001860	
Job Name VASCO RD	
	Depth 62.0
Date _2/26/61	Tested by

Sample Description

WHOLE SAMPLE
Air Dry Sample Wt (A1)
Alr Dry Water Content
Cen no.
wel+can
dry +can
con wt.
w.c. (dec) (A2)
Oven Dry Sample Wt. = $\frac{A1}{1+A2} = \frac{50.0a}{(A3)}$
CNO. 10 PORTION
Air Dry Wt. Passing No. 10 = (B1)
Ale Dry Water Content
can no.
wet+can
dry +can
can wt.
w.c. (dec) (B2)
Oven Dry Wt. Passing No. 10 = $\frac{B1}{1+B2} = \frac{50.00}{1+B2} = \frac{10.00}{1+B2} = \frac{10.00}{1+$
Air Dry Wt. of Hydrometer Sample = (B4)
Oven Dry Wt. of Hydrometer Sample = B4 (B5)

		DB.	Y SIE	VE			
<u> </u>	folget [mple Wi	_	0.9	gm)	
	I VIII L	717 321			1	- CO	
U.S. Standard Sleve Size	Can No.	Sample Wt. (SW)	Corrected Sample Wt. = SW-SCF (+18-+200 only)	Comutative Wt. Retained	Cumulativa % Retained	% Passing	
1"			> <				
3/4"			\geq]
3/8"			\geq				Į
+4			><				
≠8			\times				
≠ 10			>>			100	В6
≠ 16		•				_ .	
≠ 30				. ,			
₹40							
≠ 50}	,					V.	
≠ 100				. ,		100	
≠ 200				0.9	1.8	98.2	

	5 ^ B 0 =		 .	
HPF, Hydrometer Percentage Factor=	1000 B5/B6	• G-1 =	1606 B5/B6	=
Specific Gravity, G = 2.65	=	•	20,00	

Hydrometer Correction

clear water reading Z₁O (C1)^{TOP}

water + diap (top) 7.0 (C2)

water + diap (bottom) 7.5 (C3) Z₁S D

Hyd Corr -1x(2xC2-C1-C3) - 4.5

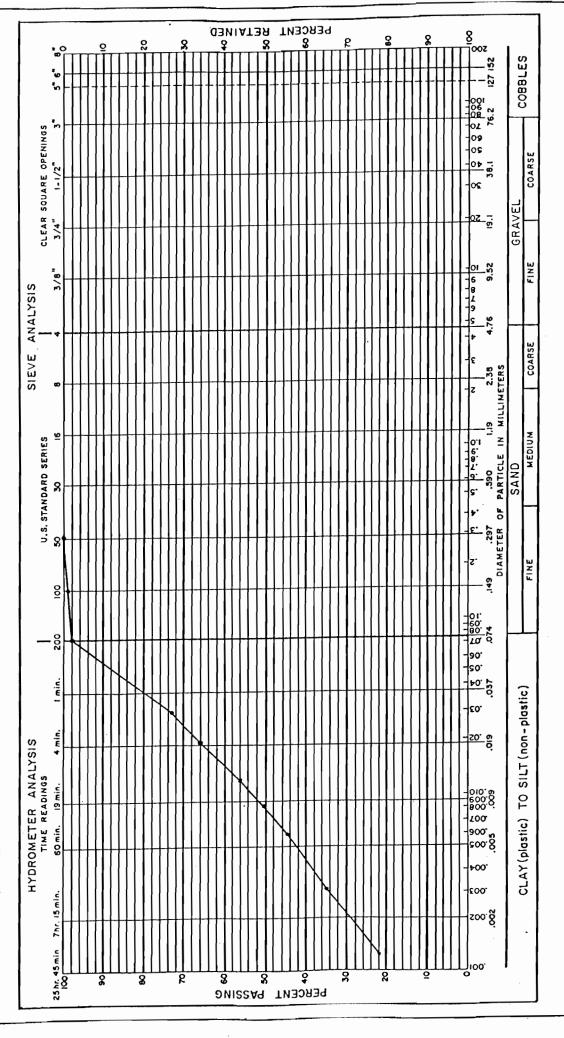
3	26/01 63	bpm STA	er .	P= W XID Hyd Corr -1x(2xC2-C1-C3) = 4						
	Date	T Elapsed Time	Hydrometer	Hydrometer Correction	R Corrected Reading	Temp. (C)	P HPF • (R-1)	K Table 3, pg. 93	Table 2. pg. 92	D (mm) D•K√L/T
76	638 m	2	40.5	-4.5	36,0	20	71.28	0.01344	9.65	0.0295
	.641	5	37,5	-4.5	33.0	20.	65,34			0.0192
	651	15	33.0	-4.5	28.5	20	56.43			0,0115
	706	30	30.0	-4,5	25.5	20	50.49		11.4	0,0083
	736	-60	26.0	4.5	21,5	20	42.57		12.0	0.0060
V	1036m	240 (4h)	21.0	-4.5	16.5	20	32,67	V	12,9	0,0031
2	636 pm	1440 (24h)	15,5	-4.5	11,0	20.5	21.78	0.01336		0,0013

200 WASH F-40

SCF, Sieve Correction Factor =

SANDIS GRAY TO LTGRY

0.99 ASSUMED 0.99 0.99


GRALMION TEST RESULTS

PROJECT VASCO RD,

PROJECT NO. 00/860

SAMPLE NO. BORING B-4 DEPTH 17.5"

BRN WEATH. CLAYSTONE SAMPLE DESCRIPTION LT OLV BRN W/YEL

HYDROMETER ANALYSIS

Sample No. .

Job No. 001860	
Job Name VASCO R	?D
Boring No.: B-4	Depth 17,5
Date 2/25/01	Tested by RLE

Sample Description

WHOLE SAMPLE
Air Dry Sample Wt. = (A1)
Rir Dry Water Content
Can no.
wet+can
dry +can
cen wt.
w.c. (dec) (A2)
Oven Dry Sample Wt. = $\frac{A1}{1+A2} = \frac{50.03}{1+A2}$ (A3)
CNO. 10 PORTION

υ.	10	POI	1110				
		_	•				
	A 1-	0	w.	Dasala	 40	-	

Air Dry Water Content

CAR no.

wet+cen

w.c. (dec) _____ (B2)

Oven Dry Wt. Passing No. $10 = \frac{B1}{1 + B2} = \frac{50.00}{(B3)} = W$

Air Dry Wt. of Hydrometer Sample = _____ (B4)

Oven Dry Wt. of Hydrometer Sample = $\frac{B4}{1+B2}$ = (B5)

SCF, Sleve Correction Factor = 100xB5 x B6=

HPF, Hydrometer Percentage Factor = Specific Gravity, G = 2.65	1000	<u>G</u> =	1606	=
Specific Gravity, G = 2.65	D3/B6	G-1	B5/B6	

DRY SIEVE									
Original Dry Sample Wt. (A3)-									
U.S. Standard Slove Size	Can No.	Sample Wt. (SW)	Corrected Sample Wt. #SW-SCF (+18-+200 only)	Comulative Wt. Retained	Cumulativa % Retained	% Passing			
1"			><	,					
3/4"			\geq						
3/8			\times						
+4			$\geq <$						
#8			\times						
≠10			\times			700	B6		
≠ 16							1		
#30				,					
₹40									
≠ 50;						100			
≠ 1Ò0				0.5	1.0	100			
≠200				0.6	2.2	97.8			

Hydrometer Correction 7.0 (C2) weter + disp (top) 7.5 (03) 21,50

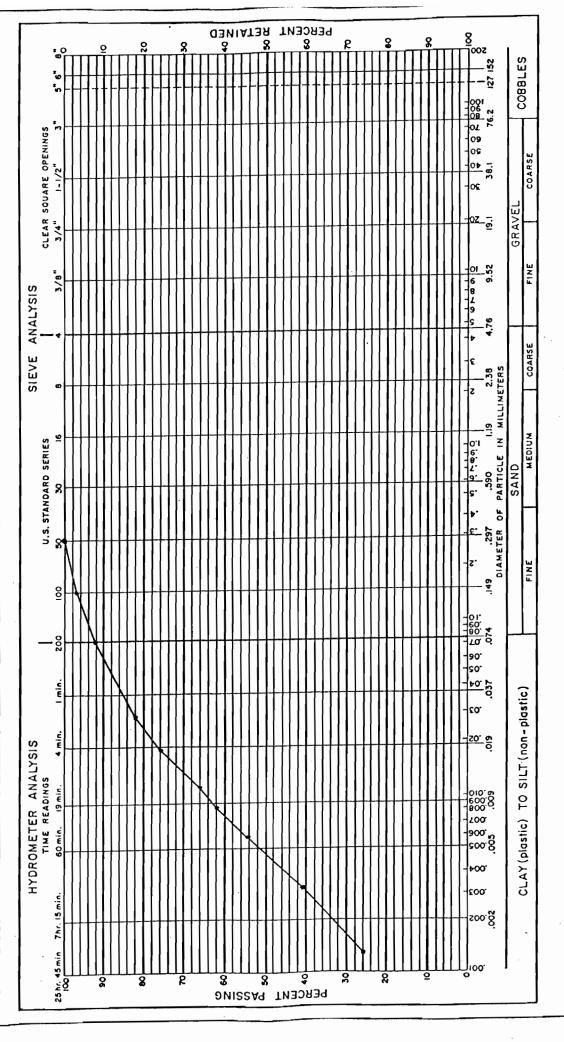
water + disp (bottom) -

Hyd Corr -1x(2xG2-C1-C3) = -4.5 STARK R Corrected Table 2, pg. 92 Hydrometer D (mm) Hydrometer Table 3, pg. 93 Temp. (C) Elapsed Time HPF · (R-1) Reading Correction Reading D.KVL/T 180 73,26 0.01378 9.5 060300 0.0196 10.1 15 0.0118 10.9 30 -60 22,5 0,01361 11.9 240 (4h) -4.5 0.01361 12.7 1440 (24h) 11.0 20.5 13.75 0.01336

200 W/194 F-47

SAND IS PARE BAN & DKYEL GON

ASSUMED G = 2.70


GRAULION TEST RESULTS

PROJECT VASCO RD

-PROJECT NO. 00/860

_ DEPTH 30.0 SAMPLE NO. BORING 8-4

SAMPLE DESCRIPTION OLV BRN W/YEL BRN CLAYSTONE

HYDROMETER ANALYSIS

Sample	No.	
	F-8	1

Job No. 001860
Job Name VASCO RD
Boring No.: B-4 Depth 30.0
Date _2/25/01 Tested by R2F

11.7-7.9 10.3-7.9

W	HOLE SAMPLE
خ	Air Dry Sample Wt. = (A1)
	Air Dry Water Content
	Can no.
	wet+can
	dry +can
	cen wt.
	w.c. (dec) (A2)
	Oven Dry Sample Wt. = $\frac{A1}{1+A2} = \frac{50.09}{1+A2}$ A3)

CNO.	10	POF	RIO	N				
	Air	Dry	ŴL	Passing	No.	10	=	

Air Dry Water Content can no.

Can no.

wet + cen ____

can wt.

w.c. (dec) _____ (B2)

Oven Dry Wt. Passing No. 10 = $\frac{B1}{1+B2} = \frac{50.0}{(B3)} = W$

Air Dry Wt. of Hydrometer Sample = _____ (84)

Oven Dry Wt. of Hydrometer Sample = B4 (B5)

HPF. Hydrometer Percentage Factor 5 1000 G 1606

HPF, Hydrometer Percentage F	actor = B5/B6	6-1 =	B5/B6	
Specific Gravity, G = 2.65	, 50750	•	B3/86	

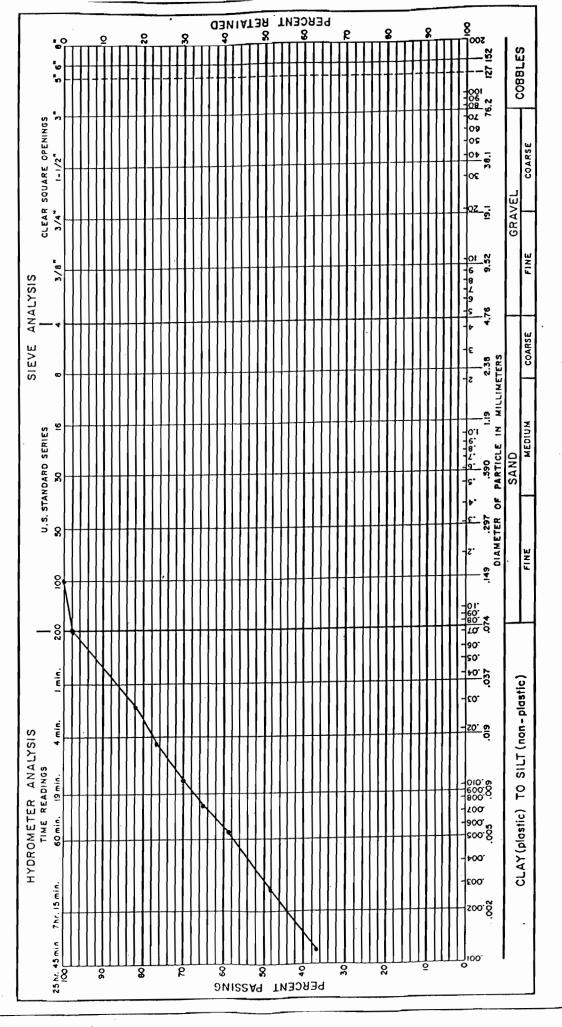
	DRY SIEVE								
Or	iginal [ry Sai	mple Wt	. (A3)	3.8	gm			
U.S. Standard Slove Size	Can No.	Sample Wt. (SW)	Corrected Sample Wt. = SW-SCF (+18-+200 only)	Comulative Wt. Retained	Cumulativa % Retained	gulessal %			
1*			\geq						
3/4"			><				l		
3/8"			><			_			
+4			\times						
≠ 8			\times						
≠ 10			\boxtimes			100	В6		
≠ 18		•	_	·			ł		
#30				,					
₹40									
≠50)				-		100			
≠ 100				7.4.	2.8	97,2			
≠ 200				2.4	7.6	92.4			

Hydrometer Correction 20

(mottod) qeib + retw Hyd Core -1x(2xG2-C1-C3) = R Table 2, pg. 92 Hydrometer D (mm) Hydrometer Temp. (C) Table 3 Time HPF - (R-1) Elapsed Time Reading Correction Reading D.KVL/T 336 2 41.5 180 0,01379 8.8 0,0280 39 5 3**8:5** 15 33.5 10.1 403 90 30 31,5 0.01361 10.4 34 -60 27,5 0,01361 0.0059 19.5 240 (4h) 40.59 0,01353 20,5 0.003 12,2 1440 (24h) 20.5 25 174 0.01336 0.0013

200 WASH F-51 SAND IS LT+DK YEL BRN X=0.99 Assumed G=2.70

GRAL. TION TEST RESULTS


PROJECT VASCO RD.

PROJECT NO. 00/860

DEPTH 44.0' SAMPLE NO. BORING B-4

CLAYSTONE

SAMPLE DESCRIPTION VDK, GRY

HYDROMETER ANALYSIS

Sample No.

F-68

Job No. 001860	
Job Name VASCO R	D
Boring No.: B-4	Depth 44.01
Date 2/26/01	Tested by RLF

Sample Description

WHOLE SAMPLE
Air Dry Sample Wt. =
Fir Dry Water Content
Can no.
wet+can
dry +can
can wt.
w.c. (dec) (A2)
Oven Dry Sample Wt. = $\frac{A1}{1+A2} = \frac{50.09}{1+A2}$ (A3)
CNO. 10 PORTION
Air Dry Wt. Passing No. 10 =(B1)
Air Dry Water Content
can no.
wet+can
dry + can
can wt.
w.c. (dec) (B2)
Oven Dry Wt. Pasaing No. 10 = $\frac{B1}{1+B2} = \frac{50.0q}{100}$ (B3) = $\frac{1}{1+B2}$
Air Dry Wt. of Hydrometer Sample =(84)
Oven Dry Wt. of Hydrometer Sample = B4 = (B

		DR	Y SIE	VE			K
Original Dry Sample Wt. (A30-0.9. gm							
U.S. Standard Sleve Size	Can No.	Sample Wt. (SW)	Corrected Sample W1. = SW-SCF (*18-+200 only)	Complative Wt. Retained	Cumulative % Retained	% Passing	
1″			> <				
3/4"		į	$\supset \subset$				
3/8"			> <				
+4			\supset				
≠ 8			\times				
≠ 10			$\supset <$			100	В
+16		•					}
≠ 30							
₹40							Ì
≠50°;						W	
≠ 100				. ,		100	
≠ 200				0,9	1.8	98.2	

SCF, Sleve Correction Factor = A3	85 × 86=
HPF, Hydrometer Percentage Factor=	1000 <u>G</u> = 1606
Specific Gravity, G = 2.65	B5/B6 G-1 B5/B6

Hydrometer Correction
clear water reading 2.0 (C1) To?
water + disp (top) 7.5 (C2)
water + disp (bottom) 7.5 (C3) 2650

Hyd Corr -1x(2xC2-C1-C3) = -4.5

	START 63 km 2/26/01						$P = \frac{R^{4}}{W} \times 100 \text{ Hyd Corr } -1x(2xC2-C1-C3) = -1$					
-		T Elapsed Time		Hydrometer Correction	R Corrected Reading	Temp. (C)	P HPF · (R-1)	K Table 3, pg. 93	L Table 2, pg. 92	D (mm)		
Zu.	634 PN	2	46	-4.5	41.5	20	82,17	0,01344	8.8	0.0282		
1	.637	5	43.5	-4,5	39.0	20	77.22			0,0182		
	647	15	40.0	-4.5	35,5	20	70.29		9.7	0.0108		
- [702	30	37.5	-4,5	33,0	20	65,34		10.15	0.0078		
	732.	-60	34.5	4.5	30,0	20	59.40		10,65	0.0057		
14	1032	240 (4h)	29.0	-4.5	24.5	20	48.51	V		0,0029		
到	632 pm	1440 (24h)	23.0	-4,5	18.5	20.5	36.63	0.01336		0,0012		

200 WASH F-54 SAND IS WT 4 GRY d=0,99 Assumed Gs=2,70

38.1 CLEAR SOUARE OPENINGS COARSE GRAVEL F. N.E. ANALYSIS COARSE SIEVE DIAMETER OF PARTICLE IN MILLIMETERS
SAND . PROJECT NO. 00/860 U.S. STANDARD SERIES 50 30 16 SAMPLE DESCRIPTION DK GRN GRY SANDY CLAYSTONE õ <u>₽0.</u> į CLAY (plastic) TO SILT (non-plastic) ξ0, HYDROMETER ANALYSIS GRAL. . ION TEST RESULTS - 200.00 - 300.70 - 700. - 800.00 - 800.00 SAMPLE NO. BORING B-4 PROJECT VASCO RD **₽**00. ξO0. 7hr. 15 min. 8 PERCENT PASSING

PERCENT RETAINED

COBBLES

HYDROMETER ANALYSIS

Sample No.

F-ZO

 Job No. 001860	
Job Name VASCO I	ZD
Boring No.: B-4	Depth 70,5
Date 2/28/01	
1	

Sample Description

START 446 pm 3/20101

44 L	TOLE SAMPLE
	Air Dry Sample Wt. = (A1)
	Alr Dry Water Content
	Can no.
	wet+can
	dry +can
	cen wt.
	w.c. (dec) (A2)
	Oven Dry Sample Wt. = $\frac{A1}{1+A2} = \frac{5000}{1+A3}$ (A3)
NO	. 10 PORTION
	Air Dry Wt. Passing No. 10 = (B1)
	Air Dry Water Content
	can no.
	wat A.a.a

dry +can
cen wt.
w.c. (dec) (A2)
Oven Dry Sample Wt. = $\frac{A1}{1+A2} = \frac{50cO}{(A3)}$
O. 10 PORTION
Air Dry Wt. Passing No. 10 =(B1)
Air Dry Water Content
can no.
wet + can
dry + can
can wt.
w.c. (dec) (B2)
Oven Dry Wt. Passing No. 10 = $\frac{B1}{1+B2} = \frac{50.0}{(B3)} = W$
Air Dry Wt. of Hydrometer Sample = (84)
Oven Dry Wt. of Hydrometer Sample = B4 (B5
SCF, Sieve Correction Factor = A3 100xB5 x B6=
HPF, Hydrometer Percentage Factor = 1000 G = 16

	IVVXD3		— .	
HPF, Hydrometer Percentage F Specific Gravity, G = 2.65	Factor = 1000 B5/B6	• <u>G</u> =	B5/B6	=

	DRY SIEVE							
0	Original Dry Sample Wy (A3) = 9.4. gm							
U.S. Standard Sleve Size	Can No.	Sample Wt. (SW)	Corrected Sample Wt. = SW-SCF (+18-+200 only)	Comulative Wt. Retained	Cumulative % Retained	% Passing		
1"			\geq					
3/4"			\geq					
3/8"			><					
+4			> <					
≠8			\supset			•		
≠ 10			>		,		В6	
≠16				·			ł	
≠30								
₹40						100		
≠50 }		1.5		1.5	3.0	97.0		
≠ 100		3.8		5.3.	10.6	89.4		
≠ 200		4,1		9,4	18.8	81.2		

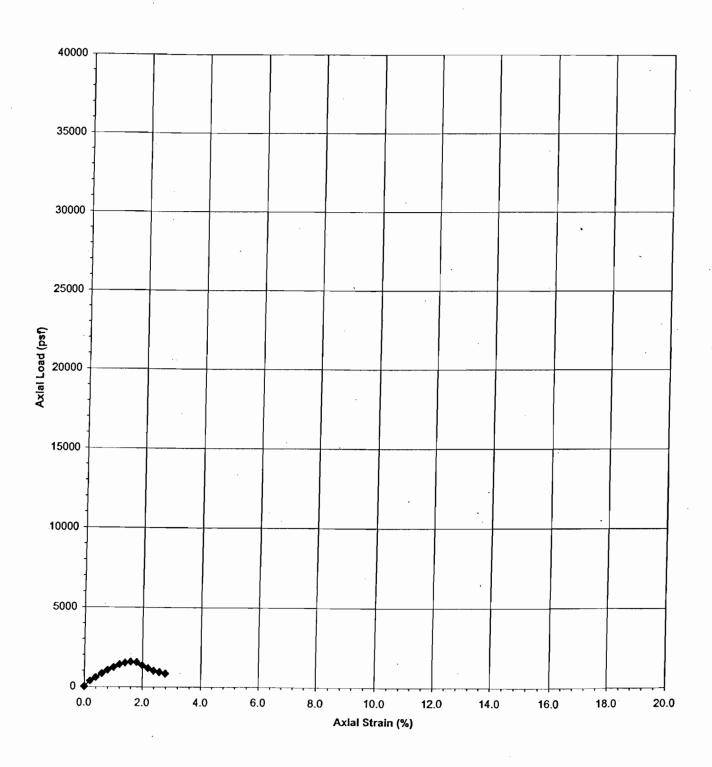
Hydrometer Correction clear water reading 200 (C1) TOP

Weter + disp (top) 7.0 (C2)

Water + disp (bottom) 7.5 (C3) 21.50

P= X 100 Hyd Corr -1x(2xC2-C1-C3) = -4.5

		<u> </u>				12 11 110	- mya com .	- 11/2102-0	1-03)
	T Elapsed Time	Hydrometer Reading	Hydrometer Correction	R Corrected Reading	Temp. (C)	P HPF • (R-1)	K Table 3, pg. 93	Table 2. pg. 92	D (mm) D=K√L/T
28 448 pm	2	40	-4,5	35.5	19	70.29	0.01361	9:7	0.0300
451	5	35.5	-4,5	31.0	19	61.38	1	10.5	0.0197
501	15	3,1	-4,5	26.5	19	52,47			0.0.118
516	30	28	-4,5	23,5	19	46.53		11.7	0.0085
540	-60	26	45	21.5	19	42.57	V	12.0	0.0061
846 pm	240 (4h)	21	4.5	16.5	19.5	32.67	0.01353	12.9	0.0031
3/446m	1440 (24h)	16.	-4,5	11.5	19	22.77	0.0361	13.7	0.0013

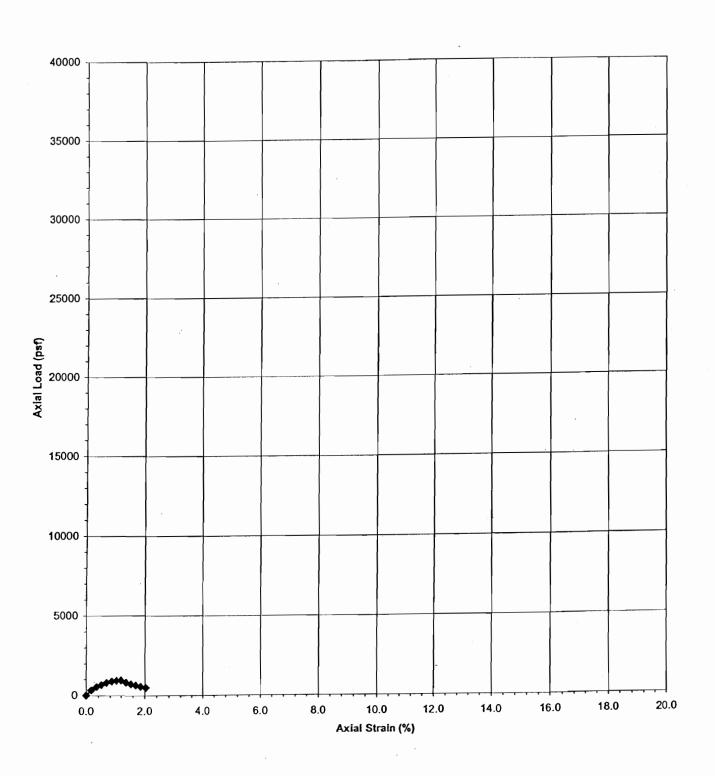

K=0.99

DIK GRY LAT GRY SAND

FOR ASSUMED Gig = 2.70

District 2th Standards

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-1 @ 5.5' Lt Olv Brn Silty Sandstone / Sandy Siltstone (VFG)

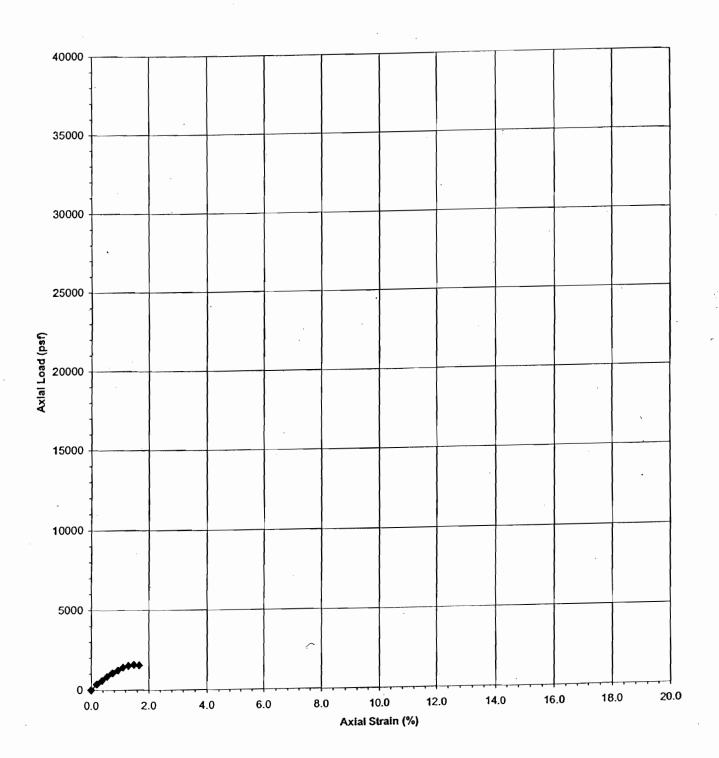

Unconfined C	Compre	ssion Test	Data (Roc	k)				
			1		tant = 0.69	54 lb/div		
CLIENT: Cal E	nainee	ring and Ge	oloav					•
PROJECT: Va			010,4,9	Sample Di	ameter:	2.40		
PROJ. #: 001				Sample Le	nath:	2.40		
	19/0			Wet Wt./Di				F-25
	BORING: B-1 DEPTH: 5.5				1: LT OLV	13RN 51	4	,
DEPTH:	5- 5	- 1		SANDST	OND NI	= G SANI	SILTST	2005
	<u>بہ ہ</u> بہ							
СН	ANGE IN	PROVING			CHANGE IN	PROVING		
	IEIGHT	RING READ.			HEIGHT	RING READ.		
- · · ·	(IN)	(DIV)			(IN)	(DIV)		
	0.01	16		1	0.26	(011)		
	0.02	7:/-			0.27			
	0.02	26 37 47		-	0.28			
-	0.04	<u>3</u> /	•		0.29			
	0.04	55	• .		0.29			
	0.03	25			0.30			
	0.07	68 71			0.31			
	0.07	90	r		0.33			
	0.09	70			0.34			
-	0.10	70			0.35			
	0.10	61 53			0.36			
	0.11	33			0.37			
	0.12	46			0.38			
ļ	0.13	42 38			0.39			
,	0.14	70			0.40	-		
	0.15				0.40			
	0.10			•	0.41			
	0.17				0.42			
	0.10				0.43			
	0.13				0.44			
	0.20				0.45			
	0.21				0.40			
	0.22				0.47		•	
	0.23				0.49			
	0.24			-	0.49			
 	0.23				0.50			
Sketch of Sam	nlo Affor	r Toot:				_		
Sketch of Sant	ple Aite	rest.						
		7 (
			,			-		
	-	J/M						
	ľ	$-V \downarrow I$	}			1 17.6	0010 27 17	
	t	$\sim \sim$		1320	INE	NOT 177	PARENT	2000
				NO	021514-11	VG ON	SHOSA	SURF
			-					
	ı							
				, l				
Comments:	UT DLV	BRN	2545/	4				
							·	

•

Sheet1 UNCONFINED COMPRESSION (UNCONF.XLS)

CLIENT:	CAL Engine	oring and C	cology	(UNCON	F.ALS)		
	Vasco Road		eology				
	001860						
DATE:	02/19/2001						
BORING:	B-1			Ring Cons	tant = 0.6954	l lb/div	
DEPTH:	5.5'			Tang Cons	tarit = 0.0354	ID/GIV	
DEP In.	5.5						
CAMPIE	ODIOINAL	OLIANIOE IN	DD01//110	DDOM INC	DDECCUDE	STRAIN	PRESSURE
SAMPLE	ORIGINAL	CHANGE IN		PROVING RING LOAD	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.		(DCL)	(9/)	(PSF)
(IN) 2.40	(IN) 5.03	(IN)	0	(LBS) 0.00	(PSF)	(%) 0.0	(151)
2.40	5.03	0.00	0 16	11.13	354	0.0	354
2.40	5.03		26	18.08	576	0.2	576
2.40		0.02	37	25.73	819	0.4	819
2.40	5.03 5.03	0.03	47	32.68	1040	0.8	1040
2.40	5.03	0.04	55	38.25	1217	1.0	1217
2.40	5.03	0.05	63	43.81	1395	1.2	1395
2.40	5.03	0.06	68	47.29	1505	1.4	1505
2.40	5.03	0.07	71	49.37	1572	1.6	1572
2.40	5.03	0.08	70	48.68	1549	1.8	1549
2.40	5.03	0.09	61	42.42	1350	2.0	1350
2.40	5.03	0.10	53		1173	2.0	1173
2.40				36.86	1018	2.2	1018
	5.03	0.12	46	31.99	930	2.4	930
2.40	5.03	0.13	42	29.21	841	2.8	841
2.40	5.03	0.14	38	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15 0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
<u> </u>		0.10		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
-		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
-		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
_		0.31	_	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0! #DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
						#DIV/0!	
		0.40		0.00	#DIV/0!	#017/0!	#DIV/0!

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-1 @ 13.5' Gry Brn and Lt Olv Brn w/ Yel Brn Sandy Siltstone / Silty Sandstone

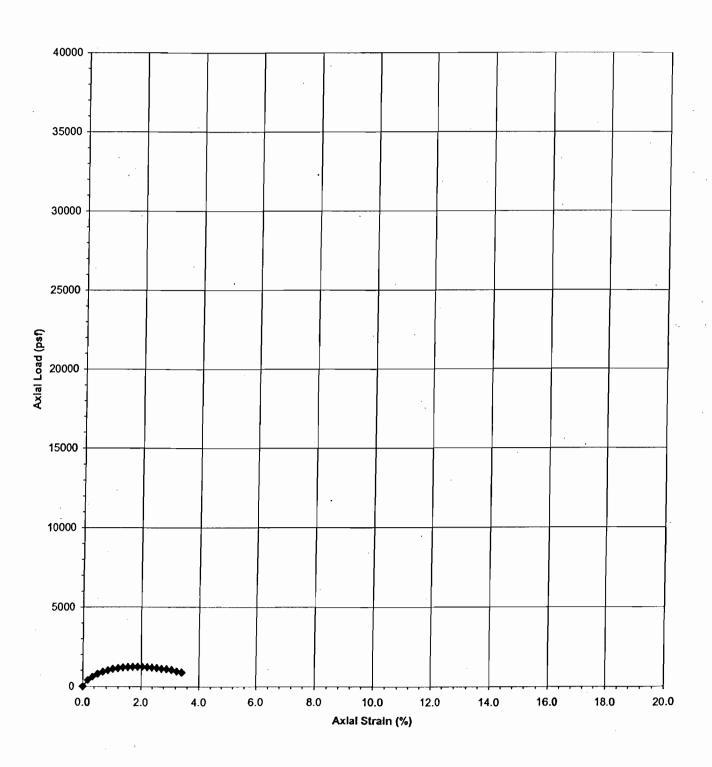


Sheet1 UNCONFINED COMPRESSION (UNCONF.XLS)

CLIENT: CAL Engineering and Geology
PROJ. # :
DATE: 02/19/2001
BORING: B-1
DEPTH: 13.5
SAMPLE ORIGINAL CHANGE IN PROVING PROVING PRESSURE STRAIN PRESSURE INC LOAD (IN) (INS) (INS
DIAMETER
DIAMETER
(IN) (IN) (IN) (IN) (LBS) (PSF) (%) (PSF) 2.41 5.91 0.00 0 0.00 0 0.0 0 2.41 5.91 0.02 24 16.69 527 0.3 527 2.41 5.91 0.03 30 20.86 659 0.5 659 2.41 5.91 0.04 36 25.03 790 0.7 790 2.41 5.91 0.05 40 27.82 878 0.8 878 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.08 37 25.73 812 1.4 812 2.41 5.91 0.10 29 20.17 637<
2.41 5.91 0.00 0 0.00 0 0.0
2.41 5.91 0.01 15 10.43 329 0.2 329 2.41 5.91 0.02 24 16.69 527 0.3 527 2.41 5.91 0.03 30 20.86 659 0.5 659 2.41 5.91 0.04 36 25.03 790 0.7 790 2.41 5.91 0.05 40 27.82 878 0.8 878 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.07 43 29.90 944 1.2 944 2.41 5.91 0.08 37 25.73 812 1.4 812 2.41 5.91 0.09 32 22.25 702 1.5 702 2.41 5.91 0.09 32 22.25 702 1.5 702 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0
2.41 5.91 0.02 24 16.69 527 0.3 527 2.41 5.91 0.03 30 20.86 659 0.5 659 2.41 5.91 0.04 36 25.03 790 0.7 790 2.41 5.91 0.05 40 27.82 878 0.8 878 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.08 37 25.73 812 1.4 812 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549<
2.41 5.91 0.03 30 20.86 659 0.5 659 2.41 5.91 0.04 36 25.03 790 0.7 790 2.41 5.91 0.05 40 27.82 878 0.8 878 2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.07 43 29.90 944 1.2 944 2.41 5.91 0.08 37 25.73 812 1.4 812 2.41 5.91 0.09 32 22.25 702 1.5 702 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483<
2.41 5.91 0.04 36 25.03 790 0.7 790
2.41
2.41 5.91 0.06 42 29.21 922 1.0 922 2.41 5.91 0.07 43 29.90 944 1.2 944 2.41 5.91 0.08 37 25.73 812 1.4 812 2.41 5.91 0.09 32 22.25 702 1.5 702 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.18 0.00 #DIV/0!
2.41 5.91 0.07 43 29.90 944 1.2 944 2.41 5.91 0.08 37 25.73 812 1.4 812 2.41 5.91 0.09 32 22.25 702 1.5 702 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 0.18 0.00 #DIV/0! #DIV/0! <
2.41 5.91 0.08 37 25.73 812 1.4 812 2.41 5.91 0.09 32 22.25 702 1.5 702 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.14 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
2.41 5.91 0.09 32 22.25 702 1.5 702 2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.14 0.00 #DIV/0!
2.41 5.91 0.10 29 20.17 637 1.7 637 2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.12 22 15.30 483 2.0 483 2.41 5.91 0.14 0.00 #DIV/0! #DIV/0! <t< td=""></t<>
2.41 5.91 0.11 25 17.39 549 1.9 549 2.41 5.91 0.12 22 15.30 483 2.0 483 0.13 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.14 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.15 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.16 0.00 #DIV/0! #DIV/0!<
2.41 5.91 0.12 22 15.30 483 2.0 483 0.13 0.00 #DIV/0!
0.13
0.14 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.15 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 4DIV/0! 4D
0.15 0.00 #DIV/0! #DIV/0! #DIV/0! 0.16 0.00 #DIV/0! #DIV/0! #DIV/0! 0.17 0.00 #DIV/0! #DIV/0! #DIV/0! 0.18 0.00 #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! 0.20 0.00 #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.16 0.00 #DIV/0! #DIV/0! #DIV/0! 0.17 0.00 #DIV/0! #DIV/0! #DIV/0! 0.18 0.00 #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! 0.20 0.00 #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.17 0.00 #DIV/0! #DIV/0! #DIV/0! 0.18 0.00 #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! 0.20 0.00 #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.18 0.00 #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! 0.20 0.00 #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.19 0.00 #DIV/0! #DIV/0! #DIV/0! 0.20 0.00 #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.20 0.00 #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.21 0.00 #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.22 0.00 #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.23 0.00 #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.24 0.00 #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.25 0.00 #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.26 0.00 #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.27 0.00 #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.28 0.00 #DIV/0! #DIV/0! #DIV/0!
0.29 0.00 #DIV/0! #DIV/0! #DIV/0!
0.30 0.00 #DIV/0! #DIV/0! #DIV/0!
0.31 0.00 #DIV/0! #DIV/0! #DIV/0!
0.32 0.00 #DIV/0! #DIV/0! #DIV/0!
0.33 0.00 #DIV/0! #DIV/0! #DIV/0!
0.34 0.00 #DIV/0! #DIV/0! #DIV/0!
0.35 0.00 #DIV/0! #DIV/0! #DIV/0!
0.36 0.00 #DIV/0! #DIV/0! #DIV/0!
0.37 0.00 #DIV/0! #DIV/0! #DIV/0!
0.37 0.00 #DIV/0! #DIV/0! #DIV/0!

Unconfine	ed Compre	ssion Test	Data (Roc	:k)					1
		1001	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		tant = 0.69	54 lb/div			
CLIENT: C	al Enginee	ring and Ge	ology	The same of the sa					1
PROJECT	: Vasco Ro	ad	01091	Sample Di	ameter: 2	<u> </u>			1
PROJ.#:				Sample Le	enath:	,91			1
DATE:	2/19/01			Wet Wt./D				131	1
BORING:	B-1			Description	1. C.D. 170	2014-150	V I BRAL		1
DEPTH:	13,5			וטפטעונאו	I:GAYBR BRN SAT	AD TENE	CARDER	La Carlana N.S.	
DEI 111.	<u> </u>			17201	<u> </u>	0093(2(3	DNG	7 >171102	10.0
	CHANGE IN	PROVING			CHANGE IN	PROVING			ĺ
	HEIGHT	RING READ.		 	HEIGHT	RING READ.			1
	(IN)	(DIV)			(IN)	(DIV)			ł
	0.01	15			0.26	(014)			ł
	0.02	2			0.27				ł
	0.02	29			0.28				
	0.03				0.20				
	0.04	40			0.29				
	0.06				0.30				
	0.07	, -			0.31				
	0.08	77			0.32				
	0.09	37 32		-	0.34				
	0.10	32		 	0.35		· · · · · ·		
	0.11				0.36		-		
	0.12	72			0.37				
	0.12	~~			0.38				
	0.14				0.39				
	0.15				0.40				
	0.16				0.41	· -			
4	0.17				0.41				
	0.18				0.42				
	0.19	-			0.44				
	0.20				0.44				
	0.21	_ -			0.46				
	0.22				0.47	<u> </u>			
	0.23				0.47				
	0.24				0.49				
	0.25				0.43				
	0.20				0.50				
ketch of S	Sample Afte	r Test:							
JACICII OI C	barriple Arte	1 1651.							
								<u></u>	
		/1							
		(
				SL 1	POLISHE	D SHEAM	2 SURFA	CE	
	,	/							
		-/							
		/ 							
		6710		5/3 5/8 Y					
comments:			-11.		/ 1	1 / 1 /			

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-1 @ 29.5' Olv Brn and Brn Yel Claystone

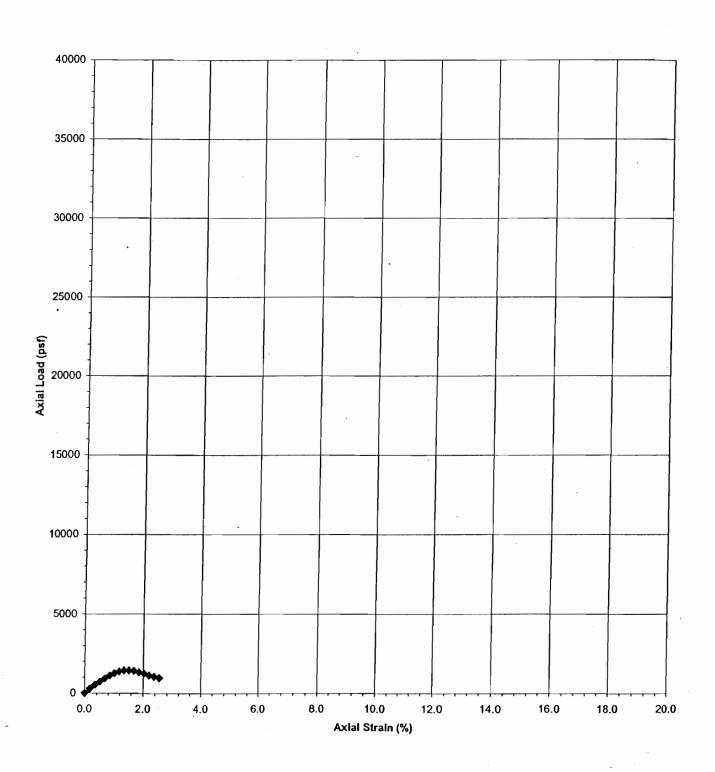


Sheet1 UNCONFINED COMPRESSION (UNCONF.XLS)

				(UNCON	IF.ALO)		
CLIENT:	CAL Engine		eology				
	Vasco Road		İ				
PROJ.#:	001860						
DATE:	02/19/2001						
BORING:	B-1			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	29.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%) ·	(PSF)
2.40	5.41	0.00	0	0.00	0	0.0	0
2.40	5.41	0.01	16	11.13		0.2	354
2.40	5.41	0.02	26	18.08	576	0.4	576
2.40	5.41	0.03	37	25.73	819	0.6	819
2.40	5.41	0.04	47	32.68	1040	0.7	1040
2.40	5.41	0.05	55	38.25	1217	0.9	1217
2.40	5.41	0.06	63	43.81	1395	1.1	1395
2.40	5.41	0.07	68	47.29	1505	1.3	1505
2.40	5.41	0.08	71	49.37	1572	1.5	1572
2.40	5.41	0.09	70	48.68	1549	1.7	1549
		0.10		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.11		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.12		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.13		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.14		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0,00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28	_	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		00					

Unconfined C	ompre	ssion Test	Data (Ro	:k)	1			1
					tant = 0.69	54 lb/div		
CLIENT: Cal E	nginee	ring and Ge	eology	9 00.10	1	1		-
PROJECT: Va	sco Ro	ad	оюду	Sample Di	iameter:	2,40		
PROJECT: Vasco Road PROJ. #: 001860				Sample Le		5,41		
DATE: 2 19/01 BORING: B-1				Wet Wt./D	ry W/t	2, 11		FLID
BORING:	2-11			Descriptio	1-60			
DEPTH: 2	29.5			CIAYS	7770 15	BING T PA		
2	_ 1, 5			00,4313	10000		T	-
CHA	NGE IN	PROVING			CHANGE IN	PROVING	 	
	EIGHT	RING READ.			HEIGHT	RING READ	 	
	(IN)	(DIV)			. (IN)	(DIV)		
	0.01				0.26			
	0.02	21			0.27			
	0.03	18		ļ .	0.28			
	0.04	1/2			0.29			
	0.05	16			0.30			
	0.06	12			0.31			
	0.07	11			0.32			
	0.08	11			0.33			
	0.09	10			0.34			
	0.10	10		-	0.35			
-	0.11				0.36			
	0.12				0.37			
	0.13				0.38			
	0.14			 	0.39			
	0.15				0.40			
	0.16				0.41		· -	
	0.17				0.42		-	
	0.18				0.43			
	0.19				0.44			
	0.20			 	0.45	,	v # :	
	0.21				0.46			
	0.22				0.47			
	0.23				0.48		-	
	0.24				0.49			
	0.25				0.50			
					0.00			
Sketch of Samp	le Afte	r Test						
The state of the s	7.07 11.0			· ·				
				12.50.5		4 0	24.0	
	1	人		DEISO	ING N	OT AP	PATESN	<u>T</u>
				(th 0 .4				
	ļ			Han			2	
	1			10015	ED SH	ZAR S	UKEACE	
	(l	<i>'</i>		PIKE	EXISTIA	or ' Va	-ry r	422MIL
	/					· ·		
	(co)							
	100							
Comments:	5511	5/11 1		2.1 . 0		10110	. /	
Comments.	X.5 Y	14 15	OLV BI	2N + B1	CD 1CS	TOYR 6	78	

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 17.5' Lt Olv Brn w/ Yel Brn Sandy Siltstone / Silty and Clayey Sandstone

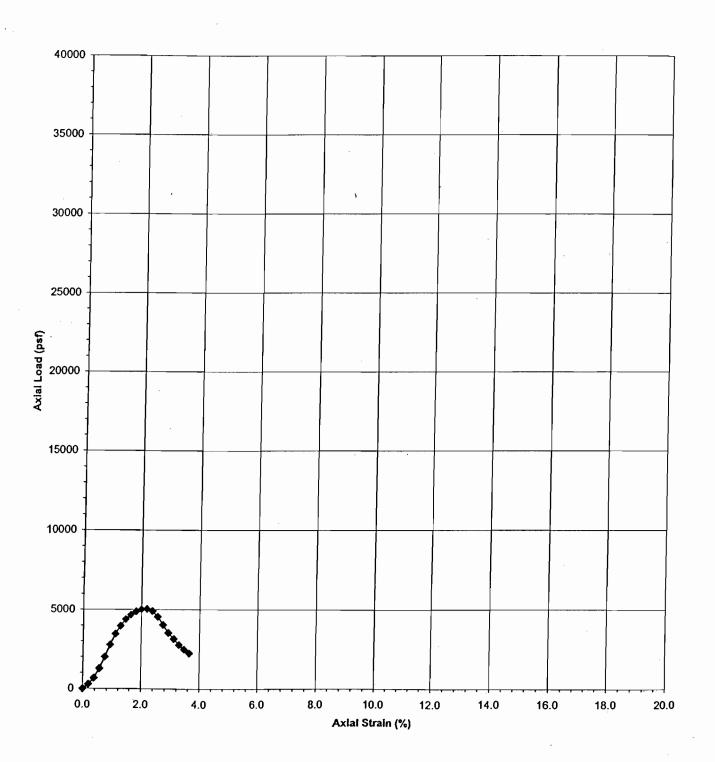


Sheet1 UNCONFINED COMPRESSION (UNCONF.XLS)

CLIENT: CAL Engineering and Geology PROJECT Vasco Road	
PROJ. #: 001860	
DATE: 02/19/2001	
BORING: B-2 Ring Constant = 0.6954 lb/div	
DEPTH: 17.5'	
SAMPLE ORIGINAL CHANGE IN PROVING PROVING PRESSURE STRAIN PR	RESSURE
DIAMETER HEIGHT HEIGHT RING READ. RING LOAD	
(IN) (IN) (LBS) (PSF) (%)	(PSF)
2.39 5.87 0.00 0 0.00 0 0.0	0
2.39 5.87 0.01 18 12.52 402 0.2	402
2.39 5.87 0.02 27 18.78 603 0.3	603
2.39 5.87 0.03 35 24.34 781 0.5	781
2.39 5.87 0.04 41 28.51 915 0.7	915
2.39 5.87 0.05 45 31.29 1004 0.9	1004
2.39 5.87 0.06 49 34.07 1094 1.0	1094
2.39 5.87 0.07 51 35.47 1138 1.2	1138
2.39 5.87 0.08 53 36.86 1183 1.4	1183
2.39 5.87 0.09 54 37.55 1205 1.5	1205
2.39 5.87 0.10 55 38.25 1228 1.7	1228
2.39 5.87 0.11 55 38.25 1228 1.9	1228
2.39 5.87 0.12 55 38.25 1228 2.0	1228
2.39 5.87 0.13 54 37.55 1205 2.2	1205
2.39 5.87 0.14 53 36.86 1183 2.4	1183
2.39 5.87 0.15 52 36.16 1161 2.6	1161
2.39 5.87 0.16 50 34.77 1116 2.7	1116
2.39 5.87 0.17 49 34.07 1094 2.9	1094
2.39 5.87 0.18 47 32.68 1049 3.1	1049
2.39 5.87 0.19 43 29.90 960 3.2	960
2.39 5.87 0.20 40 27.82 893 3.4	893
0.21 0.00 #DIV/0! #DIV/0! #	DIV/0!
0.22 0.00 #DIV/0! #DIV/0! #	DIV/0!
0.23 0.00 #DIV/0! #DIV/0! #	DIV/0!
0.24 0.00 #DIV/0! #DIV/0! #	DIV/0!
0.25 0.00 #DIV/0! #DIV/0! #	DIV/0!
0.26 0.00 #DIV/0! #DIV/0! #	DIV/0!
0.27 0.00 #DIV/0! #DIV/0! #	DIV/0!
	DIV/0!
	DIV/0!
	DIV/0!
0.31 0.00 #DIV/0! #DIV/0! #I	DIV/0!
0.32 0.00 #DIV/0! #DIV/0! #I	OIV/0!
0.33 0.00 #DIV/0! #DIV/0! #H	DIV/0!
0.34 0.00 #DIV/0! #DIV/0! #E	OIV/0!
0.35 0.00 #DIV/0! #DIV/0! #E)IV/0!
0.36 0.00 #DIV/0! #DIV/0! #E	DIV/0!
	DIV/0!
0.38 0.00 #DIV/0! #DIV/0! #E	DIV/0!
0.39 0.00 #DIV/0! #DIV/0! #E	DIV/0!
0.40 0.00 #DIV/0! #DIV/0! #E	DIV/0!

Unconfin	ed Compre	ssion Test	Data (Roc	:k)	T				T	7
			,	Ring Con:	stant =	0.69	54 lb/div	1		
CLIENT: C	Cal Enginee	ring and Ge	oloav							
	: Vasco Ro		0.0.97	Sample D	iameter	r:	2,39			1
PROJ. #:	001860			Sample L		-	2,39			
DATE:		01		Wet Wt./D	ry Wt.:				F-90	1
BORING:	7/19/13-2			Description	n: LT	αV	BRN W/	YEZBRN		1
DEPTH:	17.5			SANDY	SILTS	TON	JE SIH	Y + CLAYE	Y SANDS	ONE
							,		y samos: VF a	1
	CHANGE IN	PROVING					PROVING			1
	HEIGHT	RING READ.			HEIG	HT	RING READ]
	(IN)	(DIV)			(IN	1)	(DIV)]
	0.01	18				0.26				1
	0.02	35				0.27				
	0.03	35				0.28		T		
	0.04	41				0.29				
	0.05	45				0.30				
	0.06	49				0.31				
_	0.07	51				0.32				
	0.08	53				0.33				
	0.09	54			(0.34				
	0.10	55				0.35				
	0.11	55 55				0.36	,			
	0.12	55			(0.37				
	0.13	54 53				0.38				
	0.14	53	•		(0.39				
	0.15	52 50			(0.40				
	0.16	50				0.41				
	0.17	49				0.42				
	0.18	47				0.43				
	0.19	43				0.44				
	0.20	40				0.45				
	0.21				(0.46				
	0.22).47				
	0.23).48				
	0.24).49				
	0.25				C	0.50				
Sketch of S	Sample Afte	r Test:						•		
				BEDO	INE	Na	- APPAI	RENT		
			[
	•			YEL BRI	1201	SE	WIPRE	EXIST SA	HEARS	
	340/	1. July 1.		4T S	AME	A	UGLE	•		
	21 (~\\\\								
	V ¹	· /		POUSE	ZR	SH	ZAR SI	JRFACE		
Comments	: 2,545	13 5/4	Ly de	BRN	W I	DYA	2 5/8 Y	EL BRN	MOT	
	V	MOIST	<u> </u>							

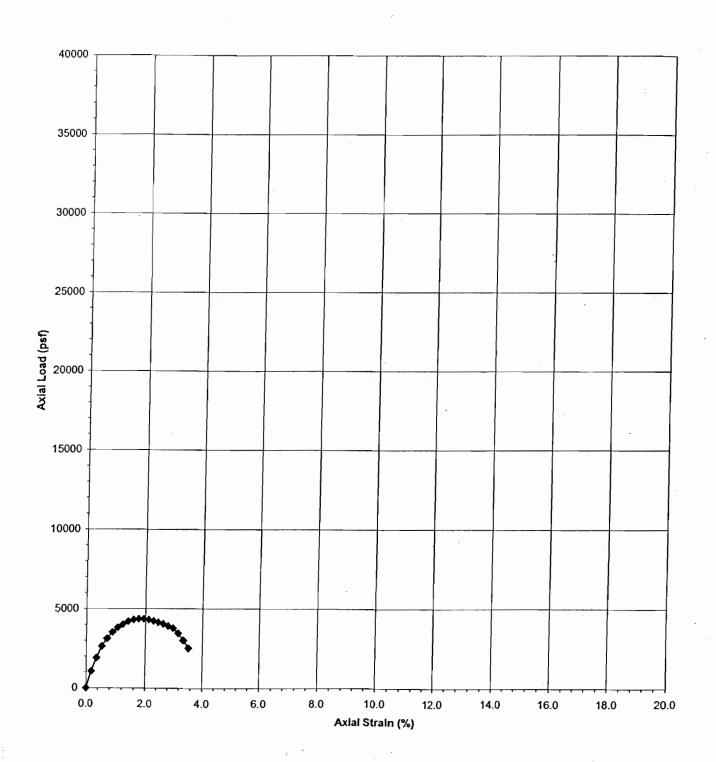
Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 19.0' Lt Oiv Brn w/ Yel Brn Claystone w/ Sand Pockets / Laminations



CUENT.	CAL Engine		21	(UNCON	IF.ALS)		Τ
CLIENT:	CAL Engine Vasco Road		eology				
PROJECT		·					
DATE:	02/19/2001						
BORING:	B-2			Ding Cons	<u> </u> tant = 0.6954	l lh/div	
				King Cons	tant – 0.0952	i ib/div	
DEPTH:	19.0'	_			-		
	05101111	0.11.105		5561/1110			55566155
SAMPLE	ORIGINAL	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.				/= a=1
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.41	5.93	0.00	0	0.00	0	0.0	0
2.41	5.93	0.01	13		285	0.2	285
2.41	5.93	0.02	24	16.69	527	0.3	527
2.41	5.93	0.03	33	22.95	724	0.5	724
2.41	5.93	0.04	42	29.21	922	0.7	922
2.41	5.93	0.05	50	34.77	1098	0.8	1098
2.41	5.93	0.06	57	39.64	1251	1.0	1251
2.41	5.93	0.07	62	43.11	1361	1.2	1361
2.41	5.93	0.08	65	45.20	1427	1.3	1427
2.41	5.93	0.09	65	45.20	1427	1.5	1427
2.41	5.93	0.10	64	44.51	1405	1.7	1405
2.41	5.93	0.11	60	41.72	1317	1.9	1317
2.41	5.93	0.12	56	38.94	1229	2.0	1229
2.41	5.93	0.13	51	35.47	1120	2.2	1120
2.41	5.93	0.14	47	32.68	1032	2.4	1032
2.41	5.93	0.15	44	30.60	966	2.5	966
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0! #DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
		0.27		0.00	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
				0.00			
		0.29			#DIV/0! #DIV/0!	#DIV/0!	#DIV/0! #DIV/0!
	+	0.30		0.00	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
		0.31		0.00	#DIV/0! #DIV/0!		#DIV/0! #DIV/0!
		0.32		0.00	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
		0.33		0.00	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!
	-	0.34		0.00	#DIV/0! #DIV/0!		#DIV/0! #DIV/0!
				0.00	#DIV/0! #DIV/0!	#DIV/0!	
		0.36		0.00		#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
					#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

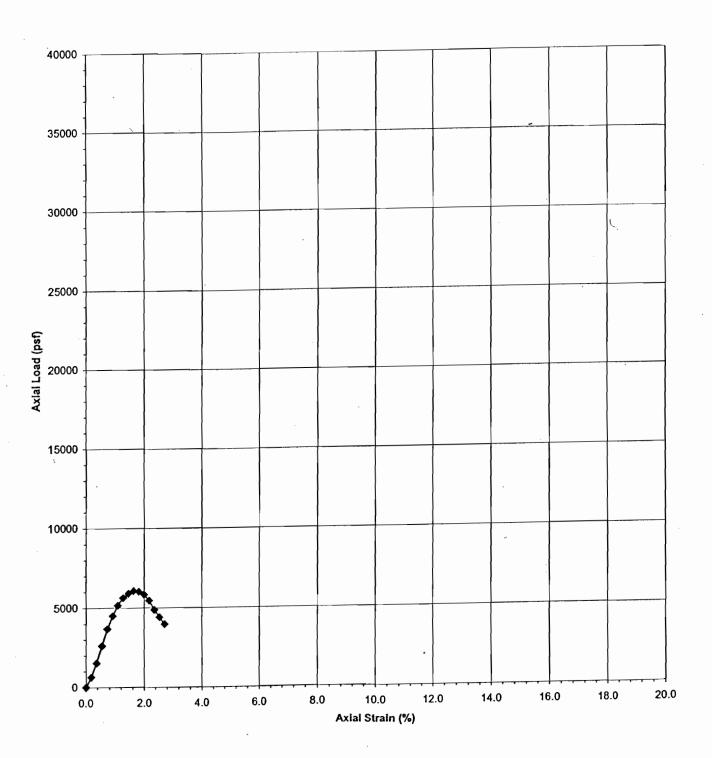
	ed Compre		Dala (RO		stant = 0.69	54 lh/div	_	
01.151.15	15 .			King Con	Statit = 0.69	34 ID/QIV		
		ring and Ge	ology					_
	: Vasco Ro	ad		Sample D	niameter: ength:	2.41		
PROJ.#:				Sample L	ength: 💆	5,93		
DATE:	2/19/	0 (Wet Wt./D	Ory Wt.:		_	F-10
BORING:	B-2			Description	on: LT OLV	BRN Y	YEL BRI	V
DEPTH:	19.0'			CLAYST	ONE W/	SAND PO	KKUTS,	LAM.
-	CHANGE IN	PROVING			CHANGE IN	PROVING		_
	HEIGHT	RING READ.			HEIGHT	RING REAL	D.	
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	13			0.26			
	0.02	72			0.27		1	
	0.03				0.28			
	0.04	42			0.29			
_	0.05				0.23			_
	0.03		_	+	0.30		_	
	0.00	5/			0.31		-	_
	0.07				0.32		-	
·	0.08	65 \$		_	0.33		_	
	0.10	64			0.35			
	0.11	60			0.36		-	
	0.12	56			0.37		-	
	0.13	51			0.38			
	0.14	47			0.39			
	0.15	44			0.40			
	0.16	.			0.41			
	0.17				0.42			
	0.18				0.43	_		
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22				0.47			
	0.23				0.48			
	0.24				0.49			
	0.25				0.50			
Sketch of S	ample After	r Test:						
1								
								
	,,,			RODD	NE NO	T ORV.	502	
	11	<u> </u>		0000		. 0.34 (
		7						
	}	1 1						.
)[· \	~					
			270/		_			
	ĮĻ							
	0 ~1	وستود وعو ا	٠ د	-1.4	A			1.00
comments:	2.5	1 5/3 5/0 > YR 5/0	1 14	OW BRA	y YEOL	ISHED S	SHEAR	SURIA
	w le	2 YR 5/9	YKZ B	KN	·			

(; ·


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 26.5' Lt Olv Brn w/ Yel Brn Claystone w/ Sand Pockets / Laminations

CLIENT:	CAL Engine	oring and C	Coology	CONCON			,
	Vasco Road		Jeology				
	001860						
	02/19/2001						
DATE:				Ping Const	tant = 0.6954	lb/div	
BORING:	B-2			King Cons	lant - 0.0934	ID/UIV	
DEPTH:	26.5'						
							PERCUIPE
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.40	5.49	0.00	0	0.00	0	0.0	0
2.40	5.49	0.01	13	9.04	288	0.2	288
2.40	5.49	0.02	30	20.86	664	0.4	664
2.40	5.49	0.03	57	39.64	1262	0.5	1262
2.40	5.49	0.04	90	62.59	1992	0.7	1992
2.40	5.49	0.05	125	86.93	2767	0.9	2767
2.40	5.49	0.06	156	108.48	3453	1.1	3453
2.40	5.49	0.07	179	124.48	3962	1.3	3962
2.40	5.49	0.08	198	137.69	4383	1.5	4383
2.40	5.49	0.09	211	146.73	4671	1.6	4671
2.40	5.49	0.10	220	152.99	4870	1.8	4870
2.40	5.49	0.11	226	157.16	5003	2.0	5003
2.40	5.49	0.12	227	157.86	5025	2.2	5025
2.40	5.49	0.13	221	153.68	4892	2.4	4892
2.40	5.49	0.14	205	142.56	4538	2.6	4538
2.40	5.49	0.15	182	126.56	4029	2.7	4029
2.40	5.49	0.16	159	110.57	3519	2.9	3519
2.40	5.49	0.17	142	98.75	3143	3.1	3143
2.40	5.49	0.18	125	86.93	2767	3.3	2767
2.40	5.49	0.19	112	77.88	2479	3.5	2479
2.40	5.49	0.20	101	70.24	2236	3.6	2236
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	· ·	0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39				#DIV/0! #DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#017/0!	#017/0!

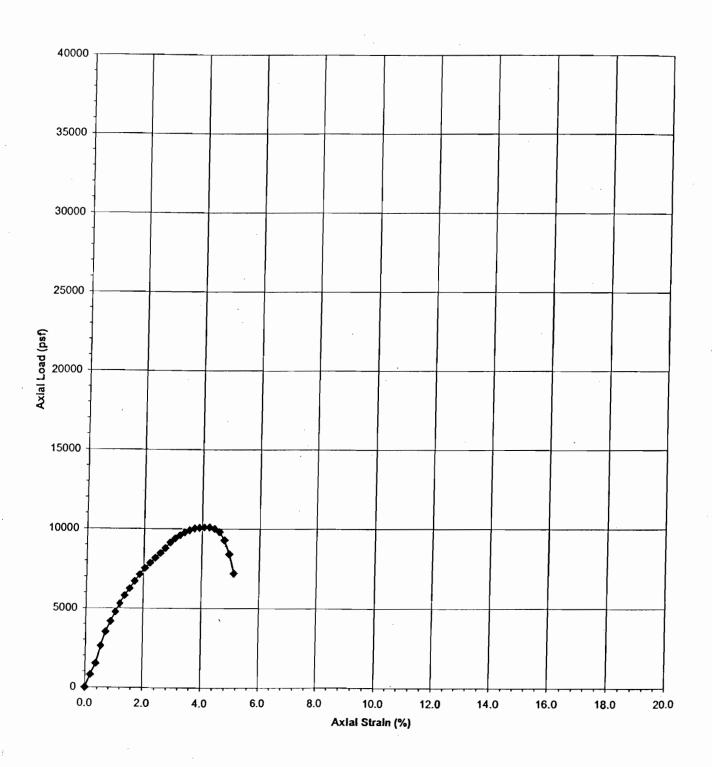
Unconfine	ed Compre	ssion Test	Data (Roc	:k)			T	
3					tant = 0.69	54 lb/div		
CLIENT: C	l Cal Enginee	⊥ ring and Ge	ology	rang conc	0.000	1		
	: Vasco Ro		юцу	Sample Di	amotor:	2,40		
PROJECT		au		Sample Le	nath:	5,49		
				Wet Wt./Di	119th	> - 1-1		F-61
BORING:	2/19/01		· · · · · ·		1: LT OLV	(70.1 1.1	/\ \ D	F-01
DEPTH:	B-Z 26.51			CAAAAG	IN DEV	GICH WI	NCLUSION	·
DEP In.	2615			CLASI	006 00	SKNUT	10 CZ V STOR	<u>></u>
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		_
	(IN)				(IN)	(DIV)		
-	0.01	(DIV) 13			0.26	(DIV)		
	0.01	36			0.27			
	0.02	77	*		0.28			1
_	0.03	57			0.29	_		
	0.04	125			0.29			
_	0.03	156			0.31	_		
	0.00	179			0.32			
	0.08	100			0.33			
	0.09	198			0.34			
	0.10	220			0.35			
	0.11	226			0.36			
	0.12	227			0.37			
	0.13	77.1			0.38			
	0.14	205			0.39			_
	0.15	221 205 182			0.40			
	0.16	159			0.41			
	0.17	142			0.42			
	0.18	125			0.43			
	0.19	112		1	0.44			
	0.20	101			0.45			
	0.21				0.46			
	0.22				0.47			
	0.23			-	0.48			
	0.24		_		0.49			
	0.25				0.50			
				,				
Sketch of S	ample Afte	r Test:			-			
			-					
	1							
		,].						
) M	}					
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\						
		ا سم						
,		<i>y</i>						
	/ <u>1</u>							
	1429	,						
Comments:	POLISH	han she	PAR SUR	RFACE				
		LV BRN	2,54	5/3 5	5/4 W	104R S	18 YKZ	BRN
			- · · <u>- ,</u>	-	7	 	+	


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 35.0' Olv Brn w/ Yel Brn Claystone w/ Gypsum

	041.5	·		LONCON	i .XLO		
CLIENT:	CAL Engine		eology		_		
	Vasco Road						
PROJ. #:	001860						
DATE:	02/19/2001			Ding Const	tant = 0.6954	lb/div	
BORING:	B-2			Ring Consi	tant = 0.0954	ID/GIV	
DEPTH:	35.0'						
SAMPLE	ORIGINAL	CHANGE IN		PROVING.	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD		(0/)	(DOF)
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.68	0.00	0	0.00	0	0.0	1049
2.39	5.68	0.01	47	32.68	1049		1897
2.39	5.68	0.02	85	59.11	1897	0.4	
2.39	5.68	0.03	118	82.06	2634	0.5	2634
2.39	5.68	0.04		97.36	3125	0.7	3125
2.39	5.68	0.05	158	109.87	3527	0.9	3527
2.39	5.68	0.06		118.91	3817	1.1	3817
2.39	5.68	0.07	180	125.17	4018	1.2	4018
2.39	5.68	0.08		130.74	4196	1.4	4196
2.39	5.68	0.09	193	134.21	4308	1.6	4308
2.39	5.68	0.10	195	135.60	4353	1.8	4353
2.39	5.68	0.11	195	135.60	4353	1.9	4353
2.39	5.68	0.12	193	134.21	4308	2.1	4308
2.39	5.68	0.13	189	131.43	4219	2.3	4219
2.39	5.68	0.14	185	128.65	4129	2.5	4129
2.39	5.68	0.15		125.87	4040	2.6	4040
2.39	5.68	0.16	175	121.70	3906	2.8	3906
2.39	5.68	0.17	169	117.52	3772	3.0	3772
2.39	5.68	0.18		107.79	3460	3.2	3460
2.39	5.68	0.1,9	135	93.88	3013	3.3	3013
2.39	5.68	0.20	113	78.58	2522	3.5	2522
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28	-	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	_	0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		5.10					

Unconfine	ed Compre	ssion Test	Data (Roc	:k)				
	1				tant = 0.69	54 lb/div		
CLIENT: C	al Enginee	ring and Ge	eoloav	Ť				
	: Vasco Ro		901091	Sample Di	ameter:	2,39		
PROJ. #:				Sample Le	ength: 5	.6%		
DATE:	2/10/0			Wet Wt./D	rv Wt.:	<u></u>		F-103
BORING:	2/19/0 B-2	<u> </u>			n: OLV BA	SN W/W	2 BRN	1-10 /
DEPTH:	35,0			CLAYS	7740-5	/w/	GYPSUM)	
<i>DEI</i> 1711								
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	47			0.26	· · · · · · ·		
	0.02	85			0.27			
	0.03	118			0.28			
	0.04	140			0.29			
	0.05	158			0.30			
	0.06	171			0.31			
	0.07	180			0.32			
	0.08	188			0.33			
	0.09	193			0.34			
	0.10	195	4		0.35			
	0.11	195			0.36			
	0.12	193			0.37		_	
	0.13	189			0.38			
	0.14	185			0.39			
	0.15	181			0.40			
	0.16	175			0.41			
	0.17	169			0.42			
	0.18	155			0.43			
	0.19	135			0.44			
	0.20	113			0.45			
	0.21				0.46			
	0.22				0.47			
	0.23				0.48			
	0.24				0.49			
	0.25				0.50			
Sketch of S	Sample Afte	r Test:						
	•							
				MOPARI	NT RH	DDING	16° DI	P
, , , , , , , , , , , , , , , , , , , ,		3/-		ORTI	+ TD	FAILURE	= PLAN	\ <u>=</u>
		1	-GYPSUI	n Wil	TH SY	50117 1	AYER	0
				APPARZO ORTI	160 D	P		
		$J \setminus I$						
		5'. N						
		43	10					
Comments			*->					
	5441.	2 OLV	BRN	W/101	IR 5/8	YEL BA	۷۷	
	- /	· · · · ·	t M			1		

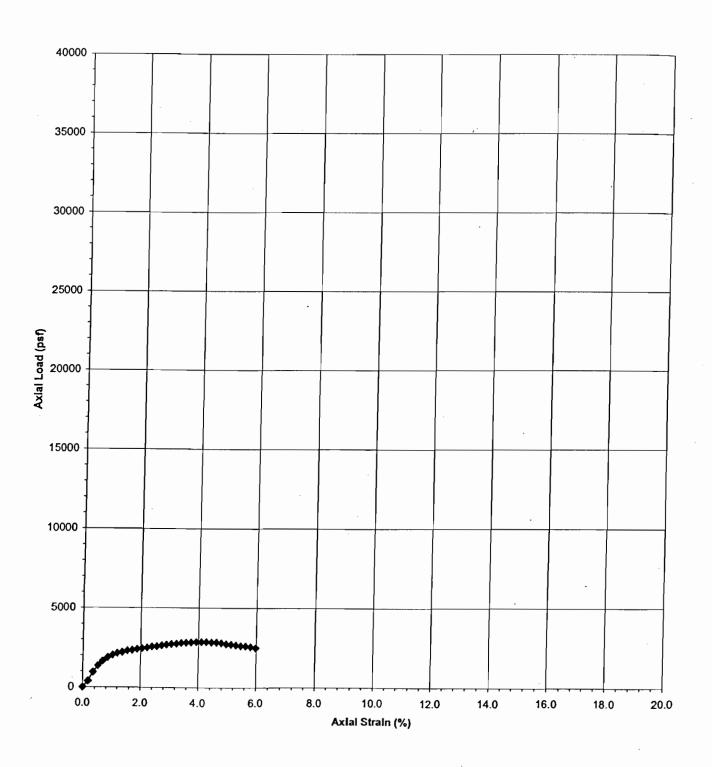
Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 39.5' Blk / V Dk Gry Claystone



				(UNCON	F.XLS)		
CLIENT:	CAL Engine	ering and G	Seology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/19/2001						
BORING:	B-2			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	39.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.37	5.52	0.00	0	0.00	0	0.0	0
2.37	5.52	0.01	28	19.47	636	0.2	636
2.37	5.52	0.02	67	46.59	1521	0.4	1521
2.37	5.52	0.03	115	79.97	2610	0.5	2610
2.37	5.52	0.04	162	112.65	3677	0.7	3677
2.37	5.52	0.05	198	137.69	4494	0.9	4494
2.37	5.52	0.06	227	157.86	5153	1.1	5153
2.37	5.52	0.07	248	172.46	5629	1.3	5629
2.37	5.52	0.08	260	180.80	5902	1.4	5902
2.37	5.52	0.09	267	185.67	6061	1.6	6061
2.37	5.52	0.10	265	184.28	6015	1.8	6015
2.37	5.52	0.11	257	178.72	5834	2.0	5834
2.37		0.12	240	166.90	5448	2.2	5448
2.37	5.52		214	148.82	4858	2.4	4858
2.37	5.52	0.14		134.91	4404	2.5	4404
2.37	5.52	0.15	175	121.70	3972	2.7	3972
2.51	0.02	0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
<u> </u>		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
,				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.39	•				#DIV/0!
1		0.40		0.00	#DIV/0!	#DIV/0I	#1714/01

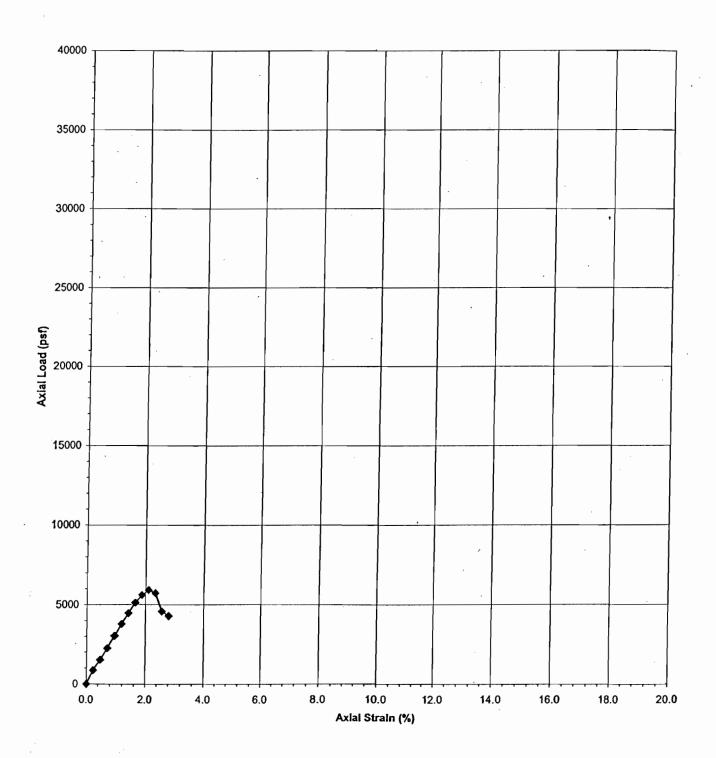
Unconfined Compression Test Data (Roc	;k)	
	Ring Constant = 0.6954 lb/div	
CLIENT: Cal Engineering and Geology		
PROJECT: Vasco Road	Sample Diameter: Z,37	
PROJ. #: 001860	Sample Diameter: 2,37 Sample Length: 5,52	
DATE: 2/19/01	Wet Wt./Dry Wt.:	33
BORING: B-Z	Description: BLK CLAY STONE	33_
DEPTH: 39.5 '	(VOKGRY)	
31.5		
CHANGE IN PROVING	CHANGE IN PROVING	
HEIGHT RING READ.	HEIGHT RING READ.	
(iN) (DIV)	(IN) (DIV)	_
0.01 28	0.26	
0.02 67	0.27	
0.03 115	0.28	
0.04 162	0.29	
	0.30	
0.06 527	0.31	_
0.05 148 0.06 227 0.07 248	0.32	
0.08 260	0.33	
0.09 267	0.34	
0.10 265	0.35	
0.09 267 0.10 265 0.11 257	0.36	
0.12 240	0.37	
0.12 240 0.13 214	0.38	
0.14 194	0.39	
0.15 175	0.40	
0.16	0.41	
0.17	0.42	
0.18	0.43	
0.19	0.44	
0.20	0.45	
0.21	0.46	
0.22	0.47	
0.23	0.48	
0.24	0.49	
0.25	0.50	
Sketch of Sample After Test:		
1 1 16		
35? \		
Comments: 2.59 2.57 (

(...


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 48.5' Blk and V Dk Gry Sandy Claystone / Clayey Sandstone (VFG)

				(UNCON	F.ALS)		
CLIENT:	CAL Engine		eology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/19/2001						
BORING:	B-2			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	48.5'						
<u> </u>							
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)	7	(LBS)	(PSF)	(%)	(PSF)
2.40	5.89	0.00	0	0.00	0	0.0	0
2.40	5.89	0.01	36	25.03	797	0.2	797
2.40		0.01	68	47.29	1505	0.3	1505
2.40	5.89	0.02	118	82.06	2612	0.5	2612
	5.89	0.03	158	109.87	3497	0.7	3497
2.40			188	130.74	4161	0.8	4161
2.40		0.05	215	149.51	4759	1.0	4759
2.40		0.06			5290	1.2	5290
2.40		0.07	239	166.20		1.4	5799
2.40		0.08	262	182.19	5799		6242
2.40		0.09	282	196.10	6242	1.5	6707
2.40		0.10	303	210.71	6707	1.7	
2.40	5.89	0.11	322	223,92	7128	1.9	7128
2.40		0.12	340	236.44	7526	2.0	7526
2.40		0.13	355	246.87	7858	2.2	7858
2.40	5.89		369	256.60	8168	2.4	8168
2.40	5.89	0.15	383	266.34	8478	2.5	8478
2.40	5.89	0.16		276.07	8788	2.7	8788
2.40	5.89	0.17	413	287.20	9142	2.9	9142
2.40	5.89	0.18	425	295.55	9407	3.1	9407
2.40	5.89	0.19	434	301.80	9607	3.2	9607
2.40	5.89	0.20	442	307.37	9784	3.4	9784
2.40		0.21	448	311.54	9917	3.6	9917
2.40			453	315.02	10027	3.7	10027
2.40			455	316.41	10072	3.9	10072
2.40				317.10	10094	4.1	10094
2.40					10094	4.2	10094
2.40				314.32	10005	4.4	10005
2.40				308.06	9806	4.6	9806
2.40				292.07	9297	4.8	9297
2.40				264.25	8411	4.9	8411
2.40				226.01	7194	5.1	7194
2.40	3.03	0.30	020	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.37				#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!		
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

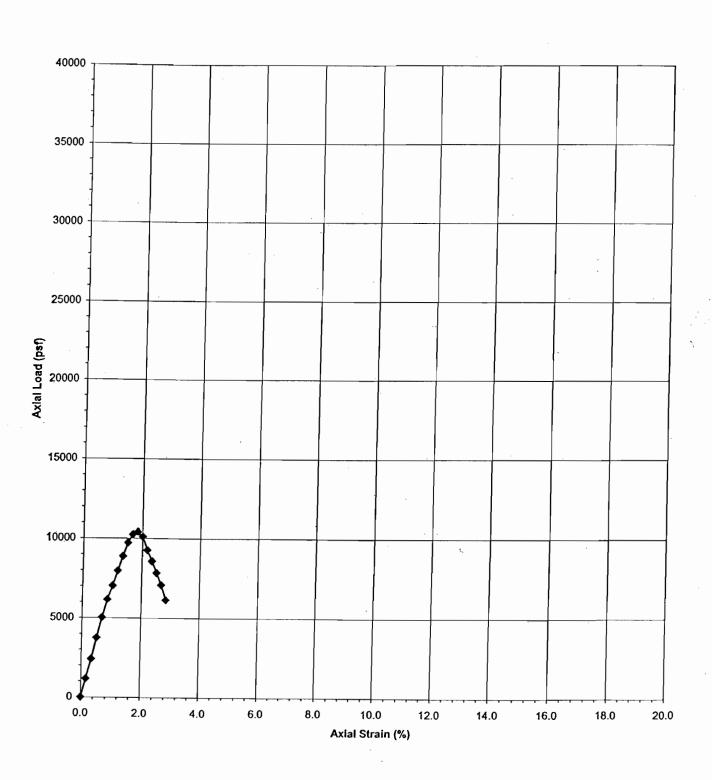
Unconfine	ed Compre	ssion Test	Data (Roc	:k)		1	<u> </u>	1	
01100111111					tant = 0.69	54 lb/div			
CLIENT: C	Cal Enginee	ring and Ge	ology	3 50,10	3.00				
	: Vasco Ro		.0.097	Sample Di	ameter: Z	.40			
PROJ. #:			<u> </u>	Sample Le	ength: 5	.89			
DATE:	2/19/0	1		Wet Wt./D	ry Wt.:	<u> </u>		E-21	
BORING:				Description	1: RIK4	VDKY CAR	1		
DEPTH:	48.5			SANDY G	LAUSTONA	E CLAYEN	1 1 SANDST	MIX V	161
DE7 11 11	1000			10 000 1	70(5.0)	1	10.6	7	• -
	CHANGE IN	PROVING			CHANGE IN	PROVING			
	HEIGHT	RING READ.			HEIGHT	RING READ.			
	(IN)	(DIV)			(IN)	(DIV)			
	0.01	36			0.26	457			_
	0.02	68			0.27	442			
	0.03	112			0.28				_
	0.04	118			0.29	300			_
	0.05	100	_		0.30	720			
	0.06	188			0.31	265	_		
	0.07	279			0.32				
	0.08				0.33				
	0.09	282			0.34		_		
	0.10				0.35				
	0.11	303 322			0.36				_
	0.12	340			0.37				\neg
	0.13	340 355			0.38				-
	0.14	369 383 391 413 425			0.39				
	0.15	787			0.40				
	0.16	207			0.41				\neg
	0.17	413			0.42				\neg
	0.18	425			0.43				
	0.19	434			0.44				
	0.20	447_			0.45				\neg
	0.21	442			0.46				\neg
	0.22	453			0.47				
	0.23	455			0.48	-,			
	0.24		<u> </u>		0.49	•			\dashv
	0.25	456			0.50				_
		100							ᅥ
Sketch of S	Sample Afte	r Test:							\dashv
									\dashv
			1						\neg
			'\						\dashv
	i i								
			529	-					\dashv
)						
									\neg
			1						\dashv
	<u> </u>		,						\dashv
Comments	: 2,5y 3	2,5/1 R	4K NO	POLISHIA	14. On SI	tran Sup			
		· · · · · · · · · · · · · · · · · · ·	, - , -	, 31, 11,					\dashv
									_


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 55.0' Blk Claystone w/ Trace Pebbles

CLIENT: CAL Engineering and Geology PROJECT Vasco Road PROJ. #: 001860 DATE: 02/19/2001 BORING: B-2 Ring Constant DEPTH: 55.0'	= 0.6954		
PROJ. #: 001860 DATE: 02/19/2001 BORING: B-2 Ring Constant	= 0.6954		
DATE: 02/19/2001 BORING: B-2 Ring Constant	= 0.6954		
BORING: B-2 Ring Constant	= 0.6954		
	= 0.6954		
		lb/div	
1 .			
SAMPLE ORIGINAL CHANGE IN PROVING PROVING PR	ESSURE	STRAIN	PRESSURE
DIAMETER HEIGHT HEIGHT RING READ. RING LOAD			
DIAMETER TIEITH	(PSF)	(%)	(PSF)
2.39 5.86 0.00 0 0.00	0	0.0	0
2.39 5.86 0.01 17 11.82	379	0.2	379
2.39 5.86 0.02 42 29.21	937	0.3	937
2.39 5.86 0.03 60 41.72	1339	0.5	1339
2.39 5.86 0.04 73 50.76	1629	0.7	1629
2.00	1853	0.9	1853
2.00	2009	1.0	2009
2.00	2120	1.2	2120
2.00	2187	1.4	2187
2.00	2277	1.5	2277
2.00	2321	1.7	2321
2.00	2388	1.9	2388
2.00	2433	2.0	2433
2.39 5.86 0.12 109 75.80		2.0	2478
2.39 5.86 0.13 111 77.19	2478	2.4	2545
2.39 5.86 0.14 114 79.28	2545	2.4	2545
2.39 5.86 0.15 115 79.97	2567		
2.39 5.86 0.16 118 82.06	2634	2.7	2634
2.39 5.86 0.17 120 83.45	2679	2.9	2679
2.39 5.86 0.18 122 84.84	2723	3.1	2723
2.39 5.86 0.19 123 85.53	2745	3.2	2745
2.39 5.86 0.20 125 86.93	2790	3.4	2790
2.39 5.86 0.21 126 87.62	2812	3.6	2812
2.39 5.86 0.22 127 88.32	2835	3.8	2835
2.39 5.86 0.23 128 89.01	2857	3.9	2857
2.39 5.86 0.24 128 89.01	2857	4.1	2857
2.39 5.86 0.25 128 89.01	2857	4.3	2857
2.39 5.86 0.26 127 88.32	2835	4.4	2835
2.39 5.86 0.27 127 88.32	2835	4.6	2835
2.39 5.86 0.28 125 86.93	2790	4.8	2790
2.39 5.86 0.29 122 84.84	2723	4.9	2723
2.39 5.86 0.30 121 84.14	2701	5.1	2701
2.39 5.86 0.31 119 82.75	2656	5.3	2656
2.39 5.86 0.32 117 81.36	2612	5.5	2612
2.39 5.86 0.33 1.16 80.67	2589	5.6	2589
2.39 5.86 0.34 114 79.28	2545	5.8	2545
2.39 5.86 0.35 111 77.19	2478	6.0	2478
2.00	DIV/0!	#DIV/0!	#DIV/0!
V. C.	DIV/0!	#DIV/0!	#DIV/0!
0,0.	DIV/0!	#DIV/0!	#DIV/0!
	DIV/0!	#DIV/0!	#DIV/0!
0.00	DIV/0!	#DIV/0!	#DIV/0!

5110011111	T Compre	ssion Test	Data (Rot		44-0.00	- 4 15 / J: .		
				King Cons	tant = 0.69	04 ID/diV		
	Cal Enginee		ology					_
	T: Vasco Ro	ad		Sample Di	ameter:	2,39		
PROJ. # :				Sample Le		5.86		
DATE:	2 19/0	1		Wet Wt./D	y Wt.:			F-10
BORING:	B-2 5510	_,		Description	1: RM (LAY STO	الخ	<u> </u>
DEPTH:	3510) '		W/TR F	ERBLES			
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	17			0.26	127		
_	0.02	42			0.27	127		
	0.03	60			0.28	125		
	0.04	73			0.29	122		
	0.05	73 83 90			0.30	121		
	0.06	90			0.31	119		
	0.07	95 98			0.32	117		1
	0.08	98			0.33	116		
	0.09	102			0.34	114		
	0.10	104			0.35	111		
	0.11	107			0.36			
	0.12	109			0.37			
	0.13	111			0.38			
	0.14	114			0.39			-
	0.15				0.40			
	0.16	115 118			0.41			
	0.17	120			0.42		,	
	0.18	122	_	1	0.43			
	0.19				0.44	-		-
	0.19	123			0.44			
	0.20	125			0.45			_
	0.21	126			0.40			
		127						<u> </u>
	0.23	128			0.48			-
	0.24	128 128			0.49 0.50			
_	0.25	160			0.50			<u> </u>
ketch of	Sample Afte	r Test:						
	_	, , ,	Λ					ļ
	ļ i	_{	. \				· <u> </u>	
	l th	(CERM	1					
	J	1	530					
	. 1	\\	73					
] [
	·							
		N	\ V					
] .	.,	/					
	•							
	2,54	2,5/1	BUK_	17.	-0 (110	TAR SUR		•

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-2 @ 69.0' Gry and Dk Gry Sandstone (VFG)

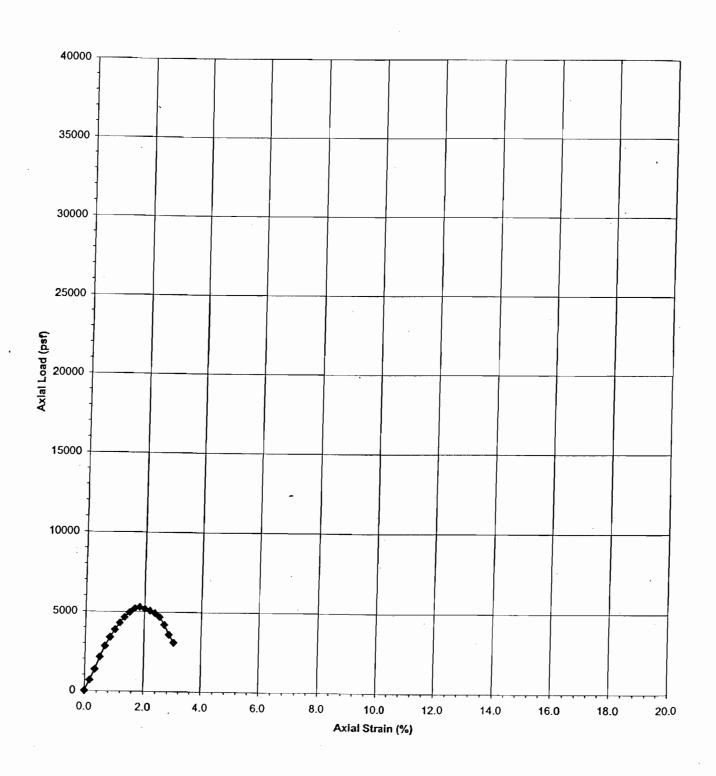


CLIENT.	CAL Engine		N = -1 = ·	TONCON	ii .ALOJ	1	
CLIENT:	CAL Engine Vasco Road		eology	-			
	J						
PROJ. #:	001860						
DATE:	02/19/2001			in:	1 0 005	4 11 7 12	
BORING:	B-2			Ring Cons	tant = 0.6954	1 ID/div	ļ
DEPTH:	69.0'						
		_					
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.41	4.27	0.00	0	0.00	0	0.0	0
2.41	4.27	0.01	39	27.12	856	0.2	856
2.41	4.27	0.02	69	47.98	1515	0.5	1515
2.41	4.27	0.03	102	70.93	. 2239	0.7	2239
2.41	4.27	0.04	138	95.97	3029	0.9	3029
2.41	4.27	0.05	172	119.61	3776	1.2	3776
2.41	4.27	0.06	203	141.17	4456	1.4	4456
2.41	4.27	0.07	233	162.03	5115	1.6	5115
2.41	4.27	0.08	255	177.33	5598	1.9	5598
2.41	4.27	0.09	269	187.06	5905	2.1	5905
2.41	4.27	0.10	260	180.80	5707	2.3	5707
2.41	4.27	0.11	208	144.64	4566	2.6	4566
2.41	4.27	0.12	195	135.60	4281	2.8	4281
		0.13		0.00	#DIV/0!	#DIV/0!	#DI V/0!
		0.14	,	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	_	0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfine	ed Compre	ssion Test	Data (Roc	;k)				
]			tant = 0.695	54 lb/div		
CLIENT: C	al Enginee	ring and Ge	eoloav					
	: Vasco Ro			Sample Di	ameter:	7.41		
PROJ. #:			_	Sample Le	nath:	2,41		
DATE:	2/19/0				y Wt.:	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		F-24
BORING:	2/19/0			Description	ry Wt.: n: GRY +	NK GRY C	ANDSTON	
DEPTH:	69.0'			VKCO	-			
							-	
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	39			0.26	· · ·		
	0.02	69			0.27			
	0.03	102			0.28			
	0.04				0.29			
	0.05				0.30	_		
	0.06	203			0.31			
· · · · ·	0.07	233			0.32			
	0.08	255 269			0.33			
	0.09	269			0.34			
	0.10	260	271		0.35			
	0.11	208			0.36			
	0.12	195			0.37			
	0.13				0.38			
	0.14				0.39			
	0.15				0.40	_		
	0.16				0.41			
	0.17				0.42		_	
	0.18				0.43			
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22				0.47			
	0.23				0.48			
	0.24				0.49			
	0.25				0.50			
Sketch of S	ample After	r Test:						
			/					
		1 Jan 1	1					•
			Wt.					
		1	160 t					
		14,						
		ノハー						
	Ł							
	N I		2					
	J\	NWW	Λ					
		بربر						
Comments:	2,5	1 4/1	DK GRY	No	POLISITIN	14 ON SH	EATH SUP	RPACE

.

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 8.5' Brn Claystone / Sandy Clay Residual Soli

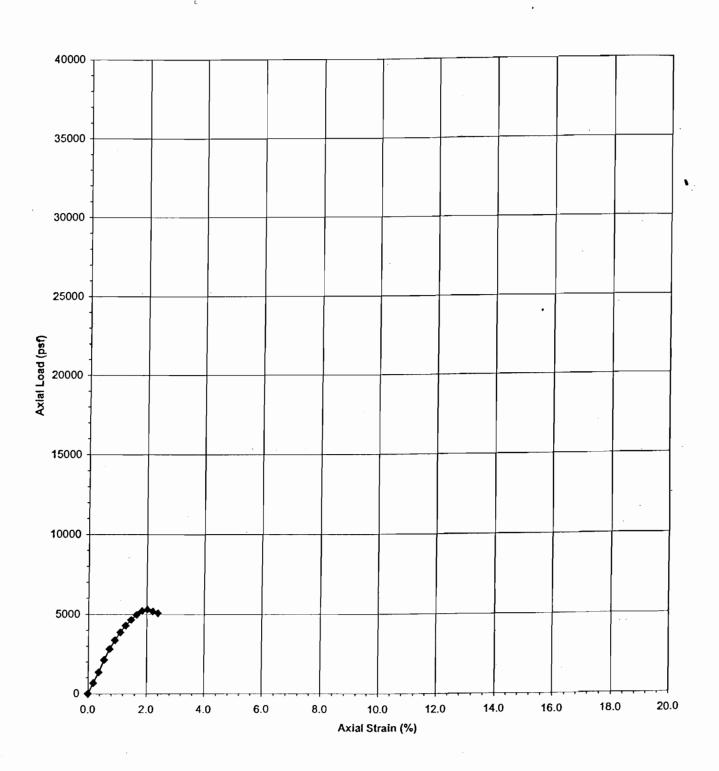

CLIENT:	CAL Engine	oring and C	Coology	LONCON	II.ALG		
	CAL Engine Vasco Road		eology				
PROJECT	001860						_
DATE:	02/17/2001						
BORING:	B-3			Ring Cons	tant = 0.6954	.lh/div	
				King Cons	lant = 0.0354	ID/GIV	
DEPTH:	8.5'			_			
		0	0001/110	DDOV/ING	DOLOGUE	STRAIN	PRESSURE
SAMPLE	ORIGINAL	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD	(DCE)	/9/ \	(PSF)
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(1991)
2.39		0.00	52	0.00	1161	0.0	1161
2.39		0.01		36.16 75.10	2411	0.2	2411
2.39		0.02	108		3750	0.5	3750
2.39	5.99	0.03	168	116.83		0.5	5022
2.39	5.99	0.04	225	156.47 191.93	5022 6161	0.7	6161
2.39		0.05	276		7031	1.0	7031
2.39		0.06		219.05	7969	1.0	7969
2.39		0.07	357	248.26	8884	1.3	8884
2.39	5.99	0.08	398	276.77	9732	1.5	9732
2.39	5.99	0.09	436	303.19		1.7	10245
2.39	5.99	0.10	459	319.19	10245	1.8	10402
2.39		0.11	466	324.06	10402		
2.39		0.12	453	315.02	10111	2.0	10111
2.39	5.99	0.13	415	288.59	9263	2.2	9263
2.39	5.99	0.14	384	267.03	8571	2.3	8571
2.39	5.99	0.15		244.09	7835	2.5	7835
2.39		0.16	317	220.44	7076	2.7	7076
2.39	5.99	0.17	275	191.24	6138	2.8	6138 #DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	_	0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfine	d Compre	ssion Test D	ata (Roc	:k)		1		· · · · · · · · · · · · · · · · · · ·	
3.1001111116	- compile		ata (1100		tant = 0.69				
CLIENT, C	al Engineer	<u> </u>	I	Tang Cons	tant = 0.03	J-4 ID/GIV			
PROJECT:	Vecce Be	ring and Geo	юду	Sample Di	amatar: 7	70			
PROJECT.		au		Sample Di	ameter: Z	139			
DATE:	701000			Sample Length: 5,99					
BORING:	1701			Wet Wt./Dry Wt.:					
DEPTH:	B-3			Description: BRN CLAYSTONE/ SANDY CLAY RESID, SOIL WWHITE P.					
DEP In.	8.5			SANDY C	LAY KEST	D, SOIL W	WHITE PA	ecip,	
	CHANGE IN	DDO)/INO			CHANGE IN	DDO)/INC			
	HEIGHT	RING READ.			HEIGHT	RING READ.			
				 		1			
	(IN) 0.01	(DIV) 52			(IN) 0.26	(DIV)			
	0.01	52		-	0.20				
	0.02				0.27				
	0.03	160			0.28				
	0.04	0-0		-	0.29				
	0.05	315		· ·	0.30				
	0.00	313			0.31				
	0.07			. 	0.32				
	0.00	370			0.34				
	0.03	730			0.35				
	0.10	436 459 466 453 415			0.36				
	0.11	45	· · · · · · · · · · · · · · · · · · ·		0.37			- own	
	0.12	433			0.38				
	0.13	384			0.39				
	0.15	351		 	0.40				
					0.41				
	0.17			-	0.42				
	0.18	~13			0.43			_	
·	0.19				0.44				
	0.20			-	0.45				
	0.21				0.46				
	0.22				0.47				
	0.23				0.48				
	0.24				0.49				
	0.25				0.50				
		-							
Sketch of S	ample Afte	r Test:							
	` `								
	7					•			
	<i>[] \</i>	M							
	/ [\ (•			
	(\setminus . \lor \vdash							
	62°	<i>l</i> / /					•		
	66	/ // I			-				
	1 1	`} }							
	1. 1	2×			,				
	V	<u> </u>			-				
Comments:	10 YE	2 4/3 ER		w'/wr	FREC . 2	IN FINE	151/100		
	10 16	<u>مند د γ</u>		VO- / *** 1	1 175 (2) 7				
							_		

 $\left(\cdot,\cdot\right)$

election.

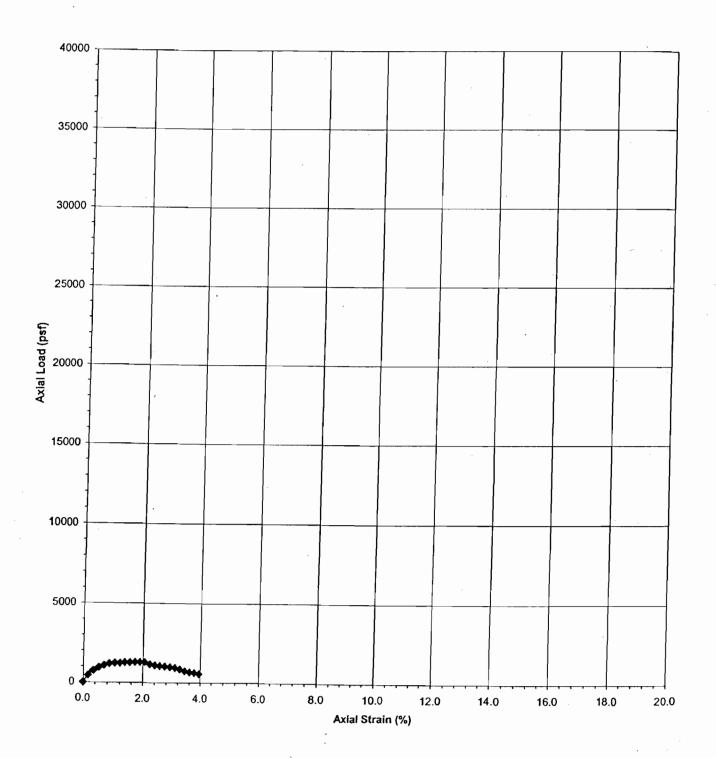
Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 14.0' Lt Olv Brn w/ Yei Brn Clayey Sandstone



COLUENT:	CAL E :			(UNCON	IF.ALS)		
CLIENT:	CAL Engine	ering and G	eology				
	Vasco Road			,	_		
	001860						
DATE:	02/17/2001			D: O	11-0.005	llh/dir	
BORING:	B-3			Ring Cons	tant = 0.6954	ID/QIV	
DEPTH:	14.0'					<u> </u>	
SAMPLE	ORIGINAL	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(iN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.98	0.00	0	0.00	0	0.0	0
2.39	5.98	0.01	30	20.86	670	0.2	670
2.39	5.98	0.02	60	41.72	1339	0.3	1339
2.39	5.98	0.03	95	66.06	2120	0.5	2120
2.39	5.98	0.04	126	87.62	2812	0.7	2812
2.39	5.98	0.05	151	105.01	3370	0.8	3370
2.39	5.98	0.06	173	120.30	3862	1.0	3862
2.39	5.98	0.07	192	133.52	4286	1.2	4286
2.39	5.98	0.08	208	144.64	4643	1.3	4643
2.39	5.98	0.09	222	154.38	4955	1.5	4955
2.39	5.98	0.10	233	162.03	5201	1.7	5201
2.39	5.98	0.11	237	164.81	5290	1.8	5290
2.39	5.98	0.12	232	161.33	5178	2.0	5178
2.39	5.98	0.13	227	157.86	5067	2.2	5067
2.39	5.98	0.14	220	152.99	4911	2.3	4911
2.39	5.98	0.15	210	146.03	4687	2.5	4687
2.39	5.98	0.16	188	130.74	4196	2.7	4196
2.39	5.98	0.17	160	111.26	3571	2.8	3571
2.39	5.98	0.18	13 8	95.97	3080	3.0	3080
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34	`	0.00	#DIV/0!	#DIV/0!	.#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

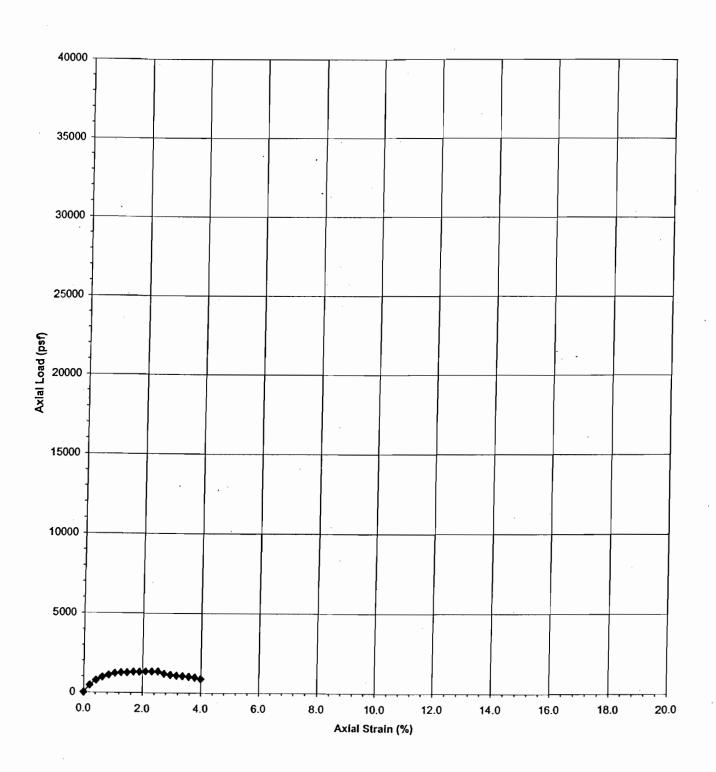
Unconfine	ed Compre	ssion Test	Data (Roc	:k)				
			,		tant = 0.69	54 lb/div		
CLIENT: C	Cal Enginee	ring and Ge	ology					
	: Vasco Ro		ology	Sample Di	ameter: .2	2. 39		
PROJ.#:				Sample Le	ameter: 👼	198		
	2/17/01			Wet Wt./Di		F-105		
BORING:	R-3			Description	LTOUR	BRN WYE	n RRAI	
	14.0			CIAMO	1 SANDS	7701 05	~ <u>5,47</u>	
DE: 111.	1110			47.76	1 34003	10108	1	
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	30			0.26	(===,		
	0.02	60		_	0.27			
	0.03	95			0.28			
	0.04				0.29			
	0.05				0.30			
	0.06				0.31			
	0.07	192			0.32			
	0.08				0.33			
	0.09	727			0.34			
	0.10	233 237 237 232 277			0.35		_	
	0.11	237			0.36		_	
	0.12	232			0.37			
	0.13	227			0.38			
	0.14	220			0.39			
	0.15	210			0.40			
	0.16	188			0.41			
	0.17	160			0.42			
	0.18	160			0.43			
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22				0.47			
	0.23				0.48		•	
	0.24				0.49			
,	0.25				0.50			
Sketch of S	Sample Afte	r Test:	,					
			1					
		\ \ \						
	ľ	\						
		\ \ \	/62°					
		~]						
			\bigvee					
		-	`					
Comments:	SL, POLI	SHINGON	I SURFAC	Œ		ODD ODOZ	(SL MET	ALIC)
		7,5Y	5/3 4	SLV BRN	w/10YR	5/8 402	BR N	7
								

(**


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 21.5' Lt Olv Brn and Lt Yel Brn Clayey Sandstone

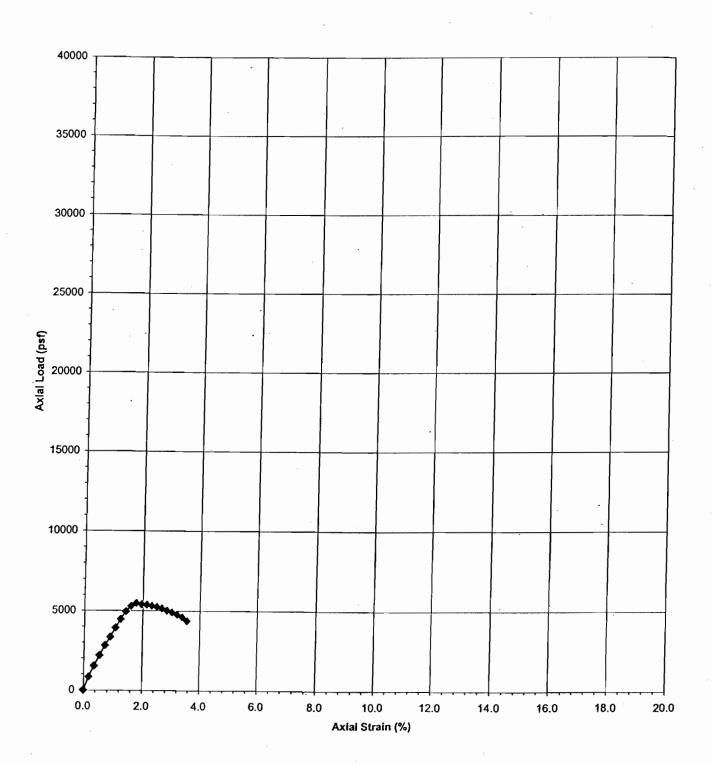
				(UNCON	r.ALO)		
CLIENT:	CAL Engine		eology				
	Vasco Road						
	001860						
DATE:	02/17/2001			D: 0	0.005.4	Ib/dis	
BORING:	B-3			Ring Cons	tant = 0.6954	ID/dIV	
DEPTH:	21.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.44	0.00	0	0.00	0	0.0	0
2.39	5.44	0.01	30	20.86	670	0.2	670
2.39	5.44	0.02	60	41.72	1339	0.4	1339
2.39	5.44	0.03	95	66.06	2120	0.6	2120
2.39	5.44	0.04	126	87.62	2812	0.7	2812
2.39	5.44	0.05	151	105.01	3370	0.9	3370
2.39	5.44	0.06	173	120.30	3862	1.1	3862
2.39	5.44	0.07	192	133.52	4286	1.3	4286
2.39	5.44	0.08	208	144.64	4643	1.5	4643
2.39	5.44	0.09	222	154.38	4955	1.7	4955
2.39	5.44	0.10	233	162.03	5201	1.8	5201
2.39	5.44	0.11	237	164.81	5290	2.0	5290
2.39	5.44	0.12	232	161.33	5178	2.2	5178
2.39	5.44	0.13	227	157.86	5067	2.4	5067
		0.14		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
-		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37	_	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		35					

Unconfine	ed Compre	ssion Test	Data (Roc	:k)			Τ	1	7
-	T				tant = 0.695	4 lb/div			1
CLIENT: C	Cal Enginee	ring and Ge	ology						1
PROJECT	: Vasco Ro	ad	0.0,4,7	Sample Di	ameter:	2,39			1
PROJ.#:				Sample Le	enath: 5	140		1	1
	2/17/01			Wet Wt./D				F-202	1
BORING:	R-3				n: IT UZV	BRN+ LT	YELBRN		1
DEPTH:	21,5			CIAME		1			
									1
	CHANGE IN	PROVING			CHANGE IN	PROVING			1
	HEIGHT	RING READ.			HEIGHT	RING READ			1
	(IN)	(DIV)			(IN)	(DIV)			1
	0.01	51			0.26				1
	0.02			T	0.27				1
	0.03				0.28				1
	0.04				0.29				
	0.05				0.30				
	0.06	1.0			0.31	_			
	0.07	177			0.32				1
	0.08	171			0.33]
	0.09	171			0.34]
	0.10	131			0.35				1
	0.11				0.36				1
	0.12	110			0.37				1
	0.13	64			0.38				1
	0.14				0.39				
	0.15	·			0.40				
	0.16				0.41				
	0.17				0.42				
	0.18				0.43				
	0.19				0.44				1
	0.20				0.45				
	0.21				0.46				
	0.22				0.47				
	0.23				0.48				
	0.24				0.49				
	0.25				0.50]
]
Sketch of S	Sample Afte	r Test:		CLAYON	SANDS	one /	ANDY CA	ANSTON	تسأ
				, ,		<u>'</u>			
			<i>₩</i>			·			
	Y	\	1	IRRE	T BEDD	NGZAT	SAME	ANGLE]]
			460						
	1	<u> </u>							
			\						
		*.	' V						
		_		541	UDSTENE	£ , 5L	CLAYBY		
Comments	: POLISHE	D SHEAR	SURFACE	-					
	J	154 6/4	LT YER	-BRN :	14 LT OL	V BRN.			
									-


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 35.0' Dk Grn Gry Claystone

				(UNCON	ii .XLO/		
CLIENT:	CAL Engine		eology		· ·		
	Vasco Road						
	001860						
DATE:	02/17/2001			D: 0		Illa / alia	
BORING:	B-3			Ring Const	tant = 0.6954	ID/dIV	
DEPTH:	35.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.40	5.82	0.00	0	0.00	0	0.0	0
2.40	5.82	0.01	20	13.91	443	0.2	443
2.40	5.82	0.02	33	22.95	730	0.3	730
2.40	5.82	0.03	42	29.21	930	0.5	930
2.40	5.82	0.04	48	33.38	1062	0.7	1062
2.40	5.82	0.05	53	36.86	1173	0.9	1173
2.40	5.82	0.06	55	38.25	1217	1.0	1217
2.40	5.82	0.07	5 5	38.25	1217	1.2	1217
2.40	5.82	0.08	57	39.64	1262	1.4	1262
2.40	5.82	0.09	57	39.64	1262	1.5	1262
2.40	5.82	0.10	58	40.33	1284	1.7	1284
2.40	5.82	0.11	58	40.33	1284	1.9	1284
2.40	5.82	0.12	58	40.33	1284	2.1	1284
2.40	5.82	0.13	52	36.16	1151	2.2	1151
2.40	5.82	0.14	49	34.07	1085	2.4	1085
2.40	5.82	0.15	47	32.68	1040	2.6	1040
2.40	5.82	0.16	46	31.99	1018	2.7	1018
2.40	5.82	0.17	44	30.60	974	2.9	974
2.40	5.82	0.18	42	29.21	930	3.1	930
2.40	5.82	0.19	38	26.43	841	3.3	841
2.40	5.82	0.20	33	22.95	730	3.4	730
2.40	5.82	0.21	30	20.86	664	3.6	664
2.40	5.82	0.22	28	19.47	620	3.8	620
2.40	5.82	0.23	25	17.39	553	4.0	553
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
					#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
<u> </u>		0.40		0.00	#DIV/U!	#DIV/U!	#171.6101

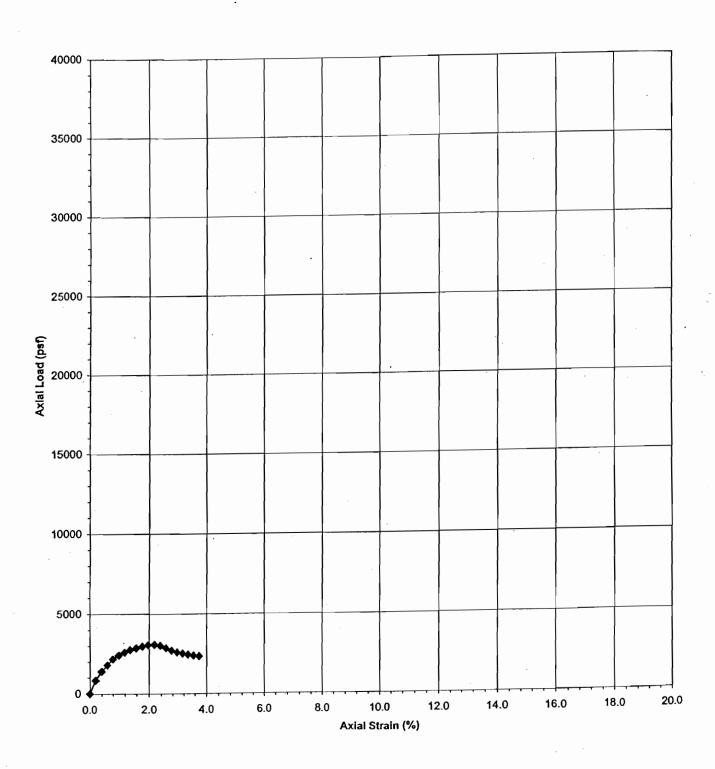
Unconfined Compression Test Data (Roc	73.7	1
	Ring Constant = 0.6954 lb/div	
CLIENT: Cal Engineering and Geology		
PROJECT: Vasco Road	Sample Diameter: 2,40	
PROJ. #: 001860	Sample Length: 5,82	
DATE: 2(17/01	Wet Wt./Dry Wt.:	F-72
BORING: B-3	Description: DK GRN GRY CLAUSTONE	1-12
DEPTH: 35.0	possipioni president a strategia	
35 76		
CHANGE IN PROVING	CHANGE IN PROVING	
HEIGHT RING READ.	HEIGHT RING READ.	
(IN) (DIV)	(IN) (DIV)	
0.01 20	0.26	
0.02 33	0.27	
	0.28	
0.04 49	0.29	
0.03 HZ 0.04 H8 0.05 53	0.30	
0.06 55	0.31	
0.06 55 0.07 55 0.08 57 0.09 57 0.10 58 0.11 58 5 0.12 58 0.13 52 0.14 49	0.32	
0.08 57	0.33	
0.09 57	0.34	
0.10 58	0.35	·
0.11 58 5	0.36	
0.12 58	0.37	
0.13 52	0.38	
0.14 49	0.39	
0.15 47	0.40	
0.16 46	0.41	
0.17 시식	0.42	
0.18 42	0.43	
0.19 38	0.44	
0.20 33	0.45	
0.21 30	0.46	
0.21 30 0.22 28	0.47	
0.23 25	0.48	
0.24	0.49	
0.25	0.50	
Sketch of Sample After Test:		
:		
	BEDDING NOT BBVIOUS	
FINE		
CRACK		
,		
Comments: V. POLISHED SURFACE	1043/1 DIE GRN GRY	


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 46.5' Dk Olv Gry w/ Yel Brn Claystone

				(UNCON	F.XLS)		
CLIENT:	CAL Engine	ering and G	eology				
	Vasco Road						
PROJ.#:	001860						
DATE:	02/17/2001				205		
BORING:	B-3			Ring Const	tant = 0.6954	lb/div	
DEPTH:	46.5						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.37	4.76	0.00	0	0.00	0	0.0	0
2.37	4.76	0.01	20	13.91	454	0.2	454
2.37	4.76	0.02	33	22.95	749	0.4	749
2.37	4.76	0.03	42	29.21	953	0.6	953
2.37	4.76	0.04	48	33.38	1090	0.8	1090
2.37	4.76	0.05	53	36.86	1203	1.1	1203
2.37	4.76	0.06	55	38.25	1248	1.3	1248
2.37	4.76	0.07	55	38.25	1248	1.5	1248
2.37	4.76	0.08	57	39.64	1294	1.7	1294
2.37	4.76	0.09	57	39.64	1294	1.9	1294
2.37	4.76	0.10	58	40.33	1317	2.1	1317
2.37	4.76		58	40.33	1317	2.3	1317
2.37	4.76	0.12	58	40.33	1317	2.5	1317
2.37	4.76	0.13	52	36.16	1180	2.7	1180
2.37	4.76		. 49	34.07	1112	2.9	1112
2.37	4.76	0.14		32.68	1067	3.2	1067
2.37	4.76			31.99	1044	3.4	1044
2.37	4.76			30.60	999	3.6	999
2.37	4.76		42	29.21	953	3.8	953
2.37	4.76	0.10	38	26.43	863	4.0	863
2.57	4.70	0.20	- 00	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
ļ		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00		#DIV/0!	#DIV/0!
		0.25 0.26		0.00		#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	,	0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30			#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00		#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!		#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	
• .		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfined Compress	sion Test Data (i	Rock)		Ī		
	1		tant = 0.69	54 lb/div	1	
CLIENT: Cal Engineeri	ng and Geology	3 3 3 3 3 3		1		
PROJECT: Vasco Road	d	Sample D	iameter:	2,37	1	
PROJ. #: 001860		Sample Le		4.76		
DATE: 2/17/01				1010		F-91
BORING: 3-3		Descriptio	n: †KOLV	LAN W/1	VID RRA	
DEPTH: 46.5		CLAYS	10NE	061-1 007	16000	
			10.10		<u> </u>	
CHANGE IN	PROVING		CHANGE IN	PROVING		
	RING READ.		HEIGHT	RING READ.		
(IN)	(DIV)		(IN)	(DIV)		
0.01	46		0.26	, ,		
0.02	69		0.27			
0.03	81		0.28			
0.04	90		0.29			
0.05	97		0.30			
0.06	97		0.31			
0.07	96		0.32			
0.08	96		0.33			
0.09	<u> </u>		0.34			
0.10	90		0.35			
0.11	88 86	_	0.36			
0.12	86		0.37			
0.13	84 82		0.38			
0.14	82	•	0.39			
0.15	79		0.40			
0.16	76		0.41			
0.17	74		0.42			-
0.18	72		0.43			
0.19	70		0.44			
0.20			0.45			
0.21	,		0.46			
0.22			0.47	,		
0.23		· · · · · · · · · · · · · · · · · · ·	0.48			
0.24			0.49			
0.25			0.50			
Sketch of Sample After	Test:					
	1		54 3	DKO	WGRY	
		68	' /2	-		
			IDYR	76 YH	ZBRN	
7	/			, ,		
	/		V SOFT	/ PLA	5/1C	
	<u> </u>			′		
Comments: √ Po∟isHe	D SHEAR SUR	RFACE, V MU	1ST SURFU	TCE		
· · ·		•				

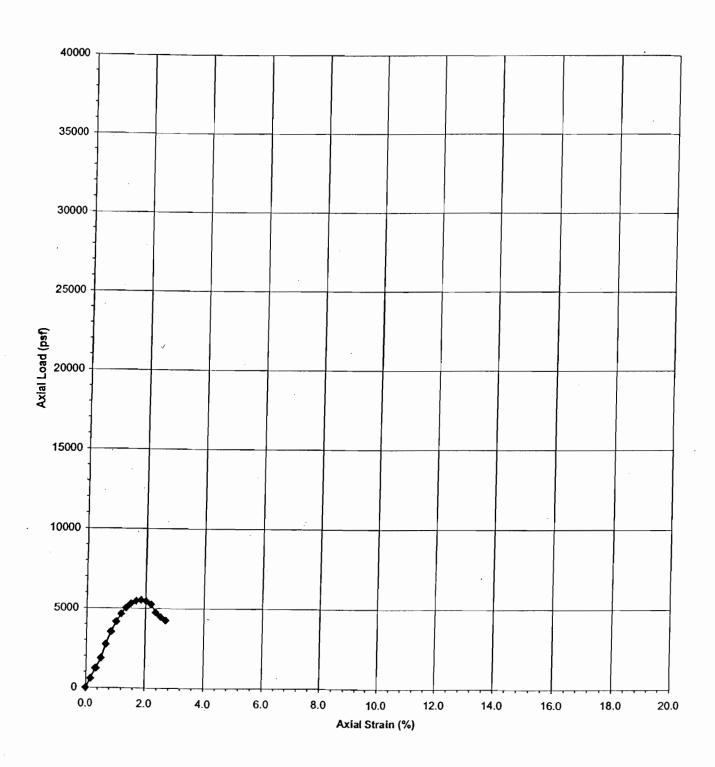
Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 58.0' Blk and Dk Gry Claystone w/ Sandstone Laminations or Gravels


CLIENT:	CAL Engine	oring and C	Poology	(UNCON	1 .7(20)		
	CAL Engine Vasco Road		l				
PROJECT	001860						
DATE:	02/17/2001						
BORING:	B-3			Ring Cons	tant = 0.6954	lb/div	
	58.0'			Tally Colls	iani - 0.0354	ID/GIV	
DEPTH:	58.0			***************************************			
	0.000000	<u></u>		PD01/11/0	POECOUPE	CTDAIN	PRESSURE
SAMPLE	ORIGINAL	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD	(005)	(0/)	(DCE)
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%) 0.0	(PSF)
2.39	5.64	0.00	0	0.00	826	0.0	826
2.39	5.64	0.01	37	25.73		0.2	1518
2.39	5.64	0.02	68	47.29	1518	0.4	2187
2.39	5.64	0.03	98	68.15	2187	0.5	2812
2.39	5.64	0.04	126	87.62	2812		
2.39	5.64	0.05	150	104.31	3348	0.9	3348
2.39	5.64	0.06		122.39	3928	1.1	3928
2.39	5.64	0.07	200	139.08	4464	1.2	4464
2.39	5.64	0.08		154.38	4955	1.4	4955
2.39	5.64	0.09	237	164.81	5290	1.6	5290
2.39	5.64	0.10	245	170.37	5469	1.8	5469
2.39	5.64	0.11	242	168.29	5402	2.0	5402
2.39	5.64	0.12	241	167.59	5379	2.1	5379
2.39	5.64	0.13	238	165.51	5312	2.3	5312
2.39	5.64	0.14	235	163.42	5245	2.5	5245
2.39	5.64	0.15	231	160.64	5156	2.7	5156
2.39	5.64	0.16	225	156.47	5022	2.8	5022
2.39	5.64	0.17	220	152.99	4911	3.0	4911
2.39	5.64	0.18	214	148.82	4777	3.2	4777
2.39	5.64	0.19	207	143.95	4620	3.4	4620
2.39	5.64	0.20	196	136.30	4375	3.5	4375
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		. 0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#D!V/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfined Compre	ssion Test	Data (Roc	k)				
				tant = 0.695	54 lb/div		
CLIENT: Cal Engineer	ring and Ge	ology					
PROJECT: Vasco Roa	ad	Ology	Sample Dia	ameter: *	7 70		
PROJ. #: 001860	<u> </u>		Sample Le	nath: 5	2,39		
			Wet Wt./Dr		5.76		F-34
DATE: 2/17/01 BORING: 3-3			Description	MDT			
DEPTH: 58.0			WI /CC	PANELS	2100		
DEPTH: 58,0			VO/55 FA	WI 10 AT 11	705 C/C C	I KAVE O	
CHANGE IN	PROVING		 	CHANGE IN	PROVING		
HEIGHT	RING READ.		 	HEIGHT	RING READ.		
(IN)	(DIV)	•		(IN)	(DIV)		
0.01				0.26	(511)		
0.02	37 68			0.27			
0.02	90			0.28			
0.03	98 126			0.29			
0.05	150		-	0.30			
0.06	171			0.31			
0.07	176			0.32			
0.08	722			0.33			-
0.09	237			0.34		•	
0.10	245			0.35			
0.10	273		<u> </u>	0.36			
0.11	242 241 238 235 231			0.37			
0.12	238			0.38			
0.13	32/			0.39			
0.14	725			0.40			
0.13	225		 	0.41			
0.10	220			0.42			
0.17	214			0.42			
0.10				0.44			
0.19	207			0.45			
0.20	196	-		0.45			
0.21			 -	0.47			
0.23				0.48			
				0.49		·	
0.24				0.49			
0.23				0.50			
Chatch of Commis Affa	- T4:		· -				
Sketch of Sample Afte	r rest.						·
							
	9/						
	0/3	WEATH	/FRIABL	_			
	/ I	55 G	/FRIABL				
/ 							
							,
<i>/</i>							
	·						
					(m) 1 m r	,	
Comments: Pozis	HED S	HEHR 5	URFACE	2	15 y 2,5,	1 B4K	
						DK G	pry

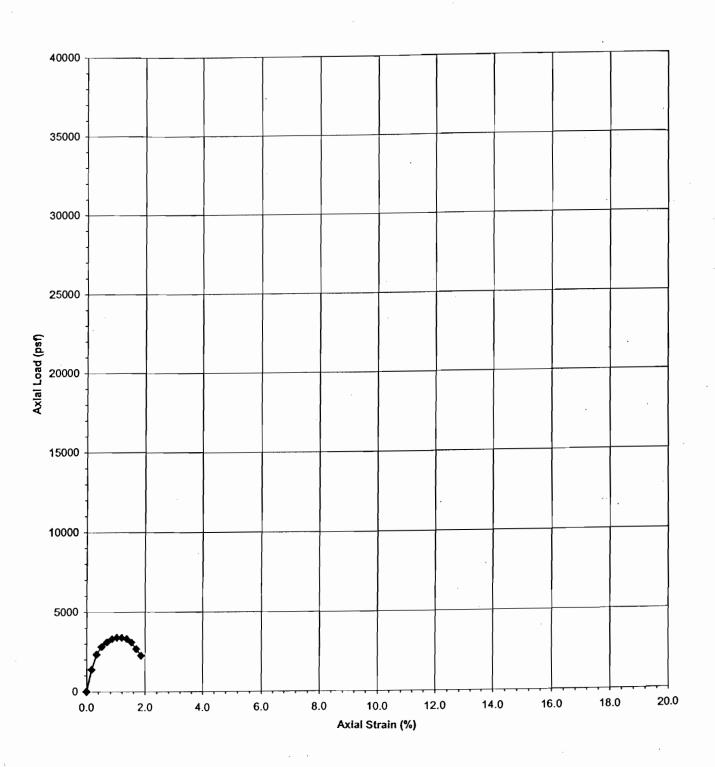
(° .

(


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 62.0' Dk Grn Gry and Dk Gry Claystone w/ Trace VFG Sand

A. 1-1:-	-			(UNCON	F.XLS)		
CLIENT:	CAL Engine		eology				
	Vasco Road						
	001860						
DATE:	02/17/2001					H 1.12	
BORING:	B-3			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	62.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.08	0.00	0	0.00	0	0.0	0
2.39	5.08	0.01	37	25.73	826	0.2	826
2.39	5.08	0.02	62	43.11	1384	0.4	1384
2.39	5.08	0.03	80	55.63	1786	0.6	1786
2.39	5.08	0.04	97	67.45	2165	0.8	2165
2.39	5.08	0.05	108	75.10	2411	1.0	2411
2.39	5.08	0.06	116	80.67	2589	1.2	2589
2.39	5.08	0.07	123	85.53	2745	1.4	2745
2.39	5.08	0.08	128	89.01	2857	1.6	2857
2.39	5.08	0.09	133	92.49	2969	1.8	2969
2.39	5.08	0.10	137	95.27	3058	2.0	3058
2.39	5.08	0.11	138	95.97	3080	2.2	3080
2.39	5.08	0.12	135	93.88	3013	2.4	3013
2.39	5.08	0.13	128	89.01	2857	2.6	2857
2.39	5.08	0.14	121	84.14	2701	2.8	2701
2.39	5.08	0.15	116	80.67	2589	3.0	2589
2.39	5.08	0.16	113	78.58	2522	3.1	2522
2.39	5.08	0.17	110	76.49	2455	3.3	2455
2.39	5.08	0.18	107	74.41	2388	3.5	2388
2.39	5.08	0.19	105	73.02	2344	3.7	2344
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
· ·		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0! #DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38					
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

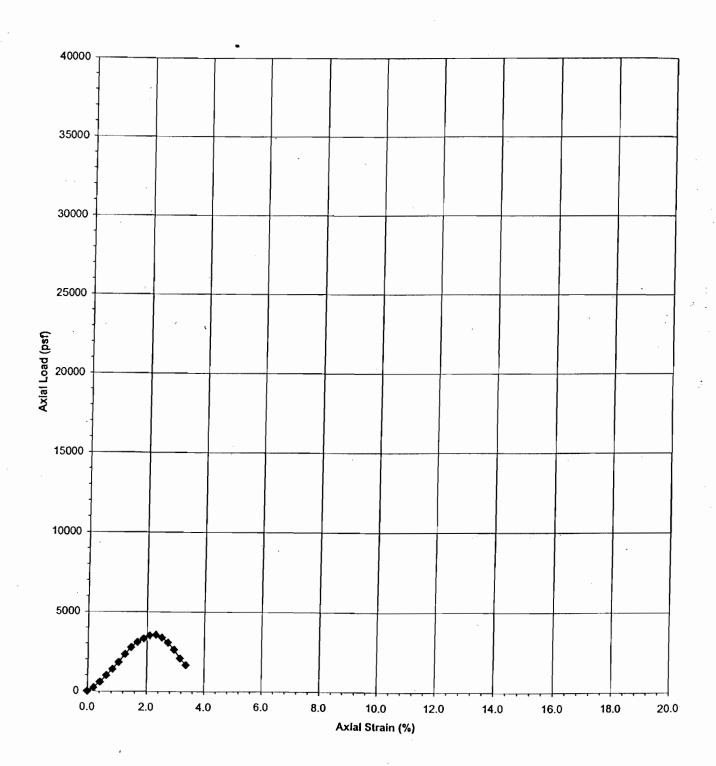
			Ring Cons	stant = 0.69	54 lb/div		
Cal Engineer	ring and Ge	ology					
			Sample D	iameter:	2,39		
				enath:	5,08		
2/17/0	, I			ry Wt.:			F-67
3-3					GRY +DK	GRY	
			CLAYS	TONE. TE	VFGSA	ND + PEZE	BLES
CHANGE IN	PROVING			CHANGE IN	PROVING		
	97						
	108						
				_		,	
	152						
	128						
	133						
	137						
	178						
	135						
	128		 				
						-	
							
						1	
			_				
	105						,
0.23			. •	0.00			
Sample Affe	r Toet:						
l ample Aite	i rest.	_					
							
]	A !	1	7		7/4	b 4) 4	
	`-	340	500) ir	NG COS	time st	ANGUE	·
ŀ		V					
		•					
	, ει,				E CAME	RS SOME	W/WEST
			N 4/	DK GRY			
	٧٠. ا			2/		<u> </u>	
			104	PII DK	GRN GRY		
	: Vasco Roa 001860 2 17 6 3 3 62 62 62 62 62 62 62 62 62 62 62 62 62	: Vasco Road 001860 2 17 0 B-3 (2 0) CHANGE IN PROVING HEIGHT RING READ. (IN) (DIV) 0.01 37 0.02 62 0.03 80 0.04 97 0.05 108 0.06 16 0.07 123 0.08 128 0.09 133 0.10 137 0.11 138 0.12 135 0.13 128 0.14 121 0.15 116 0.16 113 0.17 110 0.18 107 0.19 105 0.20 0.21 0.22 0.23 0.24	001860 2 17 0 B - 3 (62 0) CHANGE IN PROVING HEIGHT RING READ. (IN) (DIV) 0.01 37 0.02 62 0.03 80 0.04 97 0.05 108 0.06 16 0.07 123 0.08 128 0.09 133 0.10 137 0.11 138 0.12 135 0.13 128 0.14 2 0.15 16 0.16 13 0.17 10 0.18 107 0.19 105 0.20 0.21 0.22 0.23 0.24 0.25	Cal Engineering and Geology : Vasco Road 001860 Sample D Sample D Wet Wt./D B-3 Description CLAMCS CHANGE IN PROVING HEIGHT RING READ. (IN) (DIV) 0.01 37 0.02 62 0.03 80 0.04 97 0.05 108 0.06 116 0.07 123 0.08 128 0.09 (333 0.10 137 0.11 \ 38 0.12 \ 35 0.13 \ 128 0.14 \ 21 0.15 \ 166 0.16 \ 13 0.17 \ 110 0.18 \ 107 0.19 \ 105 0.20 0.21 0.22 0.23 0.24 0.25 Sample After Test:	2al Engineering and Geology : Vasco Road 001860 2 17 0	Cal Engineering and Geology Cal Engineering and Geology Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal	Cal Engineering and Geology Casco Road Sample Diameter: 2,39


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 71.5' Dk Grn Gry Claystone w/ 1/4" Lt Gry Sandstone Laminations

				(UNCON	P.ALOJ		1
CLIENT:	CAL Engine		eology				
	001860						
DATE:	02/17/2001						
BORING:	B-3			Ring Cons	tant = 0.6954	l lb/div	
DEPTH:	71.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.40	5.96	0.00	0	0.00	0	0.0	0
2.40	5.96	0.01	26	18.08	576	0.2	576
2.40	5.96	0.02	55	38.25	1217	0.3	1217
2.40	5.96	0.03	84	58.41	1859	0.5	1859
2.40	5.96	0.04	123	85.53	2723	0.7	2723
2.40	5.96	0.05	159	110.57	3519	0.8	3519
2.40	5.96	0.06	188	130.74	4161	1.0	4161
2.40	5.96	0.07	210	146.03	4648	1.2	4648
2.40	5.96	0.08	227	157.86	5025	1.3	5025
2.40	5.96	0.09	239	166.20	5290	1.5	5290
2.40	5.96	0.10	246	171.07	5445	1.7	5445
2.40	5.96	0.10	249	173.15	5512	1.8	5512
2.40	5.96	0.11	246	171.07	5445	2.0	5445
2.40	5.96	0.12	237	164.81	5246	2.2	5246
2.40	5.96	0.13	214	148.82	4737	2.3	4737
2.40			202	140.62	4471	2.5	4471
2.40	5.96	0.15	192	133.52	4250	2.7	4250
2.40	5.96	0.16	192	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17 0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	· -			0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19					#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27	·	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
_		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

	ed Compre		Data (1100						
				Ring Cons	tant = 0.69	4 lb/div			
CLIENT: (Cal Enginee	ring and Ge	ology						
ROJECT	: Vasco Ro	ad		Sample Di	iameter: Z	.40			
PROJ.#:	001860			Sample Le					
DATE:	217/01			Wet Wt./Dry Wt.: F-8 Description: DKGRNGRY CLAYSTONE W/ Y4" SANDSTONE LAMINATIONS (LI					
BORING:	B-3			Description	n: DKGRA	JGRY C	LA-YSTON	2-2	
DEPTH:	71.5	-		W/ /41	'SANDSTA	ONE LA	MINATTE.	15 (UTG	
	CHANGE IN	PROVING			CHANGE IN	PROVING			
	HEIGHT	RING READ.			HEIGHT	RING READ.			
	(IN)	(DIV)			(IN)	(DIV)			
	0.01				0.26				
	0.02				0.27				
	0.03				0.28				
	0.04				0.29				
	0.05	159			0.30				
	0.06	188			0.31				
	0.07	210			0.32				
	0.08				0.33				
	0.09	~ 6			0.34				
	0.10	E V. I		1	0.35				
	0.11				0.36				
	0.12				0.37				
	0.13				0.38				
	0.14	214			0.39	,			
	0.15				0.40				
	0.16				0.41				
	0.17	172		 	0.42				
	0.18				0.43				
	0.19				0.44				
	0.20				0.45				
	0.21				0.46				
	0.22				0.47				
	0.22				0.47				
	0.23		· · · · · · · · · · · · · · · · · · ·						
	0.24				0.49 0.50				
	0.25				0.50				
		- , -							
ketch of t	Sample Afte	r lest:							
<u> </u>									
] [1.7	/ X"	SAND STO	NE LAM				
] [7(_ ¬						
	630								
	\\\ \(\)	11/							
		عمله							
		/ 🐧							
		570							

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-3 @ 82.0' Dk Grn Gry w/ Dk Gry Claystone

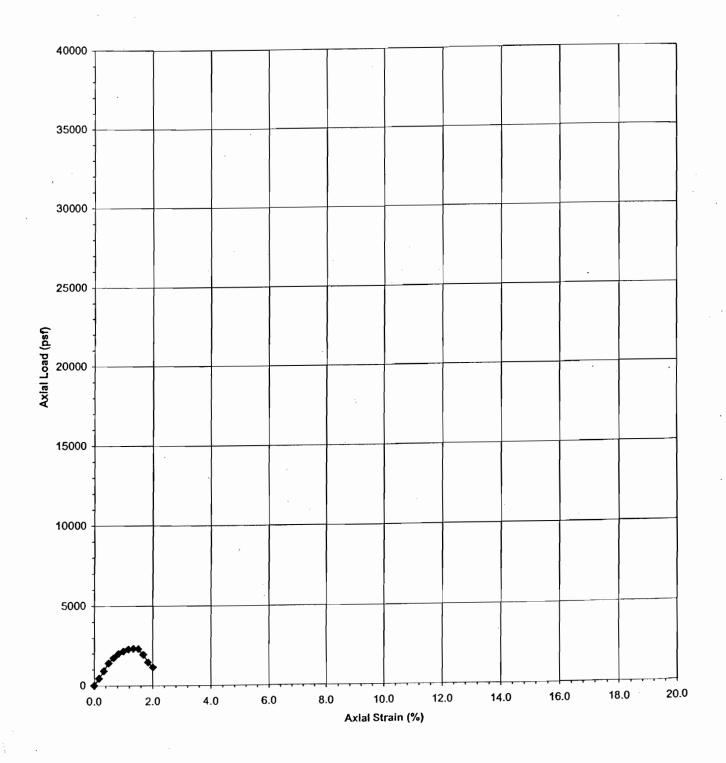


				(UNCON	r.ALO)		
CLIENT:_	CAL Engine		eology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/17/2001						
BORING:	B-3			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	82.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.40	5.92	0.00	0	0.00	0	0.0	0
2.40	5.92	0.01	62	43.11	1372	0.2	1372
2.40	5.92	0.02	105	73.02	2324	0.3	2324
2.40	5.92	0.03		88.32	2811	0.5	2811
2.40	5.92	0.04		97.36	3099	0.7	3099
2.40	5.92	0.05		103.61	3298	8.0	3298
2.40	5.92	0.06		106.40	3387	1.0	3387
2.40	5.92	0.07		106.40	3387	1.2	3387
2.40	5.92	0.08	150	104.31	3320	1.4	3320
2.40	5.92	0.09	140	97.36	3099	1.5	3099
2.40	5.92	0.10	121	84.14	2678	1.7	2678
2.40	5.92	0.11	102	70.93	2258	1.9	2258
		0.12		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.13		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.14		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19	_	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
, , , , , , , , , , , , , , , , , , , ,		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/U!	#017/0!	#DIV/0!

Unconfine	ed Compre	ssion Test	Data (Roc	k)				
_				Ring Cons	tant = 0.69	54 lb/div		
CLIENT: C	al Enginee	ring and Ge	ology					
PROJECT	: Vasco Ro	ad	ology	Sample Di	ameter	2.40		
PROJ. #:		<u> </u>		Sample Le				
DATE: Z				Wet Wt./Di				
BORING:	73 - 3			Description	1. OV 601	ery w/DK	- L OU:	
DEPTH:				CLAYST	MODE THO	secol col Dr		
DEI III.	02.0			CEN 131	0.48			
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)		,	(IN)	(DIV)		
	0.01	62			0.26	, (2.0)		
	0.02	105			0.27			
	0.03	127			0.28			
	0.04	140			0.29	_		
	0.05	149			0.30			
	0.06				0.31			
	0.07	153		_	0.32			
	0.08	150			0.33			
	0.09	140			0.34			
	0.10	121			0.35			
	0.11	102			0.36			
	0.12	102			0.37			· ·
	0.13				0.38			
	0.14				0.39			
	0.15				0.40			1.
	0.16				0.41			
	0.17				0.42		_	
	0.18				0.43			
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22				0.47			
_	0.23				0.48			
	0.24				0.49	,	•	
	0.25				0.50	,		
Sketch of S	Sample Afte	r Test:						
				_				
TIGHT	\ \ \ \ \ _]		W					
FRACTUR	520	\]					
JOINT			48°			_		
ORIENT	ATTON	7	10					
	, ,	' \		_				
		2	V			,		
			` [
		7 21 1						
Comments:	POLICHO	D SURF	ACE	10,	13/1 D	KGRNIM	Qu'	
	1	- JOINT			J-1/- DK	KGRN CH G RY I		
					- Y - 5/C	~/Vi		

Ç.

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 3.0' Dk Yel Brn Weathered Sandstone

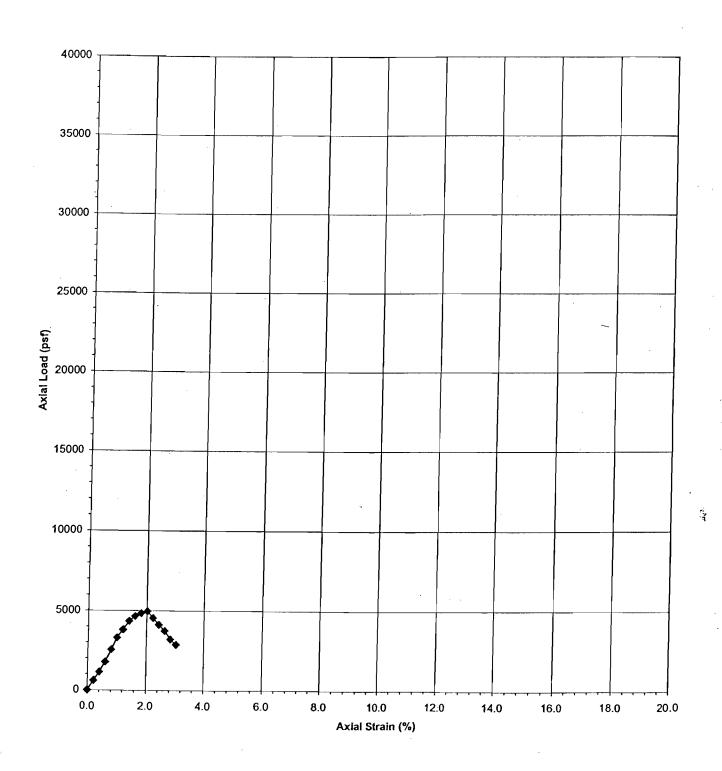


				(UNCON	F.XLS)		
CLIENT:	CAL Engine		eology				
PROJECT	Vasco Road						
PROJ.#:	001860		•				
DATE:	02/12/2001					-	
BORING:	B-4			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	3.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.41	4.77	0.00	0	0.00	0	0.0	0
2.41	4.77	0.01	10	6.95	220	0.2	220
2.41	4.77	0.02	26	18.08	571	0.4	571
2.41	4.77	0.03	45	31.29	988	0.6	988
2.41	4.77	0.04	63	43.81	1383	0.8	1383
2.41	4.77	0.05	83	57.72	1822	1.0	1822
2.41	4.77	0.06	106	73.71	2327	1.3	2327
2.41	4.77	0.07	126	87.62	2766	1.5	2766
2.41	4.77	0.08	141	98.05	3095	1.7	3095
2.41	4.77	0.09	151	105.01	3315	1.9	3315
2.41	4.77	0.10	160	111.26	3512	2.1	3512
2.41	4.77	0.10	162	112.65	3556	2.3	3556
2.41	4.77	0.11	154	107.09	3381	2.5	3381
2.41	4.77	0.12	140	97.36	3073	2.7	3073
2.41	4.77	0.13	120	83.45	2634	2.9	2634
		0.14	95	66.06	2085	3.1	2085
2.41	4.77		76	52.85	1668	3.4	1668
2.41	4.77	0.16 0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
			•		#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00		#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!		
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
•		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		, 0.40		0.00			

Unconfine	ed Compre	ssion Test	Data (Roc	·k)		T		
31100111111	- Compre	331011 1631	Data (1100		tant = 0.695	54 lb/div		
CLIENT: C	ol Engines	ring and Ca	ology	Tang Cons	Lant - 0.03	TIDIGIT		
DDO IECT	al Enginee : Vasco Ro	nng and Ge	ology	Comple Di	ameter:	2.41		1
PROJECT		au						
DATE:	2/2/2/				ength: 4			F-47
DATE: BORING:	4801			Wet Wt./D	 9			
	10-4			Description SANDST	11.1.4.4.11			
DEPTH:	3,0			SANDST	STUZE, ITKI	HISLE TOWN	esar, when	AV 2</td
	CHANCEIN	PD01//11/0		SLCL	Aydy	DDOMNO.		
<u> </u>	CHANGE IN			-	CHANGE IN			-
	HEIGHT	RING READ.		_		RING READ.		-
	(IN) 0.01	(DIV)			(IN) 0.26	(DIV)		
	0.01	10			0.20			-
ļ	0.02			-	0.28			
	0.03				0.28			
	0.04	63			0.29			
	0.05	83			0.30			
	0.00	106			0.31			
	0.07	106 126 141			0.32			
	0.08	151			0.34			-
	0.03	160			0.35			
	0.10				0.36			-
	0.12	162 154			0.37			
	0.12	127			0.38			-
	0.13	140			0.39			
	0.15	120			0.40			
	0.16	76	•		0.41			
	0.17	1.6			0.42			
	0.18				0.43			
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22				0.47			
	0.23				0.48			
	0.24				0.49			
	0.25				0.50		i.	-
	0.20				0.00			
Sketch of S	Sample Afte	r Test				-		
33.0.1 01 0	Jan pio / iito							
		104						
		NO N						
		()					_	
	ı							
		/ (ſ					
							_	
	1							
							_	
Comments	<u> </u>	<u>_</u>						
- Comments	10YR 4	<u></u>						
	1,117	4					·	

(. . .

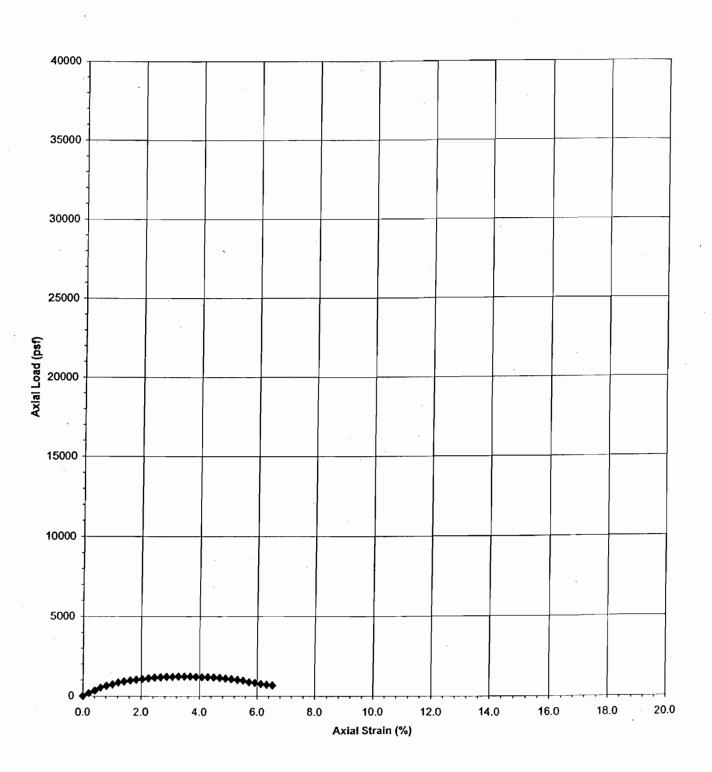
Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 12.0' Lt Olv Brn w/Orn Brn Weathered Claystone



CLIENT:	CAL Engine	oring and C	Coology	(UNCON	IF.ALO)		
	CAL Engine Vasco Road		eology				
	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Cons	tant = 0.6954	.lb/div	
				Tang Cons	tarit = 0.0004	107011	
DEPTH:	12.0'				_		
		0141105.01	550,410	DDO//NG	PDECCURE	STRAIN	PRESSURE
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STIVAIN	FILESSOILE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD	(PSF)	(%)	(PSF)
(IN)	(IN)	(IN)	0	(LBS) 0.00	(151)	0.0	0
2.40	5.99	0.00	20	13.91	443	0.0	443
2.40	5.99	0.01	41	28.51	908	0.2	908
2.40	5.99		63	43.81	1395	0.5	1395
2.40	5.99	0.03	78	54.24	1727	0.7	1727
2.40	5.99 5.99	0.04	90	62.59	1992	0.8	1992
2.40	5.99	0.05		67.45	2147	1.0	2147
2.40	5.99	0.00	103	71.63	2280	1.2	2280
2.40	5.99	0.07	105	73.02	2324	1.3	2324
2.40	5.99	0.08	103	72.32	2302	1.5	2302
2.40		0.09	88	61.20	1948	1.7	1948
	5 , 99 5.99	0.10	66	45.90	1461	1.8	1461
2.40		0.11	52	36.16	1151	2.0	1151
2.40	5.99	0.12	- 52	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.13		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.14		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.10		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17	-	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.13		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	•	0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
·		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#51770:	#D1410:	#DIVIO:

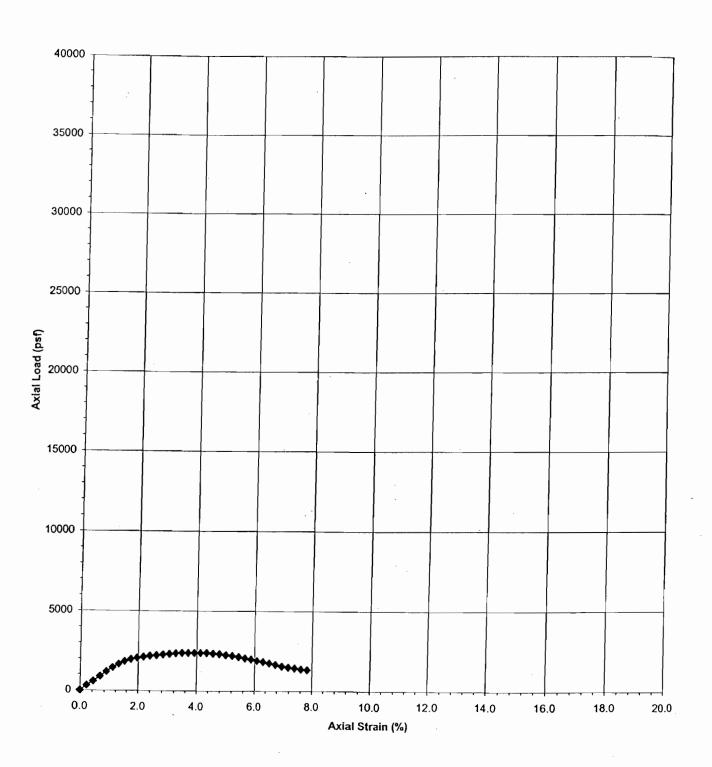
Unconfine	ed Compre	ssion Test	Data (Roc	k)]	_		
3,103,1111			- 414 (1100	Ring Cons	tant = 0.69	54 lb/div		
CLIENT.	<u> </u>	11/4 4 5	0	. ung Cons	.a.n. = 0.000			
DPO IECT	14 C B1	UG1 NEW	RING	Sample Di	ame <u>ter:</u> Z	410		
PROJECT	· VMS	(O 12)		Sample Le	ngth: 5	90		
DATE:	11010	1860		Wet Wt./Dr	ny Wt	119	_	F-69
BORING:	2/8/0 B-4			Description	O E CAL			
DEPTH:				CLAYSTO	N OKIO			
DEFTH.	12.0			CC147510	NE (wen	THE ELLED		
	CHANGE IN	PROVING			CHANGE IN	PROVING		-
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	20			0.26			
	0.01	41		-	0.27			
-	0.02	63			0.28			
	0.03	70			0.29			
	0.04	78 90			0.23			
	0.05	1 -			0.30			
	0.00			-	0.31			
	0.07	103			0.33			
	0.09	104			0.34	,		
	0.10	00			0.35			_
	0.11	866		-	0.36			
	0.12	25			0.37	_		
	0.13				0.38		_	
	0.14				0.39			
-	0.15			-	0.40			
	0.16				0.41			
	0.17				0.42			
	0.18				0.43			-
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			_
	0.22				0.47	-		
	0.23				0.48			
	0.24			-	0.49			
	0.25				0.50			
Sketch of S	Sample Afte	r Test:						
	,			_				
	↑							
	مارين							
	H5 P							
	₩ 9			_				
					,			· - -
				-				
Comments	POLICE	ted she	412 5110	<u> </u>				
7	<u>EY E/1</u>	H LTO	IV RON	7,000				
	J 1 7/	1 2	C1 DK10			·		,

(


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 14.0' Lt Yei Brn w/Yei Brn Weathered Sandstone

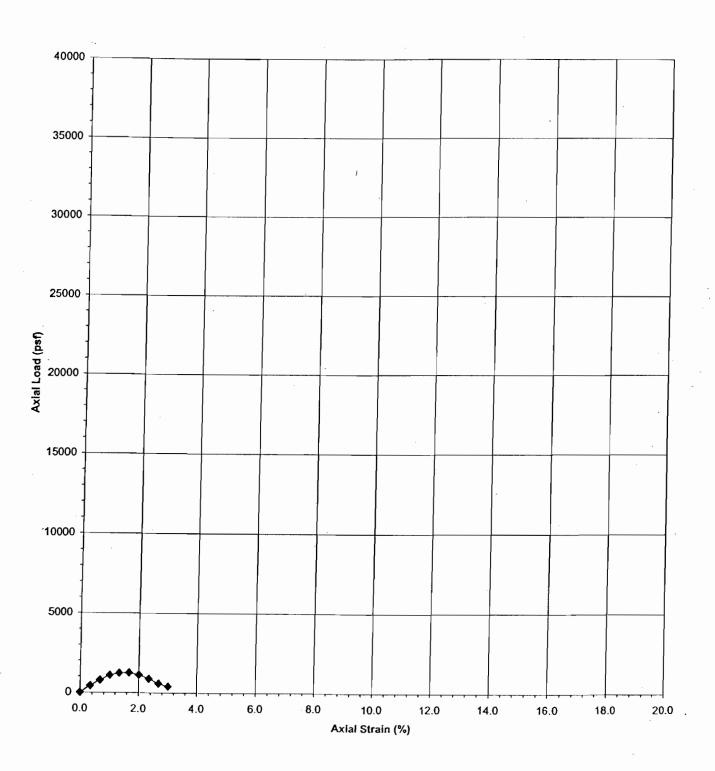
				(UNCON	F.XLS)		
CLIENT:	CAL Engine	ering and G	eology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Const	tant = 0.6954	lb/div	
DEPTH:	14.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.40	4.95	0.00	0	0.00	0	0.0	0
2.40	4.95	0.01	27	18.78	598	0.2	598
2.40	4.95	0.02	51	35.47	1129	0.4	1129
2.40	4.95	0.03	80	55.63	1771	0.6	1771
2.40	4.95	0.04	115	79.97	2546	8.0	2546
2.40	4.95	0.05	149	103.61	3298	1.0	3298
2.40	4.95	0.06	172	119.61	3807	1.2	3807
2.40	4.95	0.07	196	136.30	4339	1.4	4339
2.40	4.95	0.08	210	146.03	4648	. 1.6	4648
2.40	4.95	0.09	218	151.60	4825	1.8	4825
2.40	4.95		224	155.77	4958	2.0	4958
2.40	4.95		205	142.56	4538	2.2	4538
2.40			186	129.34	4117	2.4	4117
2.40			169	117.52	3741	2.6	3741
2.40			145	100.83	3210	2.8	3210
2.40	4.95			90.40	2878	3.0	287 8
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	· #DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIVIO:	,, 5, 170:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Unconfine	ed Compre	ssion Test	Data (Roc					
					tant = 0.695	54 lb/div		
CLIENT:	CH2 17	NAME OF STREET	TP 1 1 1/-	J				
PROJECT	CAL E	S PN	2010	Sample Di	ameter: 2	.40		
PROJ.#:	0019	360		Sample Le	ngth: 4	95		· -
DATE:		060		Wet Wt./Di	v Wt ·			F-73
BORING:	2/8/01					ZRN WYYE	2 BRN	
DEPTH:	14.01	· ·		SANDS	121			
	1 110				10100/15	111000 10	The prince of	i Ge
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.				RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	2-7			0.26			
	0.02	51			0.27			
	0.03				0.28			
	0.04	115			0.29			
	0.05				0.30			
	0.06				0.31			
	0.07	196			0.32			
	0.08	210			0.33			
	0.09	218			0.34			
	0.10	224			0.35			
	0.11	205			0.36		,	
	0.12	186			0.37			
	0.13	169			0.38			
	0.14	145			0.39			
-	0.15	145 145 130			0.40			
	0.16		,		0.41			
	0.17				0.42			
	0.18				0.43			
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22				0.47			
\	0.23				0.48			
, .	0.24				0.49	•		
\	0.25				0.50			
` \								
Sketch of S	Sample Afte	r Test:						
		13/1/1						
		Y /-/1						
		11						
		1						
		/ (, 1						
	ŀ	(<i>V</i>]						
)						
			,					
								-
Comments:	2.5 Y	6/3 U	1/ LOYR	5/6				
			,					


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 17.5' Lt Yel Brn w/Brn Yel Completely Weathered Claystone

				(UNCON	F.ALO)		-
CLIENT:	CAL Engine		eology				
	Vasco Road						
	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Const	tant = 0.6954	lb/div	
DEPTH:	17.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD		-	
(IN)	(IN)	(IN)	1	(LBS)	(PSF)	(%)	(PSF)
2.37	4.90	0.00	0	0.00	0	0.0	0
2.37	4.90	0.01	8	5.56	182	0.2	182
2.37	4.90	0.02	15	10.43	340	0.4	340
2.37	4.90	0.02	23	15.99	522	0.6	522
	4.90	0.03	28	19.47	636	0.8	636
2.37				22.25	726	1.0	726
2.37	4.90	0.05			840	1.2	840
2.37	4.90	0.06		25.73		1.4	908
2.37	4.90	0.07	40	27.82	908		
2.37	4.90	0.08		29.90	976	1.6	976
2.37	4.90	0.09		31.29	1021	1.8	1021
2.37	4.90	0.10	47	32.68	1067	2.0	1067
2.37	4.90	0.11	49	34.07	1112	2.2	1112
2.37	4.90	0.12	51	35.47	1158	2.4	1158
2.37	4.90	0.13		36.16	1180	2.7	1180
2.37	4.90	0.14	53	36.86	1203	2.9	1203
2.37	4.90	0.15	53	36.86	1203	3.1	1203
2.37	4.90	0.16	54	37.55	1226	3.3	1226
2.37	4.90	0.17	54	37.55	1226	3.5	1226
2.37	4.90		54	37.55	1226	3.7	1226
2.37	4.90			36.86	1203	3.9	1203
2.37	4.90			36.16	1180	4.1	1180
2.37	4.90	0.21	52	36.16	1180	4.3	1180
2.37	4.90		51	35.47	1158	4.5	1158
2.37	4.90		50	34.77	1135	4.7	1135
2.37				33.38	1090	4.9	1090
					1044	5.1	1044
2.37				30.60	.999	5.3	999
2.37					953	5.5	953
2.37				29.21	863	5.7	863
2.37				26.43			817
2.37			36	25.03	817	5.9	
2.37	4.90		33	22.95	749	6.1	749
2.37	4.90		31	21.56	704	6.3	704
2.37	4.90		29	20.17	658	6.5	658
,		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.70		3.00			

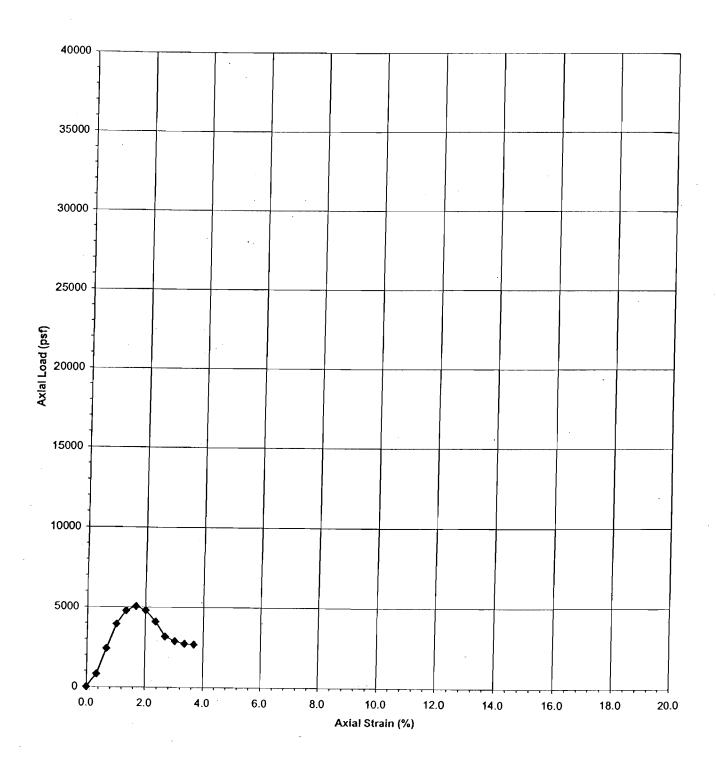
Unconfine	ed Compre	ssion Test	Data (Roc	:k)		1			
		1000			tant = 0.69	54 lb/div			
CLIENT: C	al Enginee	ring and Go	ology	, ung come					
PROJECT	: Vasco Ro	ad	ююду	Sample Di	ameter: 2	27			
PROJ. #:				Sample Le	ngth: 4	90			
DATE:	2/8/01			Wet Wt./Dr		1=-95			
BORING:	13-4			Description: HOLVERN W/ BENYEL					
DEPTH:	17,5	<u> </u>		אדמינונו	T RESID	<u></u>			
	1113			102-1111	301(810	<u> </u>	VSILTY	رجا (الح	
	CHANGE IN	PROVING		 	CHANGE IN	PROVING	V 2 7		
	HEIGHT	RING READ.		1	HEIGHT	RING READ.			
	(IN)	(DIV)		_	(IN)	(DIV)		:	
	0.01			1	0.26				
	0.02	8			0.27	42			
	0.03	23		_	0.28	20			
	0.04	28			0.29	36			
	0.05	77.			0.30	77			
	0.06	37			0.31	31			
	0.07	37 40 43 45			0.32	36 33 31 29			
	0.08	43			0.33				
	0.09	45			0.34			,	
	0.10	47			0.35		,		
-	0.11	49			0.36				
	0.12	51			0.37				
	0.13	51 52		-1	0.38				
	0.14	53			0.39			·	
	0.15	53 53 54 54 54			0.40				
	0.16	54			0.41				
	0.17	34			0.42				
	0.18	54			0.43				
	0.19	53 52	_		0.44				
	0.20	52			0.45				
	0.21	52			0.46			-	
	0.22	51			0.47				
	0.23	50			0.48				
	0.24	48			0.49				
	0.25	46			0.50				
					,				
Sketch of S	ample After	r Test:							
	_ \								
		111	1						
	1	S/ N							
		VI							
		$\gamma\gamma$	51	0					
	{		4						
	V) `	V						
		II	,						
Comments:	2,5	15/4 M	OLV BRN	VIOYR	6/8				
	PARTI	The Pour	SHED :	SHEAR SI	PRE				


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 27.0' Lt Yel Brn w/Brn Yel Weathered Sandy Claystone/Siltstone

	CAL Engine	ering and G	COLOGY		AL Engineering and Geology (UNCONF.XLS)							
	,		eology									
PROJECT												
	001860											
	02/12/2001			2								
	B-4			Ring Cons	tant = 0.6954	lb/div						
DEPTH: 2	27.0'											
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE					
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD								
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)					
2.41	4.60	0.00	0	0.00	0	0.0	0					
2.41	4.60	0.01	14	9.74	307	0.2	307					
2.41	4.60	0.02	26	18.08	571	0.4	571					
2.41	4.60	0.03	40	27.82	878	0.7	878					
2.41	4.60	0.04	53	36.86	1163	0.9	1163					
2.41	4.60	0.05	65	45.20	1427	1.1	1427					
2.41	4.60	0.06	75	52.16	1646	1.3	1646					
2.41	4.60	0.07	. 83	57.72	1822	1.5	1822					
2.41	4.60	0.08	89	61.89	1954	1.7	1954					
2.41	4.60	0.09	93	64.67	2042	2.0	2042					
2.41	4.60	0.10	96	66.76	2107	2.2	2107					
2.41	4.60	0.11	99	68.84	2173	2.4	2173					
2.41	4.60	0.12	101	70.24	2217	2.6	2217					
2.41	4.60	0.13	103	71.63	2261	2.8	2261					
2.41	4.60	0.14	105	73.02	2305	3.0	2305					
2.41	4.60	0.15	107	74.41	2349	3.3	2349					
2.41	4.60	0.16	108	75.10	2371	3.5	2371					
2.41	4.60	0.17	108	75.10	2371	3.7	2371					
2.41	4.60	0.18	108	75.10	2371	3.9	2371					
2.41	4.60	0.19	108	75.10	2371	4.1	2371					
2.41	4.60	0.19	108	75.10	2371	4.3	2371					
2.41	4.60	0.20	106	73.71	2327	4.6	2327					
2.41		0.21		73.02		4.8	2305					
	4.60		105		2305							
2.41	4.60	0.23	102	70.93	2239	5.0	2239					
2.41	4.60	0.24	100	69.54	2195	5.2	2195					
2.41	4.60	0.25	97	67.45	2129	5.4	2129					
2.41	4.60	0.26	93	64.67	2042	5.7	2042					
2.41	4.60	0.27	90	62.59	1976	5.9	1976					
2.41	4.60	0.28	86	59.80	1888	6.1	1888					
2.41	4.60	0.29	83	57.72	1822	6.3	1822					
2.41	4.60	0.30	79	54.94	1734	6.5	1734					
2.41	4.60	0.31	75	52.16	1646	6.7	1646					
2.41	4.60	0.32	70	48.68	1537	7.0	1537					
2.41	4.60	0.33	67	46.59	1471	7.2	1471					
2.41	4.60	0.34	65	45.20	1427	7.4	1427					
2.41	4.60	0.35	62	43.11	1361	7.6	1361					
2.41	4.60	0.36	60	41.72	1317	7.8	1317					
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!					

Unconfine	ed Compre	ssion Test	Data (Roc					
			\		tant = 0.69	54 lb/div		
CLIENT: C	Cal Enginee	ring and Ge	ology	3				
	: Vasco Ro			Sample Di	ameter: Z	.41		
PROJ.#:				Sample Le	ngth: 4	(0D)		
	2/8/01			Wet Wt /Dr	v Wt ·		_	F-98
BORING:	"B-4			Description	1: LT V57.15	RN W/BRN	YEZ SAND	7
	27,0'			CLAYST	ME/SILTS	FORT VE	YEL SAND	
	-,,-							
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	14			0.26	93		
	0.02	26			0.27	90		
	0.03	40			0.28	93 90 86 83		
	0.04	53			0.29	63		
	0.05	65			0.30	79 75		
	0.06	75			0.31	75		
	0.07	R3			0.32	70		
	0.08	89 93 96			0.33	67		
	0.09	93			0.34	65		
	0.10	96			0.35	62		
	0.11	99			0.36	60		
	0.12	101			0.37			
	0.13	103			0.38			
	0.14	105			0.39			
	0.15	107			0.40			
	0.16	108			0.41			
	0.17	108			0.42			
	0.18	108			0.43		-	
	0.19	108			0.44			
	0.20	100			0.45			
	0.21	106			0.46 0.47	.,		
	0.22	105		-	0.47			
	0.23	102			0.49			
	0.25	100			0.43			
	0.20	-1.1			0.50			
Sketch of S	Sample Afte	r Test		 			· ·	
	\	. 1000						
	ì							
		13)1	7					
_		1/1/1						
	ľ	~(V)/	7 /	10+				
		< ⅓	151	-				
		`//	/					
		(1)	1					
Comments	:							
						-		

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 30.0' Orn Brn w/ Yel Brn Weathered Claystone

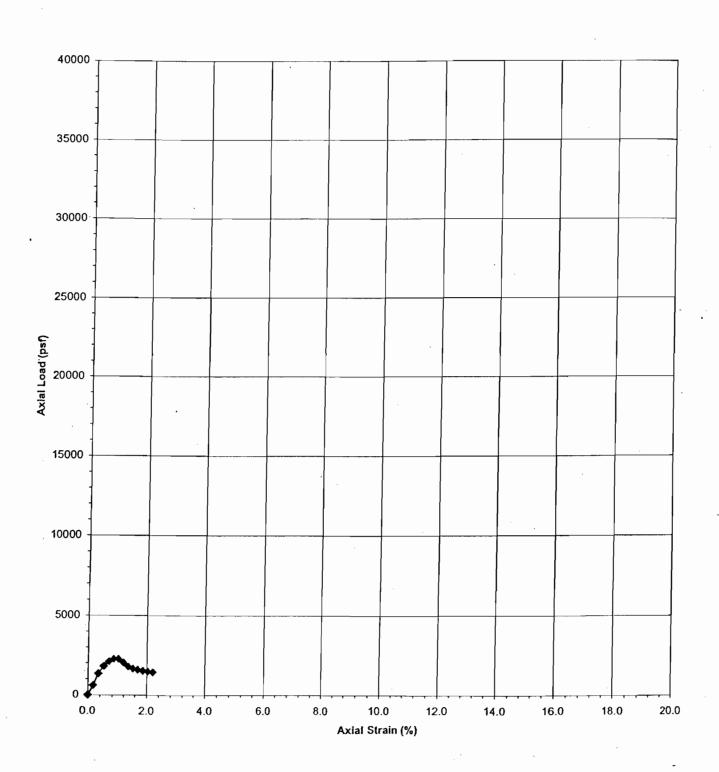


				(UNCON	F.XLS)		
CLIENT:	CAL Engine		eology				
	Vasco Road						
PROJ. #:	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	30.0'						
				_			
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.40	5.99	0.00	0	0.00	0	0.0	0
2.40	5.99	0.02	19	13.21	421	0.3	421
2.40	5.99	0.04	35	24.34	775	0.7	775
2.40	5.99	0.06	49	34.07	1085	1.0	1085
2.40	5.99	0.08	55	38.25	1217	1.3	1217
2.40	5.99	0.10	56	38.94	1240	1.7	1240
2.40	5.99	0.12	50	34.77	1107	2.0	1107
2.40	5.99	0.14	39	27.12	863	2.3	863
2.40	5.99	0.16	26	18.08	576	2.7	576
2.40	5.99	0.18	18	12.52	398	3.0	398
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.42		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.44		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.46		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.48		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.50		0.00		#DIV/0!	#DIV/0!
		0.52		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.54		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.56		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.58		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	<u>.</u>	0.60		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.62		0.00	#DIV/0!	#DIV/0!	#DIV/0!
· ·		0.64		0.00	#DIV/0!	#DIV/0!	#DIV/0!
- -		0.66		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.68		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.70		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.70		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.72		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.76		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.78				#DIV/0! #DIV/0!	#DIV/0!
		0.80		0.00	#DIV/0!	#DIV/U!	#DIV/U!

Unconfine	d Compre	ssion Test	Data					
	,			Ring Cons	tant = 0.69	54 lb/div		
CLIENT: C	AL ENG &	KOM					Artesoft as	
PROJECT	: VASCO	0 200		Sample Di	ameter: Z	40		1
PROJ. # :	001860			Sample Le	ngth: 5.9	99		
DATE: 24	18/01			Wet Wt./Di	y Wt.: 94	Z. [W/		F-81
DATE: 24 BORING:	B-4			Description	1: OCYBRN	W/YER BR	۸.	
DEPTH:	30.0	_		CLAYSTE	SAVES TR	VIEG SAN	D	
	•••							
	CHANGE IN	PROVING			CHANGE IN	PROVING		
		RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.02				0.52	,,,,,		
	0.04				0.54			
	0.06				0.56			
	0.08	55			0.58			,
	0.10				0.60			
-	0.12	~			0.62			
	0.14				0.64			
	0.16	26			0.66			
	0.18				0.68			
	0.20	10			0.70			
	0.22				0.72			
	0.24				0.74			
	0.26				0.76			
	0.28				0.78			
	0.30				0.80			
	0.32				0.82			
	0.34				0.84			
	0.36				0.86			
	0.38	•			0.88			
	0.40				0.90			
	0.42				0.92			_
	0.44				0.94			
	0.46				0.96			
	0.48				0.98			
	0.50				1.00			
Sketch of S	ample Afte	r Test:						_
		3						
],						
						1		
		1						
	ł	4603				·		100
omments:	Roon	JAC .		EN SUR				
		ZBRN	LICKEN	7,5	7414 0	NIVE B	RAN	

.

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 39.0' V Dk Gry Weathered Claystone

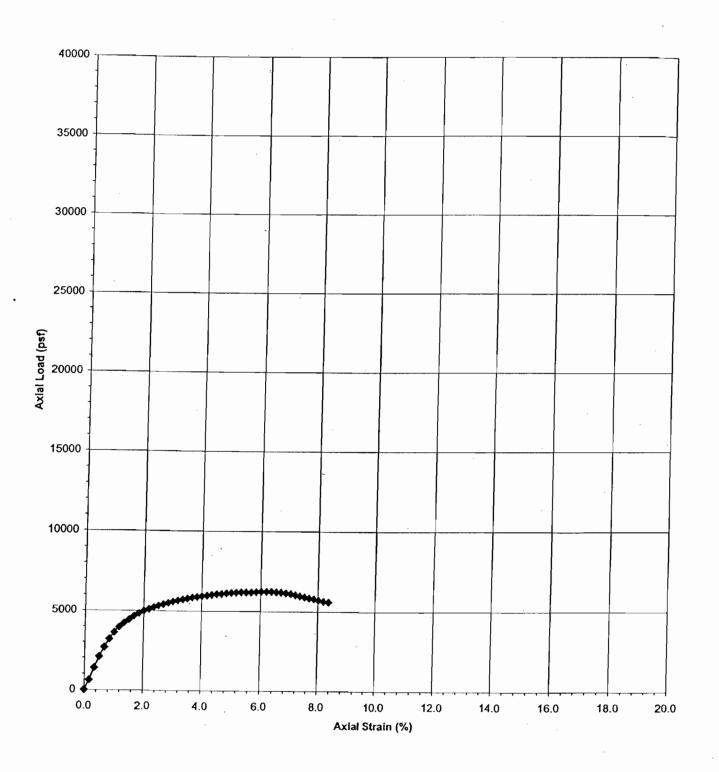


				F.XLS)		
	ering and G	eology	-			
Vasco Road						
001860						
02/12/2001						
3-4			Ring Const	tant = 0.6954	lb/div	
39.0'						
				-		
ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
5.98	0.00	0	0.00	0		0
5.98	0.02	36	25.03			810
5.98	0.04	107				2408
5.98	0.06					3939
5.98	0.08					4772
5.98	0.10		155.77			5042
5.98	0.12	213	148.12			4794
5.98	0.14	182	126.56			4097
5.98	0.16	141	98.05			3174
5.98	0.18	128	89.01	2881		2881
5.98	0.20	121	84.14	2724		2724
5.98	0.22	119	82.75	2679		2679
	0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.28		0.00	#DIV/0!		#DIV/0!
	0.30		0.00	#DIV/0!		#DIV/0!
	0.32		0.00	#DIV/0!		#DIV/0!
_	0.34		0.00	#DIV/0!		#DIV/0!
	0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.42		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.44		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.46		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.48		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.50		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.52		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.54		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.56		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.58		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.60		2.38	5.98	#DIV/0!	#DIV/0!
	0.62		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.64		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.66		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.68		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.70		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	0.72		0.00	#DIV/0!	#DIV/0!	#DIV/0!
			0.00	#DIV/0!	#DIV/0!	#DIV/0!
			0.00	#DIV/0!	#DIV/0!	#DIV/0!
				#DIV/0!	#DIV/0!	#DIV/0!
					#DIV/0!	#DIV/0!
	Vasco Road 001860 02/12/2001 3-4 39.0' ORIGINAL HEIGHT (IN) 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98	Vasco Road 001860 02/12/2001 3-4 09.0' ORIGINAL CHANGE IN HEIGHT HEIGHT (IN) (IN) 5.98 0.00 5.98 0.04 5.98 0.06 5.98 0.10 5.98 0.10 5.98 0.12 5.98 0.14 5.98 0.16 5.98 0.16 5.98 0.20 5.98 0.20 5.98 0.20 6.98 0.20 6.98 0.22 6.024 6.26 6.28 6.30 6.30 6.31 6.32 6.34 6.36 6.38 6.40 6.40 6.41 6.42 6.45 6.45 6.55 6.56 6.66 6.68 6.68 6.68	001860 02/12/2001 3-4 3-4 39.0' ORIGINAL CHANGE IN PROVING HEIGHT HEIGHT RING READ. (IN) (IN) 5.98 0.00 0 5.98 0.02 36 5.98 0.04 107 5.98 0.06 175 5.98 0.10 224 5.98 0.10 224 5.98 0.12 213 5.98 0.14 182 5.98 0.15 141 5.98 0.18 128 5.98 0.19 121 5.98 0.20 121 5.98 0.20 121 5.98 0.22 119 0.24 0.26 0.28 0.30 0.30 0.32 0.32 0.34 0.34 0.36 0.38 0.40 0.40 0.42 0.44 0.46 0.48 0.48 0.50 0.50 0.52 0.54 0.56 0.58 0.58 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.6	Asco Road 001860 02/12/2001 3-4 89.0' ORIGINAL CHANGE IN PROVING PROVING HEIGHT HEIGHT RING READ. RING LOAD (IN) (IN) (LBS) 5.98 0.00 0 0.00 5.98 0.02 36 25.03 5.98 0.04 107 74.41 5.98 0.06 175 121.70 5.98 0.10 224 155.77 5.98 0.10 224 155.77 5.98 0.11 2213 148.12 5.98 0.14 182 126.56 5.98 0.14 182 126.56 5.98 0.16 141 98.05 5.98 0.18 128 89.01 5.98 0.20 121 84.14 5.98 0.22 119 82.75 0.24 0.00 0.26 0.00 0.28 0.00 0.28 0.00 0.32 0.00 0.32 0.00 0.34 0.00 0.36 0.00 0.38 0.00 0.38 0.00 0.39 0.00 0.30 0.00 0.31 0.00 0.32 0.00 0.34 0.00 0.36 0.00 0.38 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.39 0.00 0.30 0.00 0.30 0.00 0.31 0.00 0.32 0.00 0.33 0.00 0.00 0.34 0.00 0.050 0.00 0.050 0.00 0.050 0.00 0.050 0.00 0.050 0.00 0.550 0.00 0.00	Vasco Road	

Unconfine	ed Compre	ssion Test	Data					
				Ring Const	tant = 0.69	54 lb/div		
CLIENT:	CAI	D11/- (1)	n 7/2 (# 1/					
PROJECT	1/4	CO RI	BACITURE	Sample Dia	ameter: 7	70.		
PROJ.#:	. VAS	1860		Sample Die	noth:	, 30 44		
DATE:	2/06	1,000		Sample Le Wet Wt./Dr Description	1/10/11. 5	127111		F-28
BORING:	2/8/c	<u>′</u>		Description	y vv 4.	2110	16770 05	1000
DEPTH:	39,0			Description	· V DRA	TO CLEAN	181006	
DET TITE	39,0					<u> </u>		
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
						(DIV)		
	(IN) 0.02	(DIV)			(IN) 0.52	(017)		
	0.02				0.54	-		
	0.04				0.54			
	0.08				0.58			
	0.08	212	_		0.60			
	0.10				0.60			
	0.12	0			0.62			
	0.14				0.64			
	0.18	141			0.68			
	0.18	128		_	0.88			
	0.20		· ·		0.70			
	0.22	119			0.72			
	0.24				0.74			
l	0.28				0.78			
	0.20				0.80		·	
	0.30				0.82			
	0.34				0.84			
	0.34				0.86			
	0.38				0.88			
	0.40				0.90	-		
	0.40				0.90			
	0.42				0.94			
	0.44				0.94			
	0.48				0.98			
	0.48				1.00			
	0.50				1.00			
Sketch of S	comple A#s	r Toot:						
SKEICH OF S	ample Alle	1681.						
	7	751	_					
		4	VFG SE	mul				
	42		Via >					
	* 1	[,]	}					
		:						
		34						
	<u> </u>							
Comments:	STICKEN	SIDED/PO	たらい (15/1-25)	BREAK	/ / -	_		
J.S	$\frac{y}{2}$	5/1 BLAC	CK TO	2,54 3	11 V DK	GRY		

(

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 44.0' V Dk Gry Weathered Claystone

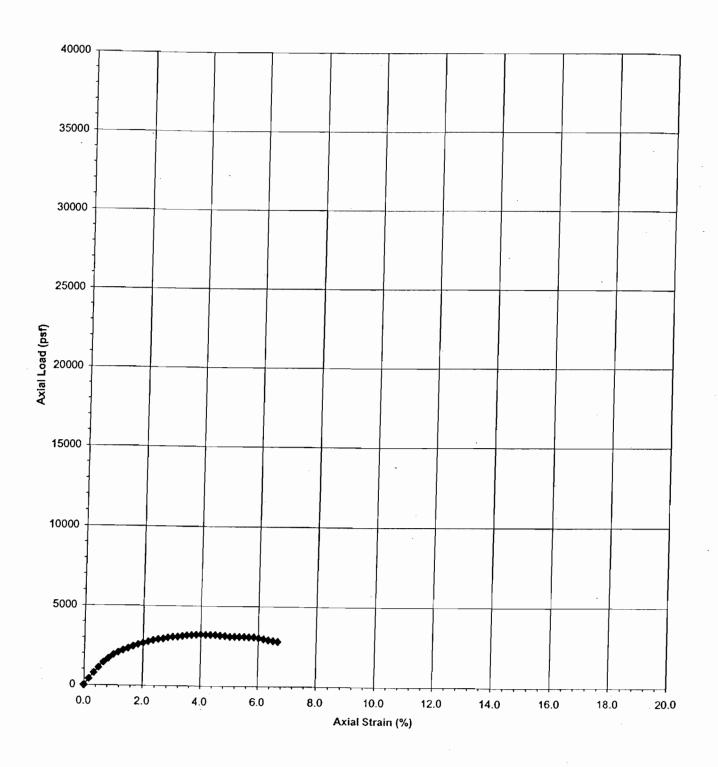


				(UNCON	r.ALO)		
CLIENT:	CAL Engine		eology				
	Vasco Road						
PROJ. #:	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Const	tant = 0.6954	lb/div	
DEPTH:	44.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.92	0.00	0	0.00	0	0.0	0
2.39	5.92	0.01	27	18.78	603	0.2	603
2.39	5.92	0.02	60	41.72	1339	0.3	1339
2.39	5.92	0.03	81	56.33	1808	0.5	1808
2.39	5.92	0.04	94	65.37	2098	0.7	2098
2.39	5.92	0.05	101	70.24	2254	0.8	2254
2.39	5.92	0.06	101	70.24	2254	1.0	2254
2.39	5.92	0.07	91	63.28	2031	1.2	2031
2.39	5.92	0.08	80	55.63	1786	1.4	1786
2.39	5.92	0.09	74	51.46	1652	1.5	1652
2.39	5.92	0.10	71	49.37	1585	1.7	1585
2.39	5.92	0.11	68	47.29	1518	1.9	1518
2.39	5.92	0.12	66	45.90	1473	2.0	1473
2.39	5.92	0.13	64	44.51	1429	2.2	1429
		0.14		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	•	0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
-	-	0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	1	0.40		0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Unconfined Compression Test Data (Roc	k)	
	Ring Constant = 0.6954 lb/div	
CLIENT: CAL ENGINEERING		
PROJECT: VASCO RD	Sample Diameter: 2,39	
PROJ.#: 001860	Sample Length: 5,92	
DATE: 2/8/01	Wet Wt /Dry Wt : ABY	68
BORING: B-4	Wet Wt./Dry Wt.: CRY Description: VDK/CLAYSTONE	
DEPTH: 44,0	W/TR NFG SAND	
CHANGE IN PROVING	CHANGE IN PROVING	
HEIGHT RING READ.	HEIGHT RING READ.	
(IN) (DIV)	(IN) (DIV)	
0.01 27	0.26	
0.02 60	0.27	
	0.28	
0.03 81 0.04 94	0.29	
0.05 01	0.30	
0.06 [0]	0.31	
0.07 91	0.32	•
0.08 80	0.33	
0.09 74	0.34	
0.10 71	0.35	
0.11 68	0.36	
0.12 66	0.37	
0.13 64	0.38	
0.13	0.39	
0.15	0.40	
0.16	0.40	
0.17	0.41	
0.17	0.42	
0.18		
0.19	0.44	
0.20	0.45	-
	0.46	
0.22	0.47	
	0.48	-
0.24	0.49	
0.25	0.50	
Sketch of Sample After Test:		
/ ^k y		
460		
	·	
Comments: POLISITED BREAK LIN	EAR	
	· · · · · · · · · · · · · · · · · · ·	

([©]/₁)

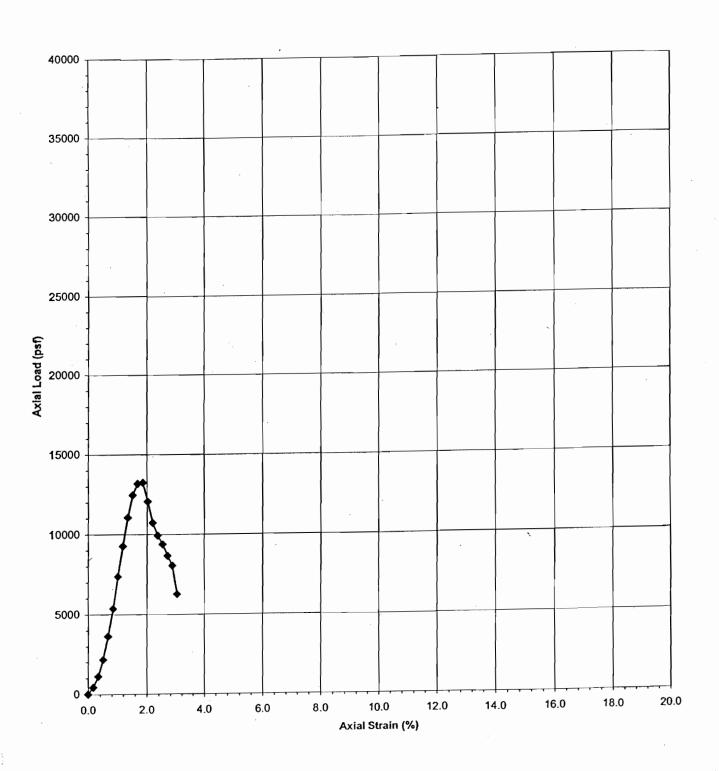
Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 49.0' V Dk Gry/Blk Weathered Claystone w/Sand Lenses


				(UNCON	F.XLS)		
CLIENT:	CAL Engine		eology				
PROJECT	Vasco Road		1				
	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Const	tant = 0.6954	lb/div	
DEPTH:	49.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)	_	(LBS)	(PSF)	(%)	(PSF)
2.41	5.98	0.00	0	0.00	0	0.0	. 0
2.41	5.98	0.01	28	19.47	615	0.2	615
2.41	5.98	0.02	63	43.81	1383	0.3	1383
2.41	5.98	0.03	95	66.06	2085	0.5	2085
2.41	5.98	0.04	122	84.84	2678	0.7	2678
2.41	5.98	0.05	146	101.53	3205	0.8	3205
2.41	5.98	0.06	165	114.74	3622	1.0	3622
2.41	5.98	0.07	180	125.17	3951	1.2	3951
2.41	5.98	0.08	192	133.52	4215	1.3	4215
2.41	5.98	0.09	202	140.47	4434	1.5	4434
2.41	5.98	0.10	212	147.42	4654	1.7	4654
2.41	5.98	0.11	220	152.99	4829	1.8	4829
2.41	5.98			157.86	4983	2.0	4983
2.41	5.98			161.33	5093	2.2	5093
2.41	5.98		237	164.81	5203	2.3	5203
2.41	5.98			168.29	5312	2.5	5312
2.41	5.98			171.07	5400	2.7	5400
2.41	5.98		250	173.85	5488	2.8	5488
2.41	5.98			176.63	5576	3.0	5576
2.41	5.98			178.72	5642	3.2	5642
2.41	5.98		260	180.80	5707	3.3	5707
2.41	5.98		263	182.89	5773	3.5	5773
2.41	5.98	L	266	184.98	5839	3.7	5839
2.41	5.98			186.37	5883	3.8	5883
2.41	5.98			187.76	5927	4.0	5927
2.41	5.98			189.15	5971	4.2	
2.41	5.98			190.54	6015	4.3	
2.41	5.98			191.93	6059	4.5	6059
2.41	5.98			192.63	6081	4.7	6081
2.41	5.98			194.02	6125	4.8	6125
2.41	5.98			194.71	6147	5.0	6147
	5.98		281	195.41	6168	5.2	6168
2.41	5.98		282	196.10	6190	5.4	6190
	5.98			196.10	6190	5.5	6190
2.41			282	196.10	6190	5.7	6190
2.41	5.98			196.80	6212	5.9	6212
2.41	5.98			197.49	6234	6.0	6234
2.41	5.98				6234	6.2	6234
2.41	5.98			197.49		6.4	6234
2.41	5.98			197.49	6234	6.5	6212
2.41	5.98			196.80	6212		
2.41	5.98	0.40	282	196.10	6190	6.7	6190

				1011001	i .ALO		
2.41	5.98	0.41	280	194.71	6147	6.9	6147
2.41	5.98	0.42	278	193.32	6103	7.0	6103
2.41	5.98	0.43	275	191.24	6037	7.2	6037
2.41	5.98	0.44	272	189.15	5971	7.4	5971
2.41	5.98	0.45	269	187.06	5905	7.5	5905
2.41	5.98	0.46	266	184.98	5839	7.7	5839
2.41	5.98	0.47	264	183.59	5795	7.9	5795
2.41	5.98	0.48	260	180.80	5707	8.0	5707
2.41	5.98	0.49	257	178.72	5642	8.2	5642
2.41	5.98	0.50	255	177.33	5598	8.4	5598

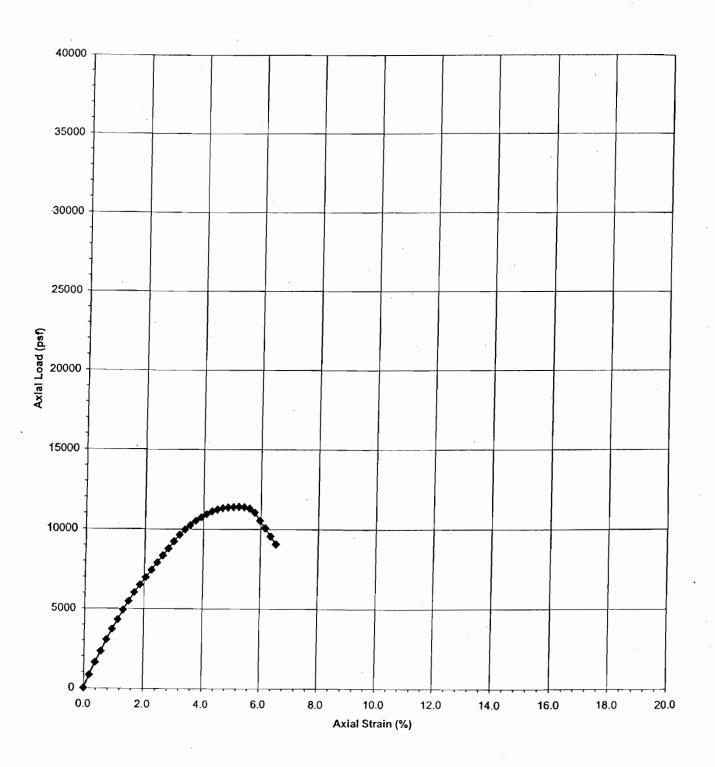
Unconfine	ed Compre	ssion Test	Data (Roc	ck)				
					tant = 0.69	54 lb/div		
CLIENT:	CAZE	1/27 1122	K16U/=	-		1		
PROJECT	: VASC	2 Rh	VII 944	Sample Di	ameter: 2	,41		
IPROJ # 1	191010	1/-			ngth: 5/			
DATE:	2/8/01			Wet Wt./Di		F-62		
BORING:	B-41			Description	1: VXX GRA	BLK CLA	MARONEL	
DEPTH:	49,0'			W/SAND LI	MSOS CK!	BLK CLA HAND PLB	凤欧<龙"	
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	28			0.26	274	,	
	0.02	63			0.27			
	0.03	95			0.28	277		
	0.04	122			0.29	279		
	0.05	146			0.30	280		
	0.06	165 180 192			0.31	781		
	0.07	180			0.32	281 282		
	0.08	192			0.33	282		
	0.09	202			0.34	282		
	0.10	2.12			0.35			
	0.11	220			0.36	284 284		
	0.12	227			0.37	284		
	0.13	232			0.38			
	0.14	237			0.39	283		
	0.15	242			0.40	Z82		
	0.16	246			0.41			
	0.17	250			0.42	278		
	0.18	254			0.43			
	0.19	257			0.44	272		
	0.20	260			0.45	269		
	0.21	763			0.46	266		
	0.22	266			0.47	264		
	0.23	Z68			0.48	260		
	0.24	270 272			0.49	257		
	0.25	272			0.50	255		
Sketch of S	Sample Afte	r Test:						
•.								_
			PERSON					
		~	1					
		71	1450					
		ما	•					
	ų.						,	
	11	12						
-	1	1.4						
Comments:	:	2542.5	/1 BLK	ONLY	MINOR F	202154 IN	4 ON SH	EAR PLANT
				7				

 $\binom{2}{2}$


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 56.0' Blk Weathered Claystone w/VFG Sand Lenses

CLIENT:	CAL Engine	oring and C	cology	UNCON	F.ALO)		
	Vasco Road		leology				
PROJ. #:	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	56.0'			Tung Cons	idiit 0.000.	127 5.7	
DEP III.	30.0	_					
CAMPLE	ODICINIAL	CHANCEIN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
SAMPLE	ORIGINAL	CHANGE IN	-	RING LOAD	FRESSORE	01101111	7712000112
DIAMETER	HEIGHT	HEIGHT	RING READ.	(LBS)	(PSF)	(%)	(PSF)
(IN) 2.41	(IN)	(NI) 0.00	0	0.00	0	0.0	0
2.41	5.99	0.00		12.52	395	0.2	395
	5.99		35	24.34	768	0.3	768
2.41	5.99	0.02	50	34.77	1098	0.5	1098
2.41	5.99	0.03		45.20	1427	0.7	1427
2.41	5.99	0.04	65	_	1668	0.7	1668
2.41	5.99	0.05		52.85	1910	1.0	1910
2.41	5.99	0.06	87	60.50		1.0	2063
2.41	5.99	0.07		65.37	2063	1.3	2195
2.41	5.99	0.08	100	69.54	2195	1.5	2327
2.41	5.99	0.09	106	73.71	2327		
2.41	5.99	0.10	112	77.88	2459	1.7	2459
2.41	5.99	0.11	117	81.36	2568	1.8	2568
2.41	5.99	0.12	_	84.14	2656	2.0	2656
2.41	5.99	0.13	125	86.93	2744	2.2	2744
2.41	5.99	0.14	129	89.71	2832	2.3	2832
2.41	5.99	0.15	132	91.79	2898	2.5	2898
2.41	5.99	0.16	134	93.18	2942	2.7	2942
2.41	5.99	0.17	137	95.27	3007	2.8	3007
2.41	5.99	0.18	139	96.66	3051	3.0	3051
2.41	5.99	0.19		97.36	3073	3.2	3073
2.41	5.99	0.20		98.75	3117	3.3	3117
2.41	5.99	0.21	144	100.14	3161	3.5	3161
2.41	5.99	0.22	145	100.83	3183	3.7	3183
2.41	5.99	0.23	146	101.53	3205	3.8	3205
2.41	5.99	0.24	147	102.22	3227	4.0	3227
2.41	5.99	0.25	146	101.53	3205	4.2	3205
2.41	5.99	0.26	146	101.53	3205	4.3	3205
2.41	5.99	0.27	146	101.53	3205	4.5	3205
2.41	5.99	0.28	144	100.14	3161	4.7	3161
2.41	5.99	0.29		99.44	3139	4.8	3139
2.41	5.99	0.30	141	98.05	3095	5.0	3095
2.41	5.99	0.31	141	98.05	3095	5.2	3095
2.41	5.99	0.32	141	98.05	3095	5.3	3095
2.41	5.99	0.33		98.05	3095	5.5	3095
2.41	5.99	0.34	140	97.36	3073	5.7	3073
2.41	5.99	0.35		97.36	3073	5.8	3073
2.41	5.99	0.36	138	95.97	3029	6.0	3029
2.41	5.99	0.37		93.88	2964	6.2	2964
2.41	5.99	0.38	132	91.79	2898	6.3	2898
2.41	5.99	0.39	130	90.40	2854	6.5	2854
		0.39		89.01	2810	6.7	2810
2.41	5.99	0.40	120	09.01	2010	0.7	2010

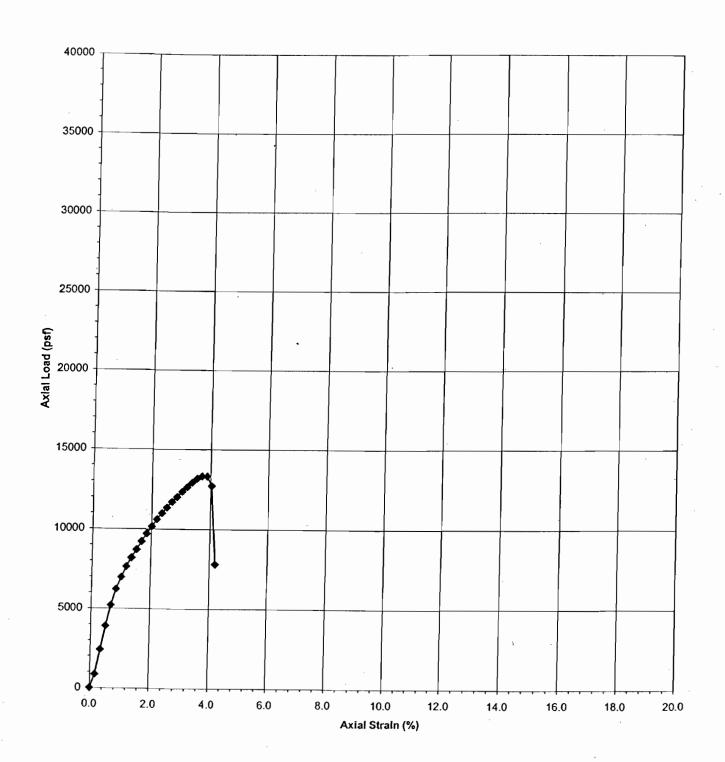
Unconfin	ed Compre	ssion Test Data (
				stant = 0.69	54 lb/div	
CLIENT:	CALE	Jan NEWRING				
PROJEC	T: VA-SC	O RH	Sample D	iameter:	2,41	
PROJ.#	00186	0	Sample Lo	ength:	5,99	
DATE:	2/8/01		Wet Wt./D	ry Wt.:	•	F-23
BORING:	<u> </u>		Descriptio	n: BHS WEN	HH CLAYSTONE	
DEPTH:	56,0'		WINFES	AND LEN	15es < /4"	
	CHANGE IN	PROVING		CHANGE IN		
	HEIGHT	RING READ.		HEIGHT	RING READ.	
	(IN)	(DIV)		(IN)	(DIV)	
	0.01			0.26		
	0.02	35		0.27		-
	0.03	50		0.28		
	0.04	65		0.29	143	
	0.05	76		0.30		
	0.06	87		0.31		
	0.07	94		0.32	141	
	0.08			0.33		
	0.09	106		0.34		
	0.10	112		0.35		
	0.11	117		0.36	138	
	0.12			0.37	135	
	0.13		4	0.38	132	
	0.14	179		0.39	130	
	0.15	132		0.40	128	
	0.16	134		0.41	,,,,,	
	0.17	137		0.42		
	0.18	134		0.43		
	0.19	140		0.44		
	0.20	142		0.45		
· · · ·	0.21	144		0.46		
	0.22	145		0.47		
	0.23			0.48		
	0.24	147		0.49		
	0.25	146		0.50		
	0.20	110		0.00		
Skatch of	Sample Afte	or Tost:				
Sketch of	Sample Alle	1651.				
	1	<i>- 12</i>				
	\\\\Z50/					
	1 4		-			-
	1 /	/				
	\	ľ			_	
	46					•
	↓ " <i>[</i>					
Comments	: 20	Y 2.5/1	WILLIAM M	100 / 1000	ITE IN FINE	can 14


Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 64.5' Dk Grn Gry and Grn Gry Weathered Clayey Sandstone/Sandy Claystone

				(UNCON	r.ALO)		
CLIENT:	CAL Engine		eology				
	Vasco Road						
	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	64.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.92	0.00	0	0.00	0	0.0	0
2.39	5.92	0.01	19	13.21	424	0.2	424
2.39	5.92	0.02	50	34.77	1116	0.3	1116
2.39	5.92	0.03	97	67.45	2165	0.5	2165
2.39	5.92	0.04	163	113.35	3638	0.7	3638
2.39	5.92	0.05	240	166.90	5357	0.8	5357
2.39	5.92	0.06	330	229.48	7366	1.0	7366
2.39	5.92	0.07	415	288.59	9263	1.2	9263
2.39	5.92	0.08	495	344.22	11049	1.4	11049
2.39	5.92	0.09	558	388.03	12455	1.5	12455
2.39	5.92	0.10	590	410.29	13169	1.7	13169
2.39	5.92	0.11	593	412.37	13236	1.9	13236
2.39	5.92	0.12	540	375.52	12053	2.0	12053
2.39	5.92	0.13	480	333.79	10714	2.2	10714
2.39	5.92	0.14	445	309.45	9933	2.4	9933
2.39	5.92		420	292.07	9375	2.5	9375
2.39	5.92	0.16	388	269.82	8660	2.7	8660
2.39			360	250.34	8036	2.9	8036
2.39	5.92	0.18	280	194.71	6250	3.0	6250
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	_	0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
					#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#1717/01	#017/0!	#1010/01

Unconfine	ed Compre	ssion Test	Data (Roc	k)					•
	_ <u> </u>			Ring Cons	tant = 0.69	54 lb/div			
CLIENT: /	AL EN	6-1 112728	21N/-						
IPROJECT	: VA <cr< td=""><td>RN</td><td></td><td>Sample Dia</td><td>ameter: 2</td><td>139</td><td></td><td></td><td></td></cr<>	RN		Sample Dia	ameter: 2	139			
PROJ.#:	2/8/01	60		Sample Le	ngth: 5	.92			Ì
DATE:	2/8/01			Wet Wt./Dr	y Wt.:			F-63	
BORING:	B-4			Description	1: CLAYEY	SANDSTON	E/SANDY	_	
DEPTH:	64.5	_		CLAYSTON	NE. INTER	REDDED	CLAYEY	-5ANBY	
				ZUNE	& WITH	GRAN <	124, DKG	RN GRYA	GRN 684
	CHANGE IN	PROVING				PROVING	,		·
	HEIGHT	RING READ.			HEIGHT	RING READ.			
	(IN)	(DIV)			(IN)	(DIV)			
	0.01				0.26				
	0.02				0.27				
	0.03	97			0.28				
	0.04				0.29				
	0.05	240			0.30				
_	0.06	330			0.31				
	0.07				0.32				
	0.08				0.33				
	0.09				0.34	,			
	0.10	590			0.35				
	0.11	593	97		0.36				
	0.12	540			0.37				
	0.13	480			0.38				
	0.14	444			0.39				
-	0.15	420			0.40				
	0.16	388			0.41				
	0.17	360			0.42				
	0.18	280			0.43				
	0.19				0.44				
	0.20		,		0.45				
	0.21		•		0.46				
	0.22				0.47			·	
	0.23				0.48				
	0.24				0.49				
	0.25				0.50				
Sketch of S	Sample Afte	er Test:							
									-
	[\ \ \							
		\setminus							
,									
	[1	7							
		k 66°			20.000				
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
Comments	: No Po	Lishan	SHOOR	SURFA	CE				
		G 4/1 1	OK GARW A	py &	1045/1	GRN GA	py		
		- 1/1-1	,			-	1.		

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 66.5' Dk Grn Gry Weathered Sandy Claystone

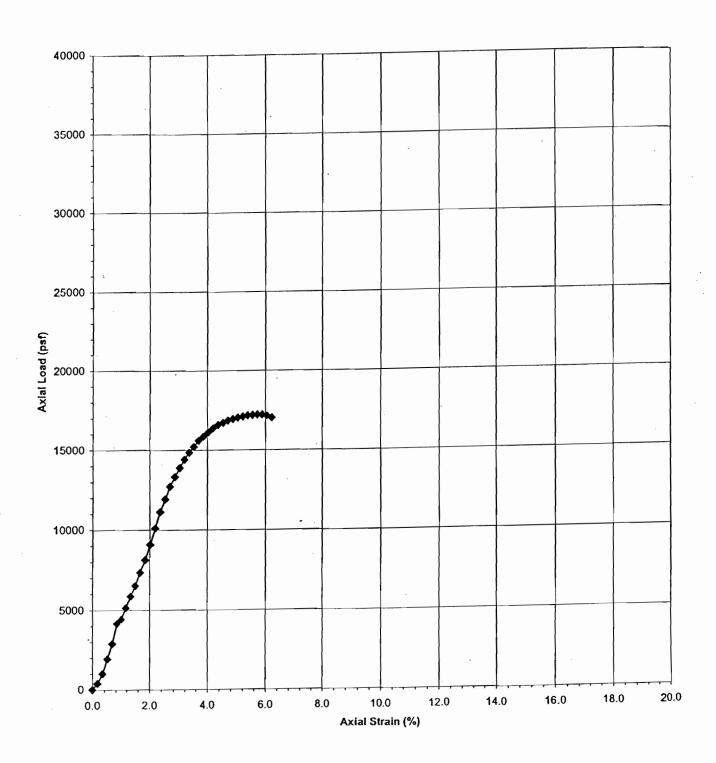


[OL 151:5	(UNCONF.XLS)										
CLIENT:	CAL Engine		Seology								
PROJECT											
PROJ.#:											
DATE:	02/12/2001										
BORING:	B-4			Ring Cons	tant = 0.6954	lb/div					
DEPTH:	66.5'										
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE				
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD							
(IN)	(IN)	·(IN)		(LBS)	(PSF)	(%)	(PSF)				
2.40	5.36	0.00	0	0.00	0	0.0	0				
2.40	5.36	0.01	37	25.73	819	0.2	819				
2.40	5.36	0.02	73	50.76	1616	0.4	1616				
2.40	5.36	0.03	105	73.02	2324	0.6	2324				
2.40	5.36	0.04	138	95.97	3055	0.7	3055				
2.40	5.36	0.05	168	116.83	3719	0.9	3719				
2.40	5.36	0.06	195	135.60	4316	1.1	4316				
2.40	5.36	0.07	222	154.38	4914	1.3	4914				
2.40	5.36	0.08	247	171.76	5467	1.5	5467				
2.40	5.36	0.09	272	189.15	6021	1.7	6021				
2.40	5.36	0.10	294	204.45	6508	1.9	6508				
2.40	5.36	0.11	315	219.05	6973	2.1	6973				
2.40	5.36	0.12	336	233.65	7437	2.2	7437				
2.40	5.36	0.13	357	248.26	7902	2.4	7902				
2.40	5.36	0.14	377	262.17	8345	2.6	8345				
2.40	5.36	0.15	397	276.07	8788	2.8	8788				
2.40	5.36	0.16	417	289.98	9230	3.0	9230				
2.40	5.36	0.17	436	303.19	9651	3.2	9651				
2.40	5.36	0.18	451	313.63	9983	3.4	9983				
2.40	5.36	0.19	463	321.97	10249	3.5	10249				
2.40	5.36	0.20	475	330.32	10514	3.7	10514				
2.40	5.36	0.21	485	337.27	10736	3.9	10736				
2.40	5.36	0.22	494	343.53	10935	4.1	10935				
2.40	5.36	0.23	502	349.09	11112	4.3	11112				
2.40	5.36	0.24	507	352.57	11223	4.5	11223				
2.40	5.36	0.25	511	355.35	11311	4.7	11311				
2.40	5.36	0.26	513	356.74	11355	4.9	11355				
2.40	5.36	0.27	514	357.44	11378	5.0	11378				
2.40	5.36	0.28	515	358.13	11400	5.2	11400				
2.40	5.36	0.29	514	357.44	11378	5.4	11378				
2.40	5.36	0.30	510	354.65	11289	5.6	11289				
2.40	5.36	0.31	499	347.00	11045	5.8	11045				
2.40	5.36	0.32	476	331.01	10536	6.0	10536				
2.40	5.36	0.33	455	316.41	10072	6.2	10072				
2.40	5.36	0.34	432	300.41	9562	6.3	9562				
2.40	5.36	0.35	410	285.11	9075	6.5	9075				
2.70	3.30	0.36	410	0.00	#DIV/0!	#DIV/0!	#DIV/0!				
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!				
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!				
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0! #DIV/0!				
					#DIV/0! #DIV/0!	#DIV/0! #DIV/0!					
		0.40		0.00	#DIV/U!	#DIV/U!	#DIV/0!				

Oncomin	iea Compre	ssion Test D	ata (Roc					
				Ring Cons	tant = 0.695	54 lb/div		
CLIENT:	CALLO	VGINER	SING					
PROJEC'	T: VASC	ORD		Sample Di	ameter:	2,40		
PROJ. # :	0018	60		Sample Le	ameter: 7	5,36		
DATE:	2/8/01			Wet Wt./D	ry Wt.:			F-90
BORING:	2/8/01			Description	1:DKERNGA	4 SANDY		
DEPTH:	66.5			CLAYST	ONDE. VIEG	ETR FG	+ (4	
	CHANGE IN	PROVING			CHANGE IN	PROVING	-	
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01				0.26		513	
	0.02				0.27		513 514 515	
	0.03				0.28		515	
	0.04	170			0.29		514	
	0.05	168			0.30		510	
	0.06	19			0.31		490	
	0.07				0.32		510 499 476	
	0.08	247		_	0.33		455	
	0.09	272			0.34		432	
	0.10	200			0.35		410	
	0.11				0.36		1.0	
	0.12	336			0.37			
	0.13	357			0.38			
	0.14	377			0.39	-		
	0.15	397			0.40			
	0.16	397			0.41			
	0.13	436			0.42			_
	0.17	451			0.43		-	
	0.10	467			0.43			
	0.10	463 475			0.45	-		
	0.20	485			0.45			
	0.21	494			0.47			
	0.22	502						
t	0.23				0.48			
	0.24				0.49			
	0.25	511			0.50			
N4-b -6	Carrala Affa	T						
sketch of	Sample Afte	r rest.						
	 							
	→ 1	R^3						
	J . [\						
	622	- 12 I						
	_	/ 1						
	. ↓	1]					
	 							
] \ / [
	'Y							
		isited she						

(-

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 70.5' Dk Grn Gry Weathered Sandy Claystone w/ VFG Sand Lens

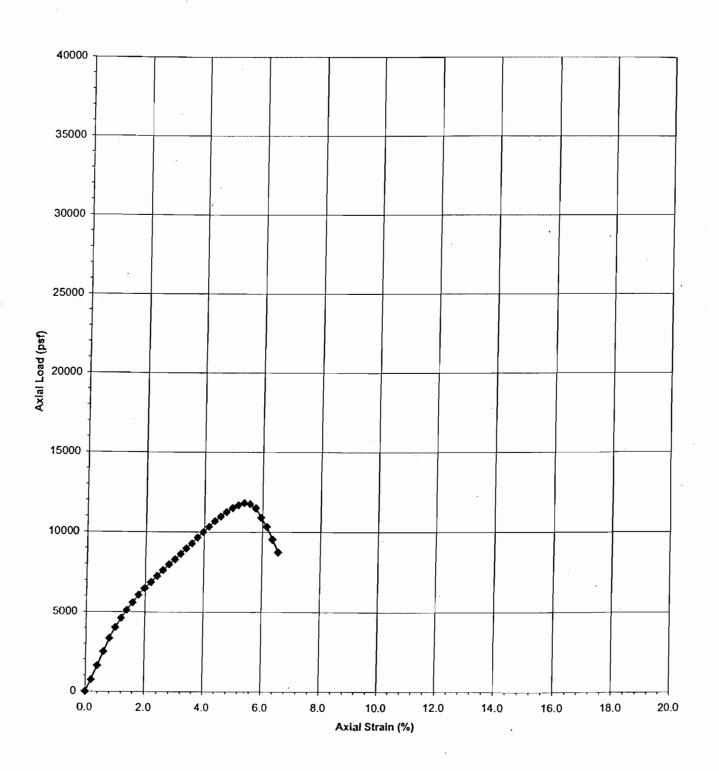


			·	(UNCON	F.XLS)		
	CAL Engine		eology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	70.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
. 2.39	5.95	0.00	0	0.00	0	0.0	0
2.39	5.95	0.01	38	26.43	848	0.2	848
2.39	5.95	0.02	108	75.10	2411	0.3	2411
2.39	5.95	0.03	175	121.70	3906	0.5	3906
2.39	5.95	0.04	233	162.03	5201	0.7	5201
2.39	5.95	0.05	278	193.32	6205	0.8	6205
2.39	5.95	0.06	312	216.96	6964	1.0	6964
2.39	5.95	0.07	342	237.83	7634	1.2	7634
2.39	5.95	0.08	367	255.21	8192	1.3	8192
2.39	5.95	0.09	390	271.21	8705	1.5	8705
2.39	5.95	0.10	413	287.20	9219	1.7	9219
2.39	5.95	0.11	435	302.50	9710	1.8	9710
2.39	5.95	0.12	455	316.41	10156	2.0	10156
2.39	5.95	0.13	475	330.32	10602	2.2	10602
2.39	5.95	0.14	492	342.14	10982	2.4	10982
2.39	5.95	0.15	508	353.26	11339	2.5	11339
2.39	5.95	0.16	524	364.39	11696	2.7	11696
2.39	5.95	0.17	538	374.13	12009	2.9	12009
2.39	5.95	0.18	553	384.56	12343	3.0	12343
2.39	5.95	0.19	566	393.60	12634	3.2	12634
2.39	5.95	0.20	579	402.64	12924	3.4	12924
2.39	5.95	0.21	590	410.29	13169	3.5	13169
2.39	5.95	0.22	597	415.15	13326	3.7	13326
2.39	5.95	0.23	597	415.15	13326	3.9	13326
2.39	5.95	0.24	570	396.38	12723	4.0	12723
2.39	5.95	0.25	350	243.39	7812	4.2	7812
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
· · · · ·		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
						#DIV/0!	
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36 0.37 0.38 0.39		0.00 0.00 0.00 0.00	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!

Unconfine	ed Compre	ssion Test	Data (Roc]		
					tant = 0.695	54 lb/div		
CLIENT:	CAS 1D	JUN NESZY	2 41/-	3				
PROJECT	· VASC	5 P	CINIA .	Sample Di	ameter: 2	. 74		
PROJ. #:	0018	6-0		Sample Le	ngth: 5,	9<-		
DATE:	2/8/01	1		Wet Wt./Di		F-20		
BORING:	12-4				1:DK GRNG	RY SANI	<u>У</u>	
DEPTH:	70.5	,		CLAMISTE	נשטב וא	UPPER Z"		
	10,5							
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01				0.26			
	0.02	108			0.27			
	0.03				0.28			
	0.04	732			0.29			
	0.05	278			0.30			
	0.06	312			0.31			
	0.07	342			0.32			
	0.08				0.33			
	0.09	790			0.34			
	0.10	435			0.35			
	0.11	435			0.36			
	0.12	H55			0.37			
	0.13	475			0.38			
	0.14	492			0.39			
	0.15	508			0.40			
	0.16	524			0.41			
	0.17	538 553			0.42			
	0.18	553			0.43			
	0.19	566			0.44			
	0.20	579			0.45			
	0.21	590			0.46			
	0.22	597			0.47			
	0.23	597			0.48			
	0.24	570 350			0.49			
	0.25	350			0.50			
Sketch of S	Sample Afte	r Test:						
`	_							
		148°						
		\\'`\\						
	, i							
		/						
	И							
		t sprace and						
Comments								
	56 4							
	,							

. .

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 75.5' Dk Grn Gry Weathered Sandy Claystone

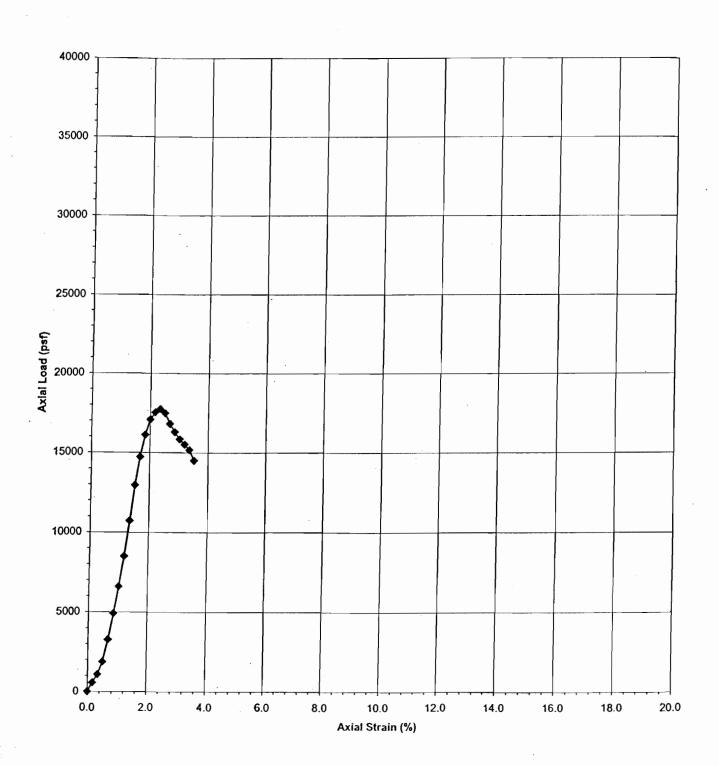


				TONCON	1.XLO		
CLIENT:	CAL Engine		Seology				
	Vasco Road						
PROJ. #:	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Const	tant = 0.6954	lb/div	
DEPTH:	75.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.37	5.95	0.00	0	0.00	0	0.0	0
2.37	5.95	0.01	17	11.82	386	0.2	386
2.37	5.95	0.02	44	30.60	999	0.3	999
2.37	5.95	0.03	85	59.11	1929	0.5	1929
2.37	5.95	0.04	127	88.32	2883	0.7	2883
2.37	5.95	0.05	183	127.26	4154	0.8	4154
2.37	5.95	0.06	195	135.60	4426	1.0	4426
2.37	5.95	0.07	226	157.16	5130	1.2	5130
2.37	5.95	0.08	258	179.41	5856	1.3	5856
2.37	5.95	0.09	287	199.58	6515	1.5	6515
2.37	5.95	0.10	323	224.61	7332	1.7	7332
2.37	5.95	0.11	358	248.95	8126	1.8	8126
2.37	5.95	0.12	400	278.16	9080	2.0	9080
2.37	5.95	0.13	445	309.45	10101	2.2	10101
2.37	5.95	0.14	490	340.75	11123	2.4	11123
2.37	5.95	0.15	525	365.09	11917	2.5	11917
2.37	5.95	0.16	560	389.42	12712	2.7	12712
2.37	5.95	0.17	587	408.20	13324	2.9	13324
2.37	5.95	0.18	612	425.58	13892	3.0	13892
2.37	5.95	0.19	635	441.58	14414	3.2	14414
2.37	5.95	0.20	654	454.79	14845	3.4	14845
2.37	5.95	0.21	670	465.92	15208	3.5	15208
2.37	5.95	0.22	687	477.74	15594	3.7	15594
2.37	5.95	0.23	698	485.39	15844	3.9	15844
2.37	5.95	0.24	710	493.73	16116	4.0	16116
2.37	5.95	0.25	721	501.38	16366	4.2	16366
2.37	5.95		730	507.64	16570	4.4	16570
2.37	5.95	0.27	736	511.81	16707	4.5	16707
2.37	5.95	0.28	742	515.99	16843	4.7	16843
2.37	5.95	0.29	746	518.77	16934	4.9	16934
2.37	5.95	0.30	750	521.55	17024	5.0	17024
2.37	5.95	0.31	753	523.64	17092	5.2	17092
2.37	5.95	0.32	756	525.72	17161	5.4	17161
2.37	5.95	0.33	757	526.42	17183	5.5	17183
2.37	5.95	0.34	758	527.11	17206	5.7	17206
2.37	5.95	0.35	758	527.11	17206	5.9	17206
2.37	5.95	0.36	755	525.03	17138	6.1	17138
2.37	5.95	0.37	750	521.55	17024	6.2	17024
	5.55	0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.10					

Unconfined	Compres	ssion Test	Data (Roc	k)				<u> </u>
				Ring Cons	tant = 0.695	54 lb/div		
CLIENT: C	A1 15	1/111777	211/6					
PROJECT:	VASC	10 RD		Sample Di	meter: Z	137		
PROJ.#:	0019	360		Sample Dia Sample Le	nath: 5	95		
DATE: 2	18/01			Wet Wt./Dr	v Wt.:			F-64
BORING:	18/01 B-4			Description	: BKERN	GRU BAN	ЬЧ	
DEPTH:	75.5			CLAMERO	NE VITE	GRY SAN		
	, , , , ,			,,,,,,,	10/11/	(110 - 04		
С	HANGE IN	PROVING			CHANGE IN	PROVING		
		RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			. (IN)	(DIV)		
	0.01	17			0.26	730		
	0.02	44			0.27	73/		
	0.03	85			0.28	742		•
	0.04	127			0.29	746		
	0.05	127			0.30	750	,	
	0.06	195			0.31	753		
	0.07	226			0.32	756		,
	0.08	258			0.33	757		
	0.09	258 287			0.34	758		
	0.10	773			0.35	758	,	
<u> </u>	0.11	323 358 400 445 490			0.36	758 755	(600D	
	0.12	400			0.37	750	V 600D	
	0.13	445			0.38	7.10	• 60-2	-
	0.14	490			0.39			
	0.15	525			0.40			
	0.16	560			0.41			
	0.17	587			0.42			
_	0.18	612			0.43			
	0.19	636			0.44			
	0.20	635			0.45			
	0.21	670			0.46		-	
	0.22				0.47			
	0.23	687 698			0.48			
	0.24	710			0.49			
	0.25	721			0.43			
	3.23				0.00			
Sketch of Sai	mple Afte	r Test:				-		
		7						
	1							
	()	ľ					-	
	V							
		h						
	ľ							
	V		/					
								·
Comments:	5Am	PLI NE	CORMIN	4	0 NY1 V 6	ME SMA	1- COACI	
	51.6	1/1	461	T STOPE	5 601)	CAT MAIT	OF AIR	F.1
	~4	'/ ' 	15-5	2101	THE WITH	40 001	VI 1144	

\(\frac{1}{2}\)

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 79.5' Dk Grn Gry Weathered Sandy Claystone

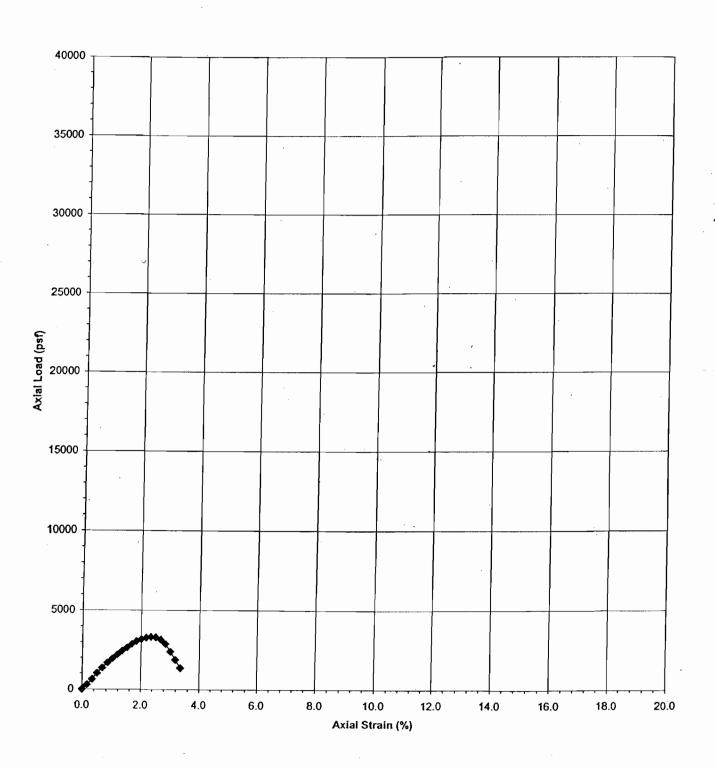


CLIENT:	CAL Engine	oring and C	Soology	(UNCON	F.ALO)		
	Vasco Road		seology				
	001860						
DATE:	02/12/2001						
	B-4			Ring Const	tant = 0.6954	lb/div	
DEPTH:	79.5'			Ting Cons	iant = 0.000 t	10/417	
DEPTH:	79.5						
0414015	ODIOINAL	CHANGEIN	DDOMNG	DDOVING	PRESSURE	STRAIN	PRESSURE
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	31100114	FRESSORE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD	(DCE)	(%)	(PSF)
(IN)	(IN)	(IN)		(LBS) 0.00	(PSF)	0.0	(0
2.37	5.04	0.00	32	22.25	726	0.0	726
2.37	5.04		71	49.37	1612	0.4	1612
2.37	5.04	0.02		76.49	2497	0.4	2497
2.37	5.04	0.03	110		3337	0.8	3337
2.37	5.04	0.04	147	102.22	4018	1.0	4018
2.37	5.04	0.05	177	123.09	4608	1.0	4608
2.37	5.04	0.06	203	141.17	5107	1.4	5107
2.37	5.04	0.07	225	156.47		1.6	5584
2.37	5.04	0.08	246	171.07	5584	1.8	6061
2.37	5.04	0.09	267	185.67	6061		6469
2.37	5.04	0.10	285	198.19	6469	2.0	6855
2.37	5.04	0.11	302	210.01	6855	2.2	7241
2.37	5.04	0.12	319	221.83	7241	2.4	
2.37	5.04	0.13	335	232.96	7604	2.6	7604
2.37	5.04	0.14	351	244.09	7967	2.8	7967
2.37	5.04	0.15	365	253.82	8285	3.0	8285
2.37	5.04	0.16	380	264.25	8626	3.2	8626
2.37	5.04	0.17	395	274.68	8966	3.4	8966
2.37	5.04	0.18	409	284.42	9284	3.6	9284
2.37	5.04	0.19	425	295.55	9647	3.8	9647
2.37	5.04	0.20	440	305.98	9988	4.0	9988
2.37	5.04	0.21	455	316.41	10328	4.2	10328
2.37	5.04	0.22	470	326.84	10669	4.4	10669
2.37	5.04	0.23	483	335.88	10964	4.6	10964
2.37	5.04	0.24	495	344.22	11236	4.8	11236
2.37	5.04		506	351.87	11486	5.0	11486
2.37	5.04	0.26	514	357.44	11667	5.2	11667
2.37	5.04	0.27	520	361.61	11804	5.4	11804
2.37	5.04	0.28	517	359.52	11735	5.6	11735
2.37	5.04	0.29	506	351.87	11486	5.8	11486
2.37	5.04	0.30	480	333.79	10896	6.0	10896
2.37	5.04	0.31	455	316.41	10328	6.2	10328
2.37	5.04	0.32	420	292.07	9534	6.3	9534
2.37	5.04	0.33	385	267.73	8739	6.5	8739
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfine	ed Compre	ssion Test	Data (Roc	:k)		Γ-		T
					tant = 0.695	54 lb/div		
CLIENT:	رور مهم	N (~ 4) / >	70/41/-	30.10	3,000			
PROJECT	VACC	NGNET O RD 860	SUNG	Sample Di	ameter:	2,37	_	· · ·
PROJ.#:	- V175C1	960		Sample Le		5.04		
DATE:	2801	000		Wet Wt./Di	v Wf	2107		F-22
BORING:	3-4	-		Description	1: DV 6011	GRY SA	NDY	, , ,
DEPTH:	79.5	, 		CIAMST	DNE VF	14-5-1-	,,,,	-
DE1 111.	110	_		CA 121	7.41	<u> </u>		
	CHANGE IN	PROVING		<u> </u>	CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)		1	(IN)	(DIV)		
	0.01	32			0.26	514		
	0.02	3/			0.27	520		<u> </u>
	0.02	112			0.28	517		
	0.03	110			0.29	506		
	0.04	177			0.29	400		-
	0.06				0.30	480		
	0.07	203			0.32	475		
	0.07	225 246	-		0.33	455 420 385		
·····	0.09	270			0.34	205		
	0.10	267			0.35			
	0.10	285			0.36			
	0.11	302			0.37			
	0.12	317			0.38			
	0.13	222			0.39			
	0.14	351 365 380 395 409			0.40			
	0.15	300			0.40			
	0.10	380			0.41			_
	0.17	375			0.42			
_	0.19	409			0.43			
	0.19	425			0.44			
	0.20	770			0.45			
	0.21	455						
	0.22	470			0.47			
	0.23 0.24	483			0.48			
	0.24	745			0.49			
	0.23	506		,	0.50			
Skotob -f C	Comple A4-	r Tost						
SKEICH OF S	Sample Afte	Test:	_					
		1						
	1	/R ()	1					
		186.6		5				
		11	599	4				
		, A						
		Y						
		:	\"	_				
		·						
		1 4, 50 L						
comments:	SU POL	SH2D 31	hzzar sc	PREACG				
		-						

 $\left(\begin{array}{cc} T_{i,k} \\ T_{i,k} \end{array} \right)$

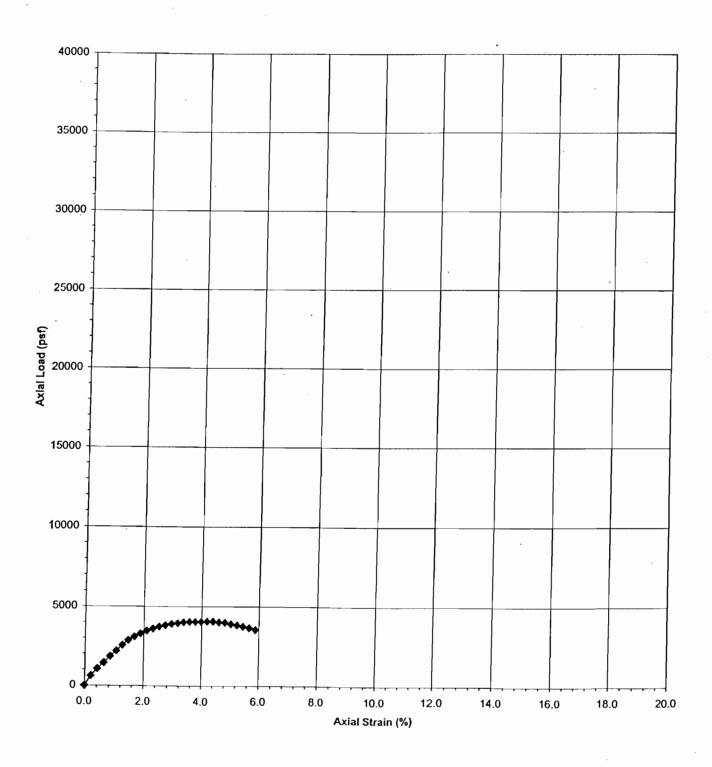
Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-4 @ 83.5' Dk Grn Gry Weathered Sandstone and Claystone



				(UNCON	F.ALO)		
CLIENT:	CAL Engine	ering and G	eology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/12/2001						
BORING:	B-4			Ring Const	tant = 0.6954	lb/div	
DEPTH:	83.5'			_			
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.97	0.00	0	0.00	0	0.0	0
2.39	5.97	0.01	25	17.39	558	0.2	558
2.39	5.97	0.02	48	33.38	1071	0.3	1071
2.39	5.97	0.03	84	58.41	1875	0.5	1875
2.39	5.97	0.04	147	102.22	3281	0.7	3281
2.39		0.05	220	152.99	4911	0.8	4911
2.39		0.06	295	205.14	6585	1.0	6585
2.39		0.07	380	264.25	8482	1.2	8482
2.39	5.97	0.08	480	333.79	10714	1.3	10714
2.39		0.09	580	403.33	12946	1.5	12946
2.39	5.97	0.10	660	458.96	14732	1.7	14732
2.39	5.97	0.10	722	502.08	16116	1.8	16116
2.39		0.11	765	531.98	17075	2.0	17075
2.39	5.97	0.12	785	545.89	17522	2.2	17522
The state of the s		0.13	794	552.15	17723	2.3	17723
2.39				544.50	17477	2.5	17477
2.39		0.15 0.16		523.64	16808	2.7	16808
2.39	5.97	0.10	730	507.64	16294	2.8	16294
2.39			710	493.73	15848	3.0	15848
2.39	5.97	0.18	695	483.30	15513	3.2	15513
2.39		0.19	680	472.87	15178	3.4	15178
2.39		0.20	650	452.01	14509	3.5	14509
2.39	5.97	0.21	650		#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00		#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00			#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	_	0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfined Compression Test Data (Ro	(k)	<u>.</u>	1
Tonosimioa compressión rest bata (res	Ring Constant = 0	6954 lb/div	
CLIENT: CAL ENGINEERING	Tung Conotant	10001101011	
PROJECT: VASCO RD	Sample Diameter:	7 20	
PROJ.#: 00/860	Sample Length:	5,97	
PROJ.#: 001860 DATE: 2/8/01	Wet Wt./Dry Wt.:	5,71	F-94
DATE: Z/B/O/ BORING: B-4	Description: THE	AN GRY CLAYSTONE	
	AND SANDSTON	- VEL EL	+
DEPTH: 83,5	MIND SAND \$10101	B. VPG - PG	
CHANGE IN PROVING	CHANG	E IN PROVING	
HEIGHT RING READ.	HEIGH		
	(IN)		1
(IN) (DIV) 0.01 25		0.26 180	
0.02 48		0.27	
0.02 48		0.28	1
0.03 84 0.04 147		0.29	
0.05 220		0.30	
0.06 295		0.31	
0.00 275		0.32	-
0.07 380 0.08 480		0.33	-
0.09 580		0.34	
0.10 660		0.35	
0.11 722		0.36	
0.12 765		0.37	
0.12 765 0.13 785		0.38	
0.14 794		0.39	
0.14 794 0.15 763		0.40	
0.16 753		0.41	
0.17 730		.42	
0.18 710		.43	
0.19 695		.44	
0.20 680		.45	1
0.21 650		.46	
0.22		.47	-
0.23		.48	
		.49	
0.24 0.25		.50	`
Sketch of Sample After Test:			
	-		
X	_		
- SANDY			
4505			
			
Comments:			
56 4/1		<u>-</u>	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

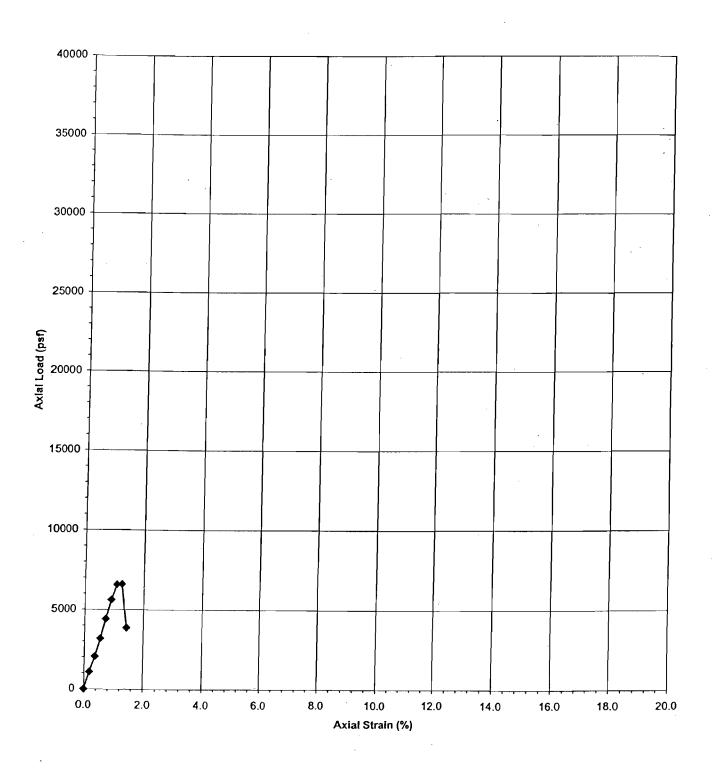
;


#### Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 8.0' Yel Brn Mot. W/ Dk Brn and Gry Weathered Claystone w/ Wt Tuff Inclusions



01.15.15				TOMCON	11°, ALO)		
CLIENT:	CAL Engine		eology		•		
	Vasco Road						
PROJ. #:	001860						
DATE:	02/16/2001		,	D: 0	1 0 005	II. /ali.	
BORING:	B-5			King Cons	tant = 0.6954	ID/dIV	
DEPTH:	8.0'						,
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.38	5.97	0.00	0	0.00	0	0.0	0
2.38	5.97	0.01	13	9.04	293	0.2	293
2.38	5.97	0.02	28	19.47	630	0.3	630
2.38	5.97	0.03	. 45	31.29	1013	0.5	1013
2.38	5.97	0.04	60	41.72	1351	0.7	1351
2.38	5.97	0.05	74	51.46	1666	0.8	1666
2.38	5.97	0.06	86	59.80	1936	1.0	1936
2.38	5.97	0.07	97	67.45	2183	1.2	2183
2.38	5.97	0.08	108	75.10	2431	1.3	2431
2.38	5.97	0.09	117	81.36	2634	1.5	2634
2.38	5.97	0.10	127	88.32	2859	1.7	2859
2.38	5.97	0.11	135	93.88	3039	1.8	3039
2.38	5.97	0.12	141	98.05	3174	2.0	3174
2.38	5.97	0.13	145	100.83	3264	2.2	3264
2.38	5.97	0.14	147	102.22	3309	2.3	3309
2.38	5.97	0.15	146	101.53	3286	2.5	3286
2.38	5.97	0.16	140	97.36	3151	2.7	3151
2.38	5.97	0.17	128	89.01	2881	2.8	2881
2.38	5.97	0.18	106	73.71	2386	3.0	2386
2.38	5.97	0.19	83	57.72	1868	3.2	1868
2.38	5.97	0.20	60	41.72	1351	3.4	1351
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	1101410:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

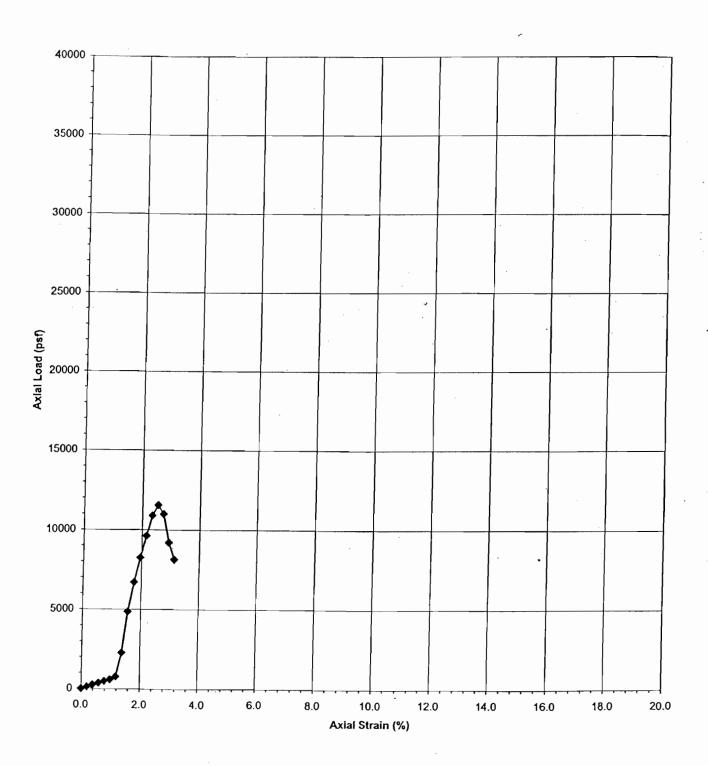
Unconfine	ed Compre	ssion Test	Data (Roc	:k)	_			
	T	T			tant = 0.69	54 lb/div		
CLIENT: C	al Enginee	ring and Ge	ology					
PRO IFCT	: Vasco Ro	ard Oc	Ology	Sample Di	ameter:	7 70		
PROJ.#:		au		Sample Le	ength: 5.	37		
DATE: Z	116/61			Wet Wt./D				F-100
BORING:	R-6			Description	3: V/D -	0.1	15 11 1790 A)	1 100
				Description	1. YEC 131	×N MOT U	- (=: C=?)	INCLUSION
DEPTH:	<u> </u>		Γ	4024 0	1 510N	= ~ ~ ~ ~	1 (1000)	11002031210
	CHANGE IN	DDO)//NG		-	CHANGE IN	DDOVING		
<del></del>	HEIGHT				HEIGHT	RING READ.		
		RING READ.			(IN)	(DIV)		
	(IN) 0.01	(DIV)	· <u>-</u>		0.26			
	0.01				0.20			
	0.02			_	0.27			
		45						
	0.04				0.29			
	0.05				0.30			
	0.06			_	0.31			
	0.07				0.32		_	
	0.08	100	'		0.33			
	0.09				0.34			
	0.10		_	ļ	0.35			
	0.11	1		ļ	0.36			
	0.12				0.37			•
	0.13				0.38			
	0.14				0.39			
	0.15				0.40			
	0.16				0.41			
	0.17	128			0.42			
	0.18	106			0.43			
	0.19	.83			0.44			
	0.20	60	_		0.45			
	0.21	· .			0.46			
	0.22				0.47			
	0.23				0.48			
	0.24 0.25				0.49			
	0.25				0.50			*
Sketch of S	Sample Afte	r Test:						
		1	/					
	1	1	1					
	{	الرا	100					
	ţ.		550					
	1		*					
		1						
	7:	: څ						
				-	_			
Comments	150	85/6						
Commonts.	. 1071	210					·	
							·	


## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 27.0' Lt Olv Brn w/ Olv Yel Claystone w/ Trace VFG Sand and Pebbles



CLIENT:	CAL Engine		Panlam.	(UNCON	F.XLS)	T	<del></del>
	CAL Engine Vasco Road		eology				<del> </del>
PROJ. #:							
DATE:	02/16/2001	<u>-</u>					
	B-5			Ping Cons	tant = 0.6954	Llb/div	
				King Cons	tant – 0.0954	+ ID/UIV	<b>-</b>
DEPTH:	27.0'						
SAMPLE	ORIGINAL	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	4.77	0.00	0	0.00	0	0.0	0
2.39	4.77	0.01	27	18.78	603	0.2	
2.39	4.77	0.02	47	32.68	1049	0.4	1049
2.39	4.77	0.03	64	44.51	1429	0.6	1429
2.39	4.77	0.04	82	57.02	1830	0.8	1830
2.39	4.77	0.05	98	68.15	2187	1.0	2187
2.39	4.77	0.06	114	79.28	2545	1.3	2545
2.39	4.77	0.07	128	89.01	2857	1.5	2857
2.39	4.77	0.08	138	95.97	3080	1.7	3080
2.39	4.77	0.09	147	102.22	3281	1.9	3281
2.39	4.77	0.10	155	107.79	3460	2.1	3460
2.39	4.77	0.11	161	111.96	3594	2.3	3594
2.39	4.77	0.12	167	116.13	3728	2.5	3728
2.39	4.77	0.13	171	118.91	3817	2.7	3817
2.39	4.77	0.14	175	121.70	3906	2.9	3906
2.39	4.77	0.15	177	123.09	3951	3.1	3951
2.39	4.77	0.16	180	125.17	4018	3.4	4018
2.39	4.77	0.17	181	125.87	4040	3.6	4040
2.39	4.77	0.18	181	125.87	4040	3.8	4040
2.39	4.77	0.19	181	125.87	4040	4.0	4040
2.39	4.77	0.20	182	126.56	4062	4.2	4062
2.39	4.77	0.21	182	126.56	4062	4.4	4062
2.39	4.77	0.22	180	125.17	4018	4.6	4018
2.39	4.77	0.23	179	124.48	3995	4.8	3995
2.39	4.77	0.24	175	121.70	3906	5.0	3906
2.39	4.77	0.25	172	119.61	3839	5.2	3839
2.39	4.77	0.26	168	116.83	3750	5.5	3750
2.39	4.77	0.27	164	114.05	3661	5.7	3661
2.39	4.77	0.28	<b>15</b> 9	110.57	3549	5.9	3549
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

<b>Unconfined Compression Test Data (Ro</b>	ock)	
· ·	Ring Constant = 0.6954 lb/div	
CLIENT: Cal Engineering and Geology		
PROJECT: Vasco Road	Sample Diameter: 2,39	<u> </u>
PROJ. #: 001860	Sample Diameter: 2,39 Sample Length: 4,77	
DATE: 2/17/01 BORING: B-5	Wet Wt./Dry Wt.:	F-84
BORING: B-5	Description: LT YOLV BRAY W/ DLY YPD	
DEPTH: 27,0	Description: LT VLV BRN W/ OLV YEL CLAYSTONE TRUFT SAND TR PO	PRICE
	Carrier and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	- 002
CHANGE IN PROVING	CHANGE IN PROVING	
HEIGHT RING READ.	HEIGHT RING READ.	
(IN) (DIV)	(IN) (DIV)	
0.01 27	0.26 168	
0.02 47	0.27 164	
0.03 / 4	0.28 159	
0.04 62	0.29	
0.03 (4 0.04 82 0.05 98	0.30	
0.06 114	0.31	
0.07 128	0.32	
0.07 128 0.08 138	0.33	
0.09 147	0.34	
0.09 147 0.10 155	0.35	
0.11 161	0.36	
0.11  61 0.12  67	0.37	
0.13	0.38	
0.13  7  0.14  75	0.39	
0.15 177	0.40	
0.16 180	0.41	
0.17 [8]	0.42	
	0.43	
0.18   8   0.19   8	0.44	
0.20 182	0.45	
0.21 182	0.46	
0.22 180	0.47	
0.23 179	0.48	
	0.49	
0.24 175 0.25 172	0.50	
Sketch of Sample After Test:		
Charles and Took		
340		_
├ <del>──</del>		
├ <del>──</del>		
	· · · · · · · · · · · · · · · · · · ·	
Comments:		
Comments: Z15Y 5/3 1-T OLV B&N	/	
2,545/3 HT OLVBAN		

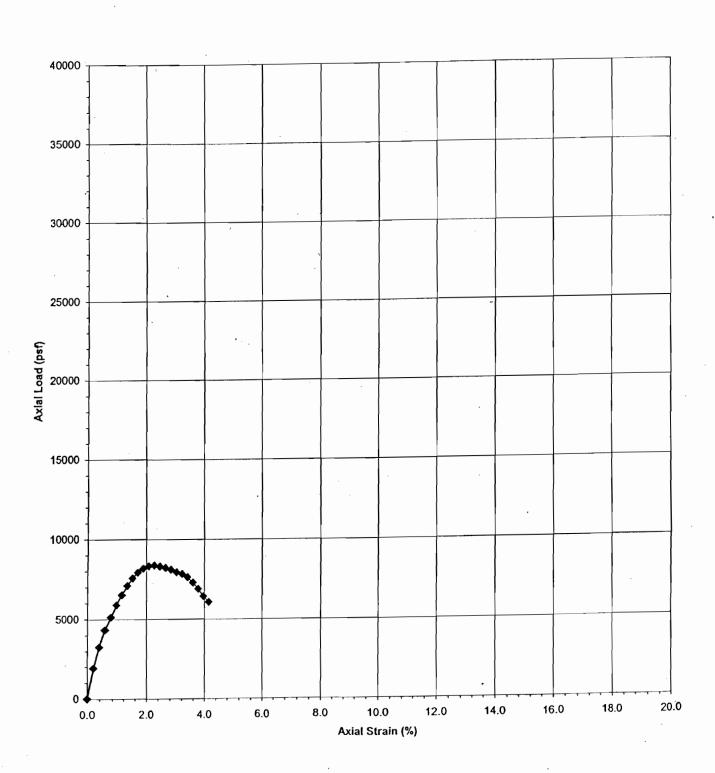

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 36.5' Lt Yel Brn and Yel Brn Sandstone (VFG-FG)



CLIENT:   CAL Engineering and Geology   PROJECT   Assor Road   PROJ.#:   001860    PROJ.#:   0018600   PROJ.#:   0018600   PROJ.#:   0018600   P					(UNCON	IF.XLS)		
PROJ.#:   001860   DATE:   02/17/2001   DEPTH:   36.5'   Ring Constant = 0.6954   Ib/div	CLIENT:			eology				
DATE:   02/17/2001								
BORING:   B-5								
DEPTH:	DATE:	02/17/2001						
NAMPLE   ORIGINAL   CHANGE IN   PROVING   PROVING   PRESSURE   STRAIN   PRESSURE   CHANGE IN   RING READ, RING LOAD   CLBS)   (PSF)   (%)   (PSF)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (%)   (PSF)   (PSF)   (%)   (%)   (PSF)   (%)   (%)   (PSF)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)	BORING:	B-5			Ring Cons	tant = 0.6954	lb/div	
DIAMETER	DEPTH:	36.5'				ı		
DIAMETER					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
(IN) (IN) (IN) (IN) (LBS) (PSF) (%) (PSF) (2.37 5.57 0.00 0 0.00 0.00 0 0.0 0.00 0.00	SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
2.37	DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
2.37 5.57 0.01 47 32.68 1067 0.2 1067 2.37 5.57 0.02 90 62.59 2043 0.4 2043 2.37 5.57 0.03 140 97.36 3178 0.5 3178 2.37 5.57 0.04 194 134.91 4404 0.7 4404 2.37 5.57 0.05 247 171.76 5607 0.9 5607 2.37 5.57 0.06 289 200.97 6560 1.1 6560 2.37 5.57 0.06 289 200.97 6560 1.1 6560 2.37 5.57 0.07 290 201.67 6583 1.3 6583 2.37 5.57 0.08 170 118.22 3859 1.4 3359 0.09 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.10 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.11 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.12 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.13 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.16 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.16 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.17 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.18 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.20 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.31 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.33 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.34 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.35 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.36 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.37 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.38 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!	(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.37   5.57   0.02   90   62.59   2043   0.4   2043   2.37   5.57   0.03   140   97.36   3178   0.5   3178   2.37   5.57   0.04   194   134.91   4404   0.7   4404   2.37   5.57   0.05   247   171.76   5607   0.9   5507   2.37   5.57   0.06   289   200.97   6560   1.1   6560   2.37   5.57   0.06   289   200.97   6560   1.1   6560   2.37   5.57   0.07   290   201.67   6563   1.3   6568   2.37   5.57   0.08   170   118.22   3859   1.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859   3.4   3859	2.37	5.57	0.00	0	0.00			•
2.37   5.57   0.03   140   97.36   3178   0.5   3178   2.37   5.57   0.04   194   134.91   4404   0.7   4404   2.37   5.57   0.05   247   171.76   5607   0.9   5607   2.37   5.57   0.06   289   200.97   6560   1.1   6560   2.37   5.57   0.07   290   201.67   6583   1.3   6583   2.37   5.57   0.08   170   118.22   3859   1.4   3859   3859   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5	2.37	5.57	0.01	47	32.68	1067		
2.37   5.57   0.04   194   134.91   4404   0.7   4404   2.37   5.57   0.05   247   171.76   5607   0.9   5607   2.37   5.57   0.06   289   200.97   6560   1.1   6560   2.37   5.57   0.07   290   201.67   6563   1.3   6563   2.37   5.57   0.08   170   118.22   3859   1.4   3859   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3	2.37	5.57	0.02	90	62.59			
2.37   5.57   0.05   247   171.76   5607   0.9   5607     2.37   5.57   0.06   289   200.97   6560   1.1   6560     2.37   5.57   0.07   290   201.67   6583   1.3   6583     2.37   5.57   0.08   170   118.22   3359   1.4   3359     0.09   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.10   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.11   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.12   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.13   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.14   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.15   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.16   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.17   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.18   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.19   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.20   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.21   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.22   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.23   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.24   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.25   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.26   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.27   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.28   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.29   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.31   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.32   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.33   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.34   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.35   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.36   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.37   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.38   0.00   #DIV/0!   #DIV/0!   #DIV/0!   #DIV/0!     0.39   0.00   #DIV/0!   #DIV/0!   #DIV/0!     0.39   0.00   #DIV/0!   #DIV/0!   #DIV/0!	2.37	5.57	0.03	140	97.36	3178		
2.37 5.57 0.06 289 200.97 6560 1.1 6560 2.37 5.57 0.07 290 201.67 6583 1.3 6583 2.37 5.57 0.08 170 118.22 3859 1.4 3859 0.09 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.10 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.11 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.12 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.13 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.14 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.15 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.16 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.17 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.18 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.19 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.20 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.21 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.22 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.31 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.33 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.34 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.35 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.36 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.38 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.39 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!	2.37	5.57	0.04	194	134.91	4404		
2.37   5.57   0.07   290   201.67   6583   1.3   6583   2.37   5.57   0.08   170   118.22   3859   1.4   33559   0.09   0.00   #DIV/0!   2.37	5.57	0.05	247	171.76				
2.37   5.57   0.08   170   118.22   3859   1.4   3859	2.37	5.57	0.06	289	200.97	6560		
0.09	2.37	5.57	0.07	. 290	201.67	6583	1.3	6583
0.10   0.00	2.37	5.57	0.08	170	118.22	3859	1.4	
0.11			0.09		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.12			0.10		0.00	#DIV/0!	#DIV/0!	
0.13			0.11		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.14			0.12		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.15			0.13		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.16			0.14		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.17			0.15		0.00	#DIV/0!	#DIV/0!	
0.18			0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.19			0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.20			0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.21			0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.22         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.23         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.24         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.25         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.26         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.27         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.28         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.29         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.30         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.31         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.32         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.33         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.34         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.35         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.36         0.00         #DIV/0!         #DIV/0!         <			0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.23			0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.24			0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.25         0.00         #DIV/0!         #DIV			0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.26			0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.27         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.28         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.29         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.30         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.31         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.32         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.33         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.34         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.35         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.36         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.37         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.38         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.39         0.00         #DIV/0!         #DIV/0!         #DIV/0!			0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.28         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.29         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.30         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.31         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.32         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.33         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.34         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.35         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.36         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.37         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.38         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.39         0.00         #DIV/0!         #DIV/0!         #DIV/0!			0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.29         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.30         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.31         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.32         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.33         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.34         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.35         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.36         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.37         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.38         0.00         #DIV/0!         #DIV/0!         #DIV/0!           0.39         0.00         #DIV/0!         #DIV/0!         #DIV/0!			0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.29       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.30       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.31       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.32       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.33       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.34       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.35       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.36       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.37       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.38       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.39       0.00       #DIV/0!       #DIV/0!       #DIV/0!					0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.30       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.31       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.32       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.33       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.34       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.35       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.36       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.37       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.38       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.39       0.00       #DIV/0!       #DIV/0!       #DIV/0!					0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.31       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.32       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.33       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.34       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.35       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.36       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.37       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.38       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.39       0.00       #DIV/0!       #DIV/0!       #DIV/0!						#DIV/0!	#DIV/0!	#DIV/0!
0.32       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.33       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.34       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.35       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.36       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.37       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.38       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.39       0.00       #DIV/0!       #DIV/0!       #DIV/0!						#DIV/0!	#DIV/0!	#DIV/0!
0.33       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.34       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.35       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.36       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.37       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.38       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.39       0.00       #DIV/0!       #DIV/0!       #DIV/0!		_			0.00	#DIV/0!	#DIV/0!	#DIV/0!
0.34     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.35     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.36     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.37     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.38     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.39     0.00     #DIV/0!     #DIV/0!     #DIV/0!		-				#DIV/0!	#DIV/0!	#DIV/0!
0.35     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.36     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.37     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.38     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.39     0.00     #DIV/0!     #DIV/0!     #DIV/0!							#DIV/0!	#DIV/0!
0.36       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.37       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.38       0.00       #DIV/0!       #DIV/0!       #DIV/0!         0.39       0.00       #DIV/0!       #DIV/0!       #DIV/0!							#DIV/0!	#DIV/0!
0.37     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.38     0.00     #DIV/0!     #DIV/0!     #DIV/0!       0.39     0.00     #DIV/0!     #DIV/0!     #DIV/0!	·							
0.38 0.00 #DIV/0! #DIV/0! #DIV/0! 0.39 0.00 #DIV/0! #DIV/0! #DIV/0!								
0.39 0.00 #DIV/0! #DIV/0! #DIV/0!								

Unconfin	ed Compre	ssion Test	Data (Roc	:k)	T			1
					tant = 0.695	54 lb/div		<del>                                     </del>
CLIENT: C	L Cal Enginee	ring and Ca	ology	Tung Cons	1	7 IBIGIT		<del> </del>
PRO IECT	: Vasco Ro	ad	ology	Sample Di	ameter: 2	7-1	1	<u>-</u>
PROJ. #:				Sample Le	ength: $5.6$	-13 <u> </u>	\	
	2/17/01			Wet Wt./D		<u> </u>		F-201
BORING:	12-5				1:4 yage	ALIV/22 9	2 A \	F-201
DEPTH:	71.5			SANINS	TONE VE	7.5%	<i>( ( ( ( ( ( ( ( ( (</i>	1
DEI III.	7613			37 17 08 8	10140 06	GFGF		
	CHANGE IN	PROVING		<del>                                     </del>	CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		<del> </del>
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	47		-	0.26	(DIV)		<u>  ·                                     </u>
	0.02	90			0.27			
	0.03			<del>-</del>	0.28			<del>                                     </del>
	0.03			<del>                                     </del>	0.20			
	0.05			_	0.23			
· · ·	0.06				0.31			
	0.07	290	*		0.32			
	0.08	170			0.33			_
	0.09	110			0.34			
	0.10				0.35			
	0.11				0.36			
	0.12			· .	0.37			
	0.13				0.38			
	0.14				0.39			
	0.15				0.40			
	0.16			<del>                                     </del>	0.41			
	0.17				0.42			
	0.18			<del>                                     </del>	0.43			
	0.19				0.44			
	0.20			_	0.45			
	0.21				0.46			
	0.22				0.47	· ·		
	0.23				0.48			
	0.24				0.49	-		
	0.25				0.50			
Sketch of S	Sample Afte	r Test						
			/					
	* \	7	1					
	66		50°					
			*					
	1	1						
Comments	: 7	2,5	54 613	LT YELB	R. N			
_	7	707	R 5/9	YEL BR	N			

### Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 41.0' Lt Olv Brn w/ Yel Brn VFG Sandy Claystone

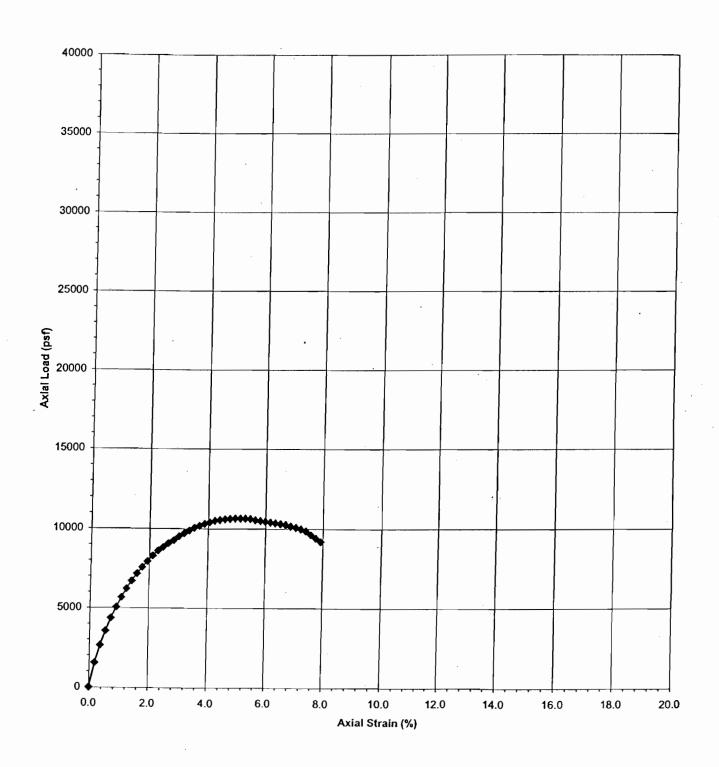



DIAMETER         HEIGHT         HEIGHT         RING READ.         RING LOAD           (IN)         (IN)         (IN)         (LBS)         (PSF)         (%)         (F           2.31         5.11         0.00         0         0.00         0         0.0           2.31         5.11         0.01         5         3.48         119         0.2           2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.3	SSURE PSF) 0 119 239 358 478 573 765 2270 4850 6690 8243 9629
PROJ. #:         001860         Ring Constant         Description         Description         Province         Province <td>9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243</td>	9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243
DATE:         02/16/2001         Ring Constant = 0.6954 lb/div           DEPTH:         41.0'         At 1.0'           SAMPLE ORIGINAL CHANGE IN PROVING PROVING PROVING PRESSURE STRAIN PRESSURE PROVING IN CIND (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN)	9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243
BORING:         B-5         Ring Constant = 0.6954 lb/div           DEPTH:         41.0'         A1.0'           SAMPLE ORIGINAL CHANGE IN PROVING PROVING PRESSURE STRAIN PRESSURE PROVING (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN)	9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243
DEPTH:         41.0'         PROVING         PROVING         PRESSURE         STRAIN         PRESSURE           DIAMETER         HEIGHT         HEIGHT         RING READ.         RING LOAD         R	9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243
SAMPLE         ORIGINAL DIAMETER         CHANGE IN HEIGHT HEIGHT RING READ. RING LOAD         PROVING (LBS)         PRESSURE         STRAIN PRESSURE           (IN)	9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243
DIAMETER         HEIGHT         HEIGHT         RING READ.         RING LOAD           (IN)         (IN)         (IN)         (LBS)         (PSF)         (%)         (F           2.31         5.11         0.00         0         0.00         0         0.0           2.31         5.11         0.01         5         3.48         119         0.2           2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.3	9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243
DIAMETER         HEIGHT         HEIGHT         RING READ.         RING LOAD           (IN)         (IN)         (IN)         (LBS)         (PSF)         (%)         (F           2.31         5.11         0.00         0         0.00         0         0.0           2.31         5.11         0.01         5         3.48         119         0.2           2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.3	9SF) 0 119 239 358 478 573 765 2270 4850 6690 8243
(IN)         (IN)         (IN)         (LBS)         (PSF)         (%)         (F           2.31         5.11         0.00         0         0.00         0         0.0           2.31         5.11         0.01         5         3.48         119         0.2           2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8	0 119 239 358 478 573 765 2270 4850 6690 8243
2.31         5.11         0.00         0         0.00         0         0.00           2.31         5.11         0.01         5         3.48         119         0.2           2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0	0 119 239 358 478 573 765 2270 4850 6690 8243
2.31         5.11         0.01         5         3.48         119         0.2           2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0           2.31         5.11         0.11         403         280.25         9629         2.2           2.31         5.11         0.11         403         280.25         9629         2.2	119 239 358 478 573 765 2270 4850 6690 8243
2.31         5.11         0.02         10         6.95         239         0.4           2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0           2.31         5.11         0.11         403         280.25         9629         2.2           2.31         5.11         0.12         456         317.10         10895         2.3	239 358 478 573 765 2270 4850 6690 8243
2.31         5.11         0.03         15         10.43         358         0.6           2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0           2.31         5.11         0.11         403         280.25         9629         2.2           2.31         5.11         0.12         456         317.10         10895         2.3	358 478 573 765 2270 4850 6690 8243
2.31         5.11         0.04         20         13.91         478         0.8           2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0           2.31         5.11         0.11         403         280.25         9629         2.2           2.31         5.11         0.12         456         317.10         10895         2.3	478 573 765 2270 4850 6690 8243
2.31         5.11         0.05         24         16.69         573         1.0           2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0           2.31         5.11         0.11         403         280.25         9629         2.2           2.31         5.11         0.12         456         317.10         10895         2.3	573 765 2270 4850 6690 8243
2.31         5.11         0.06         32         22.25         765         1.2           2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0           2.31         5.11         0.11         403         280.25         9629         2.2           2.31         5.11         0.12         456         317.10         10895         2.3	765 2270 4850 6690 8243
2.31         5.11         0.07         95         66.06         2270         1.4           2.31         5.11         0.08         203         141.17         4850         1.6           2.31         5.11         0.09         280         194.71         6690         1.8           2.31         5.11         0.10         345         239.91         8243         2.0           2.31         5.11         0.11         403         280.25         9629         2.2           2.31         5.11         0.12         456         317.10         10895         2.3	2270 4850 6690 8243
2.31     5.11     0.08     203     141.17     4850     1.6       2.31     5.11     0.09     280     194.71     6690     1.8       2.31     5.11     0.10     345     239.91     8243     2.0       2.31     5.11     0.11     403     280.25     9629     2.2       2.31     5.11     0.12     456     317.10     10895     2.3	4850 6690 8243
2.31     5.11     0.09     280     194.71     6690     1.8       2.31     5.11     0.10     345     239.91     8243     2.0       2.31     5.11     0.11     403     280.25     9629     2.2       2.31     5.11     0.12     456     317.10     10895     2.3	6690 8243
2.31     5.11     0.10     345     239.91     8243     2.0       2.31     5.11     0.11     403     280.25     9629     2.2       2.31     5.11     0.12     456     317.10     10895     2.3	8243
2.31     5.11     0.11     403     280.25     9629     2.2       2.31     5.11     0.12     456     317.10     10895     2.3	
2.31 5.11 0.12 456 317.10 10895 2.3	9629
2.01	10005
	10895
2.61	11541
2.01	10991
2.31 5.11 0.15 385 267.73 9199 2.9	9199
2.31 5.11 0.16 340 236.44 8124 3.1	8124
0.11	IV/0!
0.10	IV/0!
0.10	IV/0!
0.20	IV/0!
0.21	IV/0!
0,22	IV/0!
5.20	IV/0!
0,21	IV/0!
0.20	IV/0!
0.20	IV/0!
0.21	IV/0!
0.20	IV/0!
0.20	IV/0!
0.00	IV/0!
0.01	IV/0!
0.02	IV/0!
	IV/0!
	IV/0!
0,00	IV/0!
0.36 0.00 #DIV/0! #DIV/0! #D	IV/0!
	IV/0!
	IV/0!
	IV/0!
	IV/0!

Oncomin	ed Compre	ssion lest	Data (Ro					
				Ring Cons	tant = 0.695	54 lb/div		
CLIENT:	Cal Enginee	ring and Ge	ology					
PROJECT: Vasco Road				Sample Diameter: 2.31 Sample Length: 5.11				
PROJ. #: 001860				Sample Length: 5.11				
DATE: 2(7/0) BORING: 13-5				Wet Wt./Dry Wt.:				F-32
BORING: 13-5				Description: IT OLVBRN WYEL BRN				
DEPTH: 41,0				SANDY CLAYSTONE, VFG				
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	5			0.26			
	0.02	10			0.27			
	0.03	15			0.28			
	0.04	20			0.29			
	0.05	24	_		0.30			
	0.06	32			0.31			
	0.07	95			0.32			
	0.08	95 203 280 345	_		0.33			
	0.09	780			0.34			
,	0.10	345			0.35			
	0.11	456			0.36			
	0.12	456	_		0.37			
	0.13	423			0.38			
	0.14	460 305 340			0.39			
	0.15	700			0.40			
	0.16	347		1	0.41			
	0.17	0.10			0.42			
	0.18	· -			0.43			
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22				0.47			
	0.23				0.48			
	0.24				0.49			
	0.25				0.50			
	0.20			<del> </del>	0.00			
ketch of	Sample Afte	r Test						
		, 1001.						
	T							
	-  <b>[</b>							
	+ _							
	<u> </u>							
	-{ \ \( \bar{1} \)							
		~	\		-			
	-{	1	1					
	- 1		240					
	1			<del></del>				
			R SURF	,			UL BIZN	

(; ·

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 47.5' Yel Brn Mot w/ Gry Brn Claystone w/Trace VFG Sand



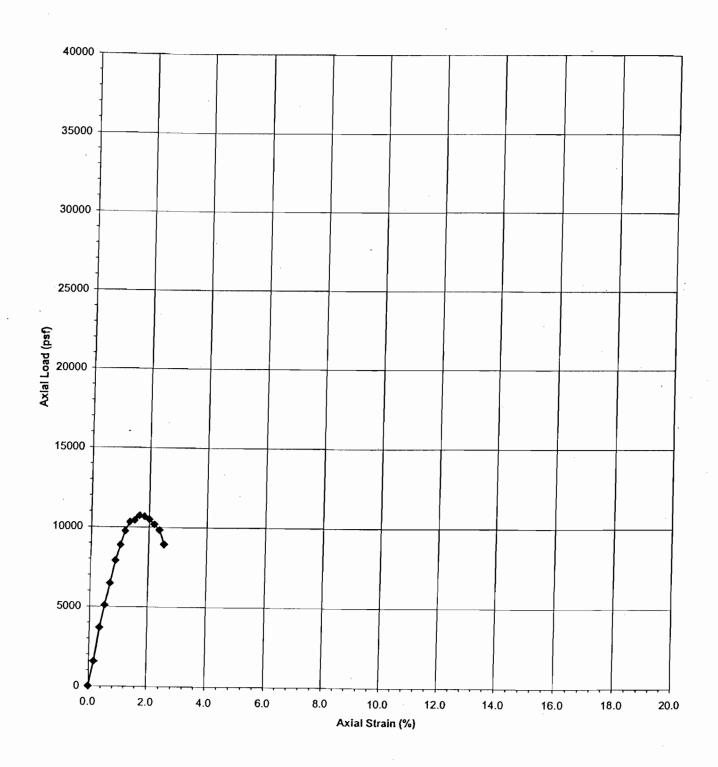

PROJECT   Vasco Road   PROJ. #:   001860   DATE:   02/17/2001   BORING:   B-5   Ring Constant = 0.6954   Ib/div			<del></del>		UNCON	r.ALO)		
PROJ. # :   001860   DATE:   02/17/2001   BORING:   B-5   Ring Constant = 0.6954   b/div				eology				
DATE:   02/17/2001     Ring Constant = 0.6954 lb/div								
BORING:   B-5     Ring Constant = 0.6954   b/div								
DEPTH: 47.5'								
SAMPLE   ORIGINAL   CHANGE IN   PROVING   PROVING   PRESSURE   STRAIN   PRESSURE   DIAMETER   HEIGHT   HEIGHT   RING READ   RING LOAD    BORING:	B-5			Ring Const	tant = 0.6954	lb/div		
DIAMPETER   HEIGHT   HEIGHT   RING READ.   RING LOAD   (LBS)   (PSF)   (%)   (PSF)	DEPTH:	47.5'						
DIAMPETER   HEIGHT   HEIGHT   RING READ.   RING LOAD   (LBS)   (PSF)   (%)   (PSF)								
(IN)         (IN)         (IN)         (LBS)         (PSF)         (%)         (PSF)           2.39         5.29         0.00         0         0.00         0         0.00           2.39         5.29         0.01         86         59.80         1920         0.2         192           2.39         5.29         0.02         146         101.53         3259         0.4         325           2.39         5.29         0.03         194         134.91         4330         0.6         433           2.39         5.29         0.04         230         159.94         5134         0.8         513           2.39         5.29         0.05         264         183.59         5893         0.9         589           2.39         5.29         0.06         292         203.06         6518         1.1         651           2.39         5.29         0.07         318         221.14         7098         1.3         709           2.39         5.29         0.08         339         235.74         7567         1.5         756           2.39         5.29         0.09         355         246.87         7924 <t< td=""><td>SAMPLE</td><td>ORIGINAL</td><td>CHANGE IN</td><td>PROVING</td><td>PROVING</td><td>PRESSURE</td><td>STRAIN</td><td>PRESSURE</td></t<>	SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
Color	DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
2.39         5.29         0.00         0         0.00         0         0.0         0         0.0         0         0.0         0         0.0         2.39         5.29         0.01         86         59.80         1920         0.2         192         2.39         5.29         0.03         194         134.91         4330         0.6         433         2.39         5.29         0.04         230         159.94         5134         0.8         513         2.39         5.29         0.06         292         203.06         6518         1.1         651         651         2.39         5.29         0.06         292         203.06         6518         1.1         651         651         1.3         709         709         20.09         20.06         6518         1.1         651         651         1.5         756         756         756         756         756         1.5         756         756         756         756         1.5         756         2.39         5.29         0.09         355         246.87         7924         1.7         792         2.39         5.29         0.10         366         254.52         8169         1.9         816         2.39         5.	(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39		5.29	0.00	0	0.00	0		0
2.39 5.29 0.03 194 134.91 4330 0.6 433 2.39 5.29 0.04 230 159.94 5134 0.8 513 2.39 5.29 0.05 264 183.59 5893 0.9 589 2.39 5.29 0.06 292 203.06 6518 1.1 651 2.39 5.29 0.07 318 221.14 7098 1.3 709 2.39 5.29 0.08 339 235.74 7567 1.5 756 2.39 5.29 0.09 355 246.87 7924 1.7 792 2.39 5.29 0.10 366 254.52 8169 1.9 816 2.39 5.29 0.11 373 259.38 8326 2.1 832 2.39 5.29 0.12 375 260.78 8370 2.3 837 2.39 5.29 0.14 368 255.91 8214 2.6 821 2.39 5.29 0.15 363 252.43 8102 2.8 810 2.39 5.29 0.16 356 247.56 7946 3.0 794 2.39 5.29 0.17 351 244.09 7835 3.2 783 2.39 5.29 0.18 342 237.83 7634 3.4 763 2.39 5.29 0.18 342 237.83 7634 3.4 763 2.39 5.29 0.18 342 237.83 7634 3.4 763 2.39 5.29 0.19 327 227.40 7299 3.6 729 2.39 5.29 0.20 309 214.88 6897 3.8 689 2.39 5.29 0.21 288 200.28 6428 4.0 642 2.39 5.29 0.22 272 189.15 6071 4.2 607 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!	2.39	5.29	0.01	86	59.80	1920		1920
2.39         5.29         0.03         194         134.91         4330         0.6         433           2.39         5.29         0.04         230         159.94         5134         0.8         513           2.39         5.29         0.05         264         183.59         5893         0.9         589           2.39         5.29         0.06         292         203.06         6518         1.1         651           2.39         5.29         0.07         318         221.14         7098         1.3         709           2.39         5.29         0.08         339         235.74         7567         1.5         756           2.39         5.29         0.09         355         246.87         7924         1.7         792           2.39         5.29         0.10         366         254.52         8169         1.9         816           2.39         5.29         0.11         373         259.38         8326         2.1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372	2.39	5.29	0.02	146	101.53	3259	0.4	3259
2.39         5.29         0.04         230         159.94         5134         0.8         513           2.39         5.29         0.05         264         183.59         5893         0.9         589           2.39         5.29         0.06         292         203.06         6518         1.1         651           2.39         5.29         0.07         318         221.14         7098         1.3         709           2.39         5.29         0.08         339         235.74         7567         1.5         756           2.39         5.29         0.09         355         246.87         7924         1.7         792           2.39         5.29         0.10         366         254.52         8169         1.9         816           2.39         5.29         0.11         373         259.38         8326         2.1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368			0.03	194	134.91	4330	0.6	4330
2.39         5.29         0.05         264         183.59         5893         0.9         589           2.39         5.29         0.06         292         203.06         6518         1.1         651           2.39         5.29         0.07         318         221.14         7098         1.3         709           2.39         5.29         0.08         339         235.74         7567         1.5         756           2.39         5.29         0.09         355         246.87         7924         1.7         792           2.39         5.29         0.10         366         254.52         8169         1.9         816           2.39         5.29         0.11         373         259.38         8326         2.1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363				230	159.94	5134	0.8	5134
2.39         5.29         0.06         292         203.06         6518         1.1         651           2.39         5.29         0.07         318         221.14         7098         1.3         709           2.39         5.29         0.08         339         235.74         7567         1.5         756           2.39         5.29         0.09         355         246.87         7924         1.7         792           2.39         5.29         0.10         366         254.52         8169         1.9         816           2.39         5.29         0.11         373         259.38         8326         2.1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356				264	183.59	5893	0.9	5893
2.39         5.29         0.07         318         221.14         7098         1.3         709           2.39         5.29         0.08         339         235.74         7567         1.5         756           2.39         5.29         0.09         355         246.87         7924         1.7         792           2.39         5.29         0.10         366         254.52         8169         1.9         816           2.39         5.29         0.11         373         259.38         8326         2.1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351					203.06	6518	1.1	6518
2.39         5.29         0.08         339         235.74         7567         1.5         756           2.39         5.29         0.09         355         246.87         7924         1.7         792           2.39         5.29         0.10         366         254.52         8169         1.9         816           2.39         5.29         0.11         373         259.38         8326         2.1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342						7098	1.3	7098
2.39							1.5	7567
2.39         5.29         0.10         366         254.52         8169         1.9         816           2.39         5.29         0.11         373         259.38         8326         2,1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309								7924
2.39         5.29         0.11         373         259.38         8326         2.1         832           2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288							1.9	8169
2.39         5.29         0.12         375         260.78         8370         2.3         837           2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288								8326
2.39         5.29         0.13         372         258.69         8303         2.5         830           2.39         5.29         0.14         368         255.91         8214         2.6         821           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.00         #DIV/0!         #DIV/0!								8370
2.39         5.29         0.14         368         255.91         8214         2.6         821-           2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.24         0.00         #DIV/0!         #DIV/0!								8303
2.39         5.29         0.15         363         252.43         8102         2.8         810           2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.24         0.00         #DIV/0!         #DIV/0!								8214
2.39         5.29         0.16         356         247.56         7946         3.0         794           2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.02         272         189.15         6071         4.2         607           0.24         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.25         0.00         #DIV/0!         #DIV/0!         #DIV/0!								8102
2.39         5.29         0.17         351         244.09         7835         3.2         783           2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.03         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.24         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.26         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.29         0.00         #DIV/0! <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7946</td>								7946
2.39         5.29         0.18         342         237.83         7634         3.4         763           2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.02         272         189.15         6071         4.2         607           0.23         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.24         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.25         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.27         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.29         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!								
2.39         5.29         0.19         327         227.40         7299         3.6         729           2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.00         #DIV/0!         #DI								
2.39         5.29         0.20         309         214.88         6897         3.8         689           2.39         5.29         0.21         288         200.28         6428         4.0         642           2.39         5.29         0.22         272         189.15         6071         4.2         607           0.23         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.24         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.25         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.26         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.27         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.29         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.30         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!								
2.39 5.29 0.21 288 200.28 6428 4.0 642 2.39 5.29 0.22 272 189.15 6071 4.2 607 0.23 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.24 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.25 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.26 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.27 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.28 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!								
2.39 5.29 0.22 272 189.15 6071 4.2 607  0.23 0.00 #DIV/0! #DIV/0! #DIV/0!  0.24 0.00 #DIV/0! #DIV/0! #DIV/0!  0.25 0.00 #DIV/0! #DIV/0! #DIV/0!  0.26 0.00 #DIV/0! #DIV/0! #DIV/0!  0.27 0.00 #DIV/0! #DIV/0! #DIV/0!  0.28 0.00 #DIV/0! #DIV/0! #DIV/0!  0.29 0.00 #DIV/0! #DIV/0! #DIV/0!  0.30 0.00 #DIV/0! #DIV/0! #DIV/0!								
0.23 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!  0.24 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!  0.25 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!  0.26 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!  0.27 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!  0.28 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!  0.29 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!  0.30 0.00 #DIV/0! #DIV/0! #DIV/0!								
0.24   0.00 #DIV/0! #DIV/0! #DIV/0!   DIV/0!   2.39	5.29							
0.25         0.00         #DIV/0!         #DIV								
0.26         0.00         #DIV/0!         #DIV								
0.27         0.00         #DIV/0!         #DIV								
0.28         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.29         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!           0.30         0.00         #DIV/0!         #DIV/0!         #DIV/0!         #DIV/0!								
0.29 0.00 #DIV/0! #DIV/0! #DIV/0! 0.30 0.00 #DIV/0! #DIV/0! #DIV/0! #DIV/0!								
0.30 0.00 #DIV/0! #DIV/0! #DIV/0!								
0.00								
0.01			0.31		0.00	#DIV/0!_	#DIV/0!	#DIV/0!
0.32 0.00 #DIV/0! #DIV/0! #DIV/0!								
0.33 0.00 #DIV/0! #DIV/0! #DIV/0!								
0.34 0.00 #DIV/0! #DIV/0! #DIV/0!								
0.35 0.00 #DIV/0! #DIV/0! #DIV/0!			0.35					
0.36 0.00 #DIV/0! #DIV/0! #DIV/0!			0.36					
0.37 0.00 #DIV/0! #DIV/0! #DIV/0!			0.37		0.00	#DIV/0!	#DIV/0!	
0.38 0.00 #DIV/0! #DIV/0! #DIV/0!			0.38		0.00	#DIV/0!	#DIV/0!	
0.39 0.00 #DIV/0! #DIV/0! #DIV/0!			0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
			0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfine	ed Compre	ssion Teet	Data (Roc	·k)				T
3110311111		SSION TEST	Data (NOC	Ring Const	tant = 0.69/			
CLIENT: C	Cal Engines	ring and C-		Tang Cons	iain – 0.05	J-7 ID/GIV		
	Cal Enginee : Vasco Ro		γοιοάλ	Comple Di	omotor	7.70		
PROJECT		au		Sample Dia	ameter.	6137		
				Sample Le	ngin: 5	.29		-71
BORING:	2/17/01			Wet Wt./Dr	y vvi.:	2011 010-	100,000	F-71
	<del></del>					RN MOT	STORY BAN	
DEPTH:	47.51			amst	50VG	TR. VFG	SAND	
	0111110= 111					5501/11/0		
	CHANGE IN			-	CHANGE IN			
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	86		-	0.26			+
	0.02	146			0.27		_	
	0.03			,	0.28			
	0.04	2.50		-	0.29			
	0.05	264			0.30			
	0.06				0.31			
	0.07	218			0.32			
	0.08	339		4	0.33			
	0.09				0.34			
	0.10	366			0.35			
	0.11				0.36			
	0.12 375				0.37			
	0.13 37z 0.14 368				0.38			
					0.39			
	0.15	363			0.40			
	0.16	356			0.41	1		
	0.17	351			0.42			
	0.18	342			0.43			
	0.19	327			0.44			
	0.20	309			0.45			
	0.21	289 272			0.46			
	0.22	272			0.47			
	0.23				0.48			
	0.24				0.49	-		
	0.25				0.50			
Sketch of S	Sample Afte	r Test:						
			1.					
		V						
	L			_				
Comments:	10 40	5/4 40	700					
201111111111111111111111111111111111111	. 10 n	714 11	COMIN					
			•					

i

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 55.0' Lt Yel Brn Sandy Claystone (VFG)



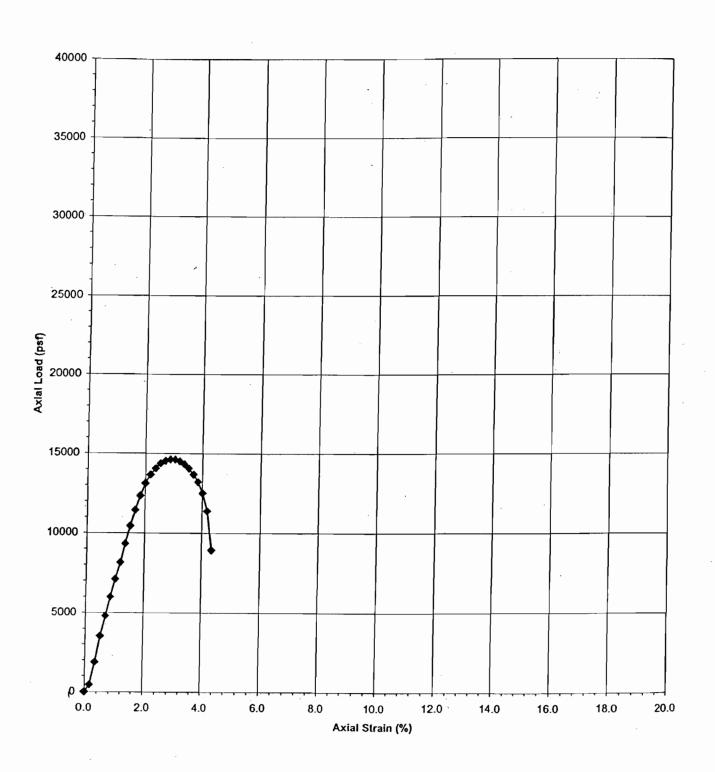

TOL IENIE				CONCON	, ALO,	_	
	CAL Engine		Seology				
	Vasco Road						
PROJ.#:	001860						
DATE:	02/16/2001				2.505		
BORING:	B-5			Ring Cons	tant = 0.6954	Ib/div	
DEPTH:	55.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(1N)		(LBS)	(PSF)	(%)	(PSF)
2.28	5.68	0.00	0	0.00	0	0.0	0
2.28	5.68	0.01	63	43.81	1545	0.2	1545
2.28	5.68	0.02	108	75.10	2649	0.4	2649
2.28	5.68	0.03		100.83	3556	0.5	3556
2.28	5.68	0.04	178	123.78	4366	0.7	4366
2.28	5.68	0.05	206	143.25	5052	0.9	5052
2.28	5.68	0.06		160.64	5666	1.1	5666
2.28	5.68	0.07	253	175.94	6205	1.2	6205
2.28	5.68	0.08	273	189.84	6696	1.4	6696
2.28	5.68	0.09	292	203.06	7162	1.6	7162
2.28	5.68	0.10	308	214.18	7554	<b>1.</b> 8	7554
2.28	5.68	0.11	323	224.61	7922	1.9	7922
2.28	5.68	0.12	338	235.05	8290	2.1	8290
2.28	5.68	0.13	351	244.09	8609	2.3	8609
2.28	5.68	0.14	360	250.34	8830	2.5	8830
2.28	5.68	0.15	370	257.30	9075	2.6	9075
2.28	5.68	0.16	378	262.86	9271	2.8	9271
2.28	5.68	0.17	388	269.82	9516	3.0	9516
2.28	5.68	0.18	396	275.38	9713	3.2	9713
2.28	5.68	0.19	403	280.25	9884	3.3	9884
2.28	5.68	0.20	410	285.11	10056	3.5	10056
2.28	5.68	0.21	415	288.59	10179	3.7	10179
2.28	5.68	0.22	420	292.07	10301	3.9	10301
2.28	5.68	0.23	424	294.85	10399	4.0	10399
2.28	5.68	0.24	428	297.63	10497	4.2	10497
2.28	5.68	0.25	430	299.02	10546	4.4	10546
2.28	5.68	0.26	432	300.41	10595	4.6	10595
2.28	5.68	0.27	433	301.11	10620	4.8	10620
2.28	5.68	0.28	434	301.80	10645	4.9	10645
2.28	5.68	0.29	434	301.80	10645	5.1	10645
2.28	5.68	0.30	434	301.80	10645	5.3	10645
2.28	5.68	0.31	433	301.11	10620	5.5	10620
2.28	5.68	0.32	430	299.02	10546	5.6	10546
2.28	5.68	0.33	428	297.63	10497	5.8	10497
2.28	5.68	0.34	426	296.24	10448	6.0	10448
2.28	5.68	0.35	424	294.85	10399	6.2	10399
2.28	5.68	0.36	422	293.46	10350	6.3	10350
2.28	5.68	0.37	420	292.07	10301	6.5	10301
2.28	5.68	0.38	418	290.68	10252	6.7	10252
2.28	5.68	0.39	414	287.90	10154	6.9	10154
2.28	5.68	0.40	411	285.81	10080	7.0	10080
2.20	3.00	0.40	711	200.01	10000	7.0	10000

				TONCON	11", ALO)		
2.28	5.68	0.41	407	283.03	9982	7.2	9982
2.28	5.68	0.42	402	279.55	9860	7.4	9860
2.28	5.68	0.43	393	273.29	9639	7.6	9639
2.28	5.68	0.44	384	267.03	9418	7.7	9418
2.28	5.68	0.45	375	260.78	9197	7.9	9197
		0.46		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.47		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.48		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.49		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.50		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfined Compression Test Data (I	Rock)	<del>-</del>
	Ring Constant = 0.6954 lb/div	
CLIENT: Cal Engineering and Geology		
PROJECT: Vasco Road	Sample Diameter: 2,28	
PROJ. #: 001860	Sample Length: 5,68	
DATE: 2 (6 01	Wet Wt./Dry Wt.:	F-27
BORING: 3-5	Description: YET BAN SANDY	
DEPTH: 55,0	CLAYSTONE VFG	
CHANGE IN PROVING	CHANGE IN PROVING	
HEIGHT RING READ.	HEIGHT RING READ.	
(IN) (DIV)	(IN) (DIV)	
0.01 63	0.26 432	
0.02 108	0.27 433	
0.03 145	0.28 434	
0.04 178	0.29 434	
0.05 706	0.30 434	
0.06 Z3( 0.07 253	0.28 434 0.29 434 0.30 434 0.31 433 0.32 430	
0.07 253	0.32 H30	
0.08 273	0.33 428	
0.08 273 0.09 292 0.10 308	0.34 426 0.35 424 0.36 422	
0.10 308	0.35 424	
0.11 323	0.36 422	
0.12 338	0.37 HZO 0.38 H 18	
0.13 351 -	0.38 418	
0.14 360	0.39 시나	
0.15 37 0 0.16 37 8 0.17 38 8	0.40 411	
0.16 378	0.41 467 0.42 462	-
0.17 300		
0.18 396 0.19 403		
0.19 403		-
	0.45 3 75	
	0.47	
0.22 420 0.23 424	0.48	
0.24 428	0.49	
0.25 430	0.50	
9.25	0.00	
Sketch of Sample After Test:		
/ <b> </b>		
ا هم		
Comments: 18/R 5/4 5/4		
9		

í

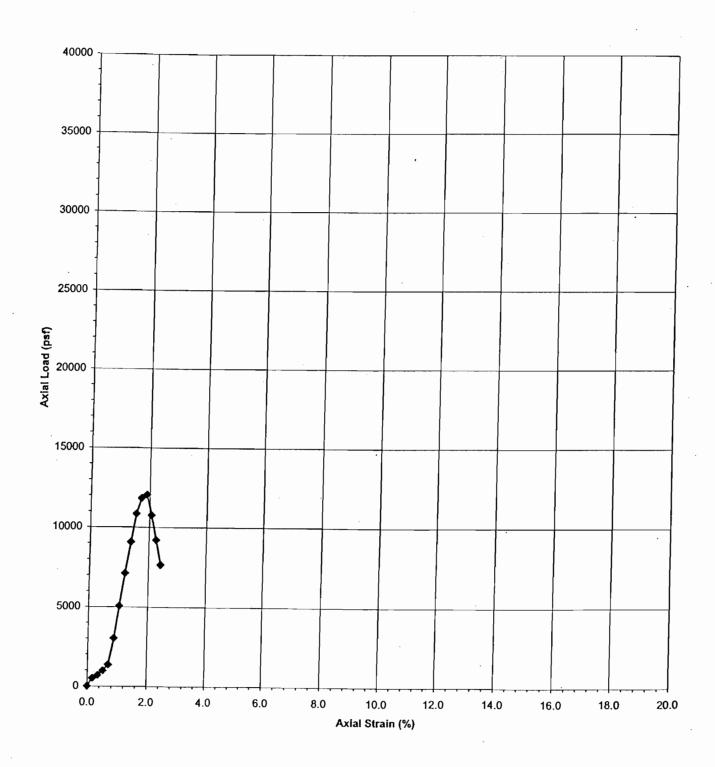
## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 62.5' Yel Brn Clayey Sandstone (VFG-MG)




OLIENT.	041 5 :			(UNCON	P.ALOJ		
	CAL Engine		eology				
	Vasco Road		_				
PROJ. #:							
DATE:	02/16/2001			0:	14 - 0 COE 4	Ib/div	
BORING:	B-5			Ring Const	tant = 0.6954	ID/OIV	
DEPTH:	62.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.98	0.00	0	0.00	0	0.0	0
2.39	5.98	0.01	70	. 48.68	1562	0.2	1562
2.39	5.98	0.02	165	114.74	3683	0.3	3683
2.39	5.98	0.03	228	158.55	5089	0.5	5089
2.39	5.98	0.04	290	201.67	6473	0.7	6473
2.39	5.98	0.05	354	246.17	7902	0.8	7902
2.39	5.98	0.06	398	276.77	8884	1.0	8884
2.39	5.98	0.07	437	303.89	9754	1.2	9754
2.39	5.98	0.08	462	321.27	10312	1.3	10312
2.39	5.98	0.09	467	324.75	10424	1.5	10424
2.39	5.98	0.10	480	333.79	10714	1.7	10714
2.39	5.98	0.11	478	332.40	10669	1.8	10669
2.39	5.98	0.12	470	326.84	10491	2.0	10491
2.39	5.98	0.13	456	317.10	10178	2.2	10178
2.39	5.98	0.14	440	305.98	9821	2.3	9821
2.39	5.98	0.15		278.16	8928	2.5	8928
2.00	- 0.00	0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.30				#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!		#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfined Compression Test Data (Rock)  Ring Constant = 0.6954 lb/div  CLIENT: Cal Engineering and Geology  PROJECT: Vasco Road  PROJ. #: 001860  Sample Length: 5,98	
CLIENT: Cal Engineering and Geology PROJECT: Vasco Road Sample Diameter: Z,39 PROJ. #: 001860 Sample Length: 5,98	
PROJECT: Vasco Road Sample Diameter: Z,39 PROJ. #: 001860 Sample Length: 5,98	
PROJ. #: 001860 Sample Length: 5,98	
11 (4) I = (1 1 + 1 f ) [ 10 (10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>
DATE: 2(16/01 Wet Wt./Dry Wt.:  BORING: B-5 Description: YET BRN CLAYEY	F-92
BORING: B-5 Description: YELBRN CLAYEY  DEPTH: 62,5 SANDSTONE VFG-MG TR WY & RD	
SANDSTONE VER THE WITTE	
CHANGE IN PROVING CHANGE IN PROVING	_
HEIGHT RING READ. HEIGHT RING READ.	
0.01 70 0.26 0.02 165 0.27	
0.02 165 0.27	
0.03 228 0.28 0.04 290 0.29	
0.04 290 0.29 0.05 35H 0.30	
0.05 35H 0.30 0.06 398 0.31	
0.00 346 0.31 0.07 A37 0.32	
0.07 437 0.32 0.08 462 0.33	
0.09 H76 0.34	
0.10 HBO 0.35	
0.10 円をの	
0.11 476 0.30	
0.12 170 0.37	
0.13 75 0.38 0.39	
0.15 460 0.40	
0.15 (0.40)	
0.10 0.41 0.42	
0.17 0.42 0.43	
0.19 0.44	
0.20 0.45	
0.21 0.46	
0.22 0.47	
0.23 0.48	
0.24 0.49	
0.25 0.50	
0.20	
Sketch of Sample After Test:	
Oreton of Dample After Test.	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Comments: 10 YR 5/6 ± YE GRN	

. . .

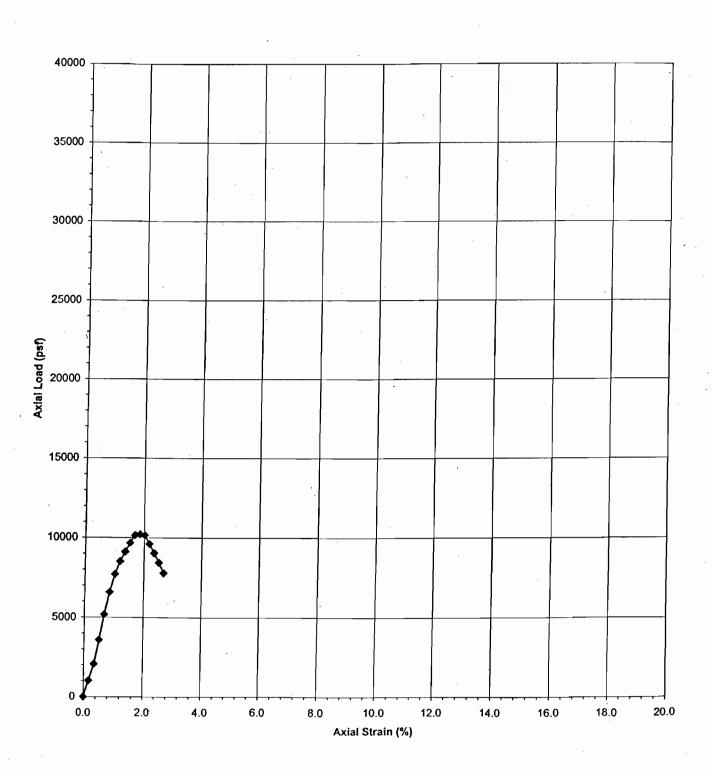

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 66.5' Gry Brn and Lt Olv Brn w/ Yel Brn Clayey Sandstone (VFG)



CLIENT:	CAL Engine	oring and C	Coology	UNCON	I .ALO)		
	CAL Engine Vasco Road		eology				
	001860						
DATE:	02/16/2001						
BORING:	B-5			Ping Cons	tant = 0.6954	lh/div	
				King Cons	iant - 0.0354	ID/GIV	
DEPTH:	66.5'						
					PDE001IDE	CTDAIN	PDECCUPE
SAMPLE	ORIGINAL	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD	(=0=)	(0/)	(DOE)
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.39	5.98	0.00	0	0.00	0	0.0	
2.39	5.98	0.01	20	13.91	446	0.2	446
2.39	5.98	0.02	84	58.41	1875	0.3	1875
2.39	5.98	0.03	158	109.87	3527	0.5	3527
2.39	5.98	0.04	215	149.51	4799	0.7	4799
2.39	5.98	0.05	268	186.37	5982	0.8	5982
2.39	5.98	0.06	318	221.14	7098	1.0	7098
2.39	5.98	0.07	365	253.82	8147	1.2	8147
2.39	5.98	0.08	418	290.68	9330	1.3	9330
2.39	5.98	0.09	468	325.45	10446	1.5	10446
2.39	5.98	0.10	513	356.74	11451	1.7	11451
2.39	5.98	0.11	553	384.56	12343	1.8	12343
2.39	5.98	0.12	588	408.90	13125	2.0	13125
2.39	5.98	0.13	612	425.58	13660	2.2	13660
2.39	5.98	0.14	630	438.10	14062	2.3	14062
2.39	5.98	0.15	644	447.84	14375	2.5	14375
2.39	5.98	0.16	651	452.71	14531	2.7	14531
2.39	5.98	0.17	655	455.49	14620	2.8	14620
2.39	5.98	0.18	655	455.49	14620	3.0	14620
2.39	5.98	0.19	650	452.01	14509	3.2	14509
2.39	5.98	0.20	642	446.45	14330	3.3	14330
2.39	5.98	0.21	630	438.10	14062	3.5	14062
2.39	5.98	0.22	613	426.28	13683	3.7	13683
2.39	5.98	0.23	592	411.68	13214	3.8	13214
2.39	5.98	0.24	560	389.42	12500	4.0	12500
2.39	5.98		510	354.65	11384	4.2	11384
2.39	5.98	0.26	400	278.16	8928	4.3	8928
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
~		0.38				#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!		
		0.40		0.00	#DIV/0!_	#DIV/0!	#DIV/0!

Unconfine	ed Compre	ssion Test	Data (Roc	:k)				
			(110		tant = 0.695	54 lb/div		
CLIENT: C	Cal Enginee	ring and Ge	ology	, and delice		, ,,,,,,,,,,		
	: Vasco Ro		Ology	Sample Di	ameter: 2	7.29		<u> </u>
PROJ.#:				Sample Le	ngth: 5	98	_	
				Wet Wt./Di		10		F-70
BORING:	2/16/01 B-5			Description	1-10			
DEPTH:	66.5			CIAMOR	(SANDS	TONIE VE	4 W/ YU	T KRN
				Car jo	347000			<u></u>
	CHANGE IN	PROVING	_		CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	20			0.26	400		
	0.02	84			0.27	+		
	0.03	158			0.28			
	0.04				0.29			
	0.05	268			0.30			
	0.06	318			0.31			
	0.07	365			0.32			
	0.08	418			0.33			
	0.09				0.34			
	0.10				0.35			
	0.11	553			0.36			
0.12 588					0.37			
	0.13 61Z 0.14 630				0.38			
					0.39			
	0.15	644			0.40			
	0.16	651			0.41			
<del></del>	0.17 0.18	655			0.42			
<u> </u>	0.18	655			0.43			
	0.19	650			0.44			
	0.21	642			0.45 0.46			
	0.21	630			0.46			
	0.23	592			0.47			
	0.24	792		-	0.49		-	
	0.25	560		<del></del>	0.49		-	
	0.23	314			0.50			
Sketch of S	Sample After	r Test						
	ampio / iito							
_								·
		<u> </u>	1					
			1					
	38							
	<i>u</i> .	}	$\checkmark$					
Comments:	2,54	5/7 GR4	BRN Z	54513	M OUV IS	R.N		
	41046	25/8 YKT	BEN	545/3				

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 75.0' Dk Gry Brn w/ Yel Brn Clayey Sandstone / Sandy Claystone (VFG)




CLIENT:	CAL Engine	oring and C	Coology	CONCOR	17.ALO]		
	Vasco Road		l				
PROJECT							
DATE:	02/16/2001						
BORING:	B-5			Ring Cons	tant = 0.6954	Llh/div	
DEPTH:	75.0'			Tailing Colls	tarit = 0.035	ID/GIV	
DEPTH.	75.0						
CAMPLE	ODIOINAL	CHANGE IN	DDOV/M/C	DDOV/ING	PDECCUBE	STRAIN	PRESSURE
SAMPLE	ORIGINAL HEIGHT	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER		HEIGHT	RING READ.	RING LOAD	(DCC)	(%)	(PSF)
(IN) 2.31	(IN) 5.80	(IN)	0	(LBS) 0.00	(PSF)	0.0	(1-31-)
2.31	5.80	0.00		14.60	502	0.0	502
2.31		0.01		20.17	693	0.2	693
2.31	5.80 5.80	0.02		28.51	980	0.5	980
2.31	5.80	0.03	57	39.64	1362	0.3	1362
2.31	5.80	0.04		88.32	3034	0.7	3034
2.31	5.80	0.03		147.42	5065	1.0	5065
2.31	5.80	0.00		207.23	7120	1.0	7120
2.31	5.80	0.07		264.25	9080	1.4	9080
2.31	5.80	0.08		315.71	10848	1.6	10848
2.31	5.80	0.09	495	344.22	11827	1.7	11827
2.31	5.80	0.10	504	350.48	12042	1.9	12042
2.31		0.11	450	312.93	10752	2.1	10752
2.31	5.80	0.12	385	267.73	9199	2.2	9199
2.31	5.80		320	222.53	<b>7</b> 646	2.4	<b>7646</b>
2.31	5.80	0.14 0.15	320	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.15		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	· ·	0.10		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
-		0.18	_	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
<del></del>		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
_		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	_	0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
_		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/U!	#DIV/U!	#DIV/U:

Unconfine	ed Compre	ssion Test	Data (Roc	;k)				Γ
			,,,,,		tant = 0.69	54 lb/div		
CLIENT: C	al Enginee	ring and Ge	ology	J				
	: Vasco Ro		0.0,41	Sample Di	ameter: 2	1.31		
PROJ.#:				Sample Le	ngth: 5.8	<u> </u>		
DATE: 7				Wet Wt./D				F-203
BORING:	12-2			Description	1: DV GALY	WWW B	EN CLARIO	, , ,
DEPTH:				SANDST	2015 1 SIA	WYELEN VDY CLAY	STONE VI	-6
					7 011	V.5   C   N	3,0.0	
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	21			0.26			
	0.02	29	_		0.27			
	0.03	41		1.	0.28			
	0.04				0.29			
	0.05				0.30			
	0.06	212			0.31			
	0.07	298			0.32			
	0.08	380			0.33			
	0.09	454			0.34			
0.10 495					0.35			
	0.11	504			0.36			<u></u>
	0.10 495 0.11 504 0.12 450 0.13 385				0.37			
					0.38			
	0.14 320				0.39			,
	0.15				0.40		•	
	0.16				0.41			
	0.17				0.42			
	0.18				0.43			
	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
,	0.22				0.47			
	0.23				0.48			
	0.24				0.49			
	0.25				0.50			
Sketch of S	Sample Afte	r Test:						
		(, 1000)						
		<b>\$ 8 \$</b>						
		7						
		* 1						
		1						
Comments:	2.5 1	4/1 Dr. C	mey W/1	OYR 5/	8 Keri	sen		

(-,

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-5 @ 80.5' Grn Gry Sandstone and Dk Grn Gry Clayey Sandstone (VFG)



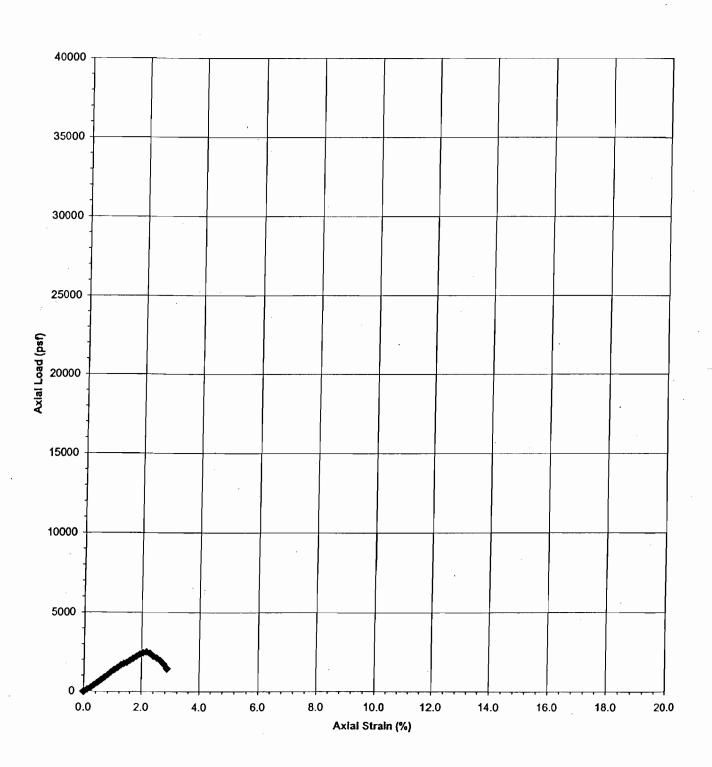
OU STATE	041 = :			(UNCON	F.XLS)		,
CLIENT:	CAL Engine		eology		_		
PROJECT		1					
PROJ.#:	001860						
DATE:	02/16/2001			D: 0		1 1 / dia :	
BORING:	B-5			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	80.5'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.43	5.94	0.00	0	0.00	0	0.0	0
2.43	5.94	0.01	47	32.68	1015	0.2	1015
2.43	5.94	0.02	95	66.06		0.3	2051
2.43	5.94	0.03	166	115.44	3584	0.5	3584
2.43	5.94	0.04	240	166.90	5182	0.7	5182
2.43	5.94	0.05	305	212.10	6586	0.8	6586
2.43	5.94	0.06	357	248.26	7708	1.0	7708
2.43	5.94	0.07	394	273.99	8507	1.2	8507
2.43	5.94	0.08	422	293.46	9112	1.3	9112
2.43	5.94	0.09	448	311.54	9673	1.5	9673
2.43	5.94	0.10	470	326.84	10148	1.7	10148
2.43	5.94	0.11	473	328.92	10213	1.9	10213
2.43	5.94	0.12	470	326.84	10148	2.0	10148
2.43	5.94	0.13	445	309.45	9608	2.2	9608
2.43	5.94	0.14	418	290.68	9025	2.4	9025
2.43	5.94	0.15	390	271.21	8421	2.5	8421
2.43	5.94	0.16	360	250.34	· 7773	2.7	7773
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.70		0.00	110.470.		., 5, 7, 0.

Unconfine	ed Compre	ssion Tost	Data (Roc	k)		T -		
Oncomin	Compre	331011 1631	Data (1100	Ring Cons	tant = 0.604	54 lb/div		
CLIENT. C	2-15	<u> </u>	-1	Tring Cons	lant - 0.03.	10/014		
	Cal Enginee		ology	Camala Di		7.1		
	: Vasco Ro	au		Sample Di Sample Le	ameter: Z	24		
PROJ. #:		_		Sample Le	ngth: _5	.44	•	<u> </u>
DATE:	2/16/01			Wet Wt./Di	y vvt.:			F-76
				Description	1: GRNG	WYFE SA	NOSTONE	
DEPTH:	80,5			AND DE	GRN GRY	CLAYESY	SANDSA	DNE _
	CHANGE IN				CHANGE IN			
	HEIGHT	RING READ.			HEIGHT	RING READ	<u> </u>	
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	47			0.26		-	
	0.02				0.27		-	
	0.03				0.28			
	0.04	240			0.29			
	0.05				0.30			
	0.06				0.31			•
	0.07	-			0.32			
	0.08				0.33		_	
	0.09				0.34			
	0.10	470	•		0.35			
	0.11	473			0.36			
	0.12	470			0.37			
	0.13				0.38			
	0.14				0.39			
	0.15				0.40			
	0.16	360			0.41			
	0.17				0.42			
	0.18				0.43			
·	0.19				0.44			
	0.20				0.45			
	0.21				0.46			
	0.22		_		0.47			
	0.23		<u>_</u>		0.48			
	0.24				0.49			
	0.25				0.50			
Sketch of S	Sample Afte	r Test:						
		KI YI	VF6					
		Ti// / //	SANDS1	ONE	GA	NORY 1	564 J1	
		11/1						
		111	<b>↑</b> . [					,
		₹'	an	MEN		GRNGR	1 564	/
		,	15	ANDSTON	5			′ '
		,	4					
Comments	:							

( )

## MOISTURE CONT TOND DRY DENSITY

Client Name: CAL ENCTINE FRING + GEOLOGY Project Name: __


Client Project No: 00 1860

Date Received 2/18/01 Date Sampled:_ Date Tested:

Tested by:

Material Description (Soil type is based on visual/manual examination; classification test results may modify soil type.)	KTYBEBRN SANDSTONIZJUFG PRIABLIS	CTYBEBAN WOKYOR TRANTICE CAPA							Civil and Geotechnical Engineering, Geotechnical Testing
Moisture Content (%)	15.0	18.5							eotechnical E
Sample Dry Density (pcf)		105.4					· 		Civil and G
Dry Weight + Cup (9)	413.0	562.0							
Wet Weight + Cup (g)	541.7	663,5							   
Cup Weight (g)	13,8	13,7							
Cup No.	F-29	F-66							RAYMOND L. FISHER, P.E.
Sample Diameter (in)	2,4(	04-2							RAYMOND L
Sample Length (in)	3,33	4.38							
Depth (ft)	5,71	5'82							
Boring No.	BG	B-6							moisden3.xls

### Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-6 @ 28.5' Lt Gry w/ Yel Brn Sandstone (VFG)

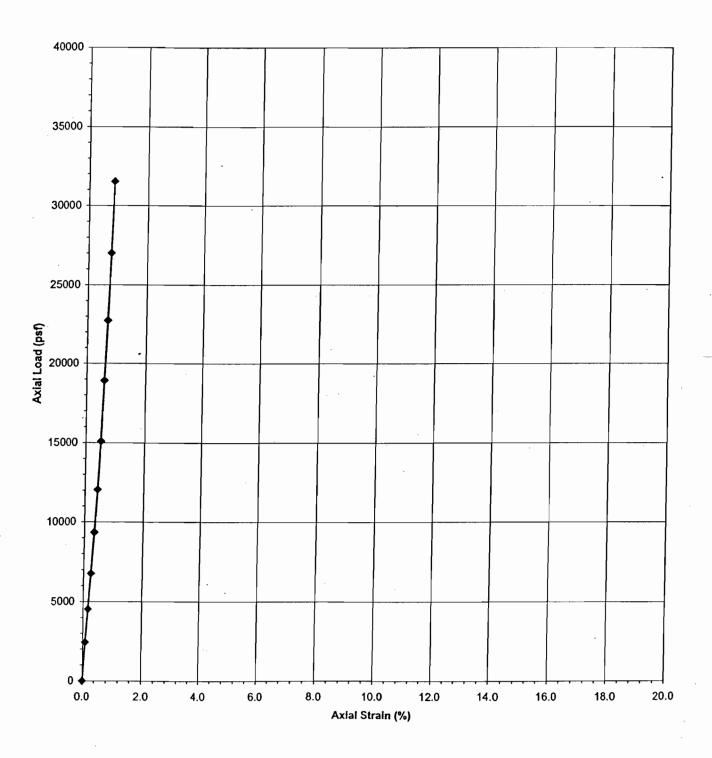


				(UNCON	F.XLS)		
CLIENT:	CAL Engine	ering and G	Seology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/18/2001						
BORING:	B-6			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	28.5'	-	·				
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.40	4.38	0.000	0	0.00	. 0	0.0	0
2.40	4.38	0.005	6	4.17	133	0.1	133
2.40	4.38	0.010	11	7.65	243	0.2	243
2.40	4.38	0.015	18	12.52	398	0.3	398
2.40	4.38	0.020	25	17.39	553	0.5	553
2.40	4.38	0.025	33	22.95	730	0.6	730
2.40		0.030	40	27.82	885	0.7	885
2.40	4.38	0.035		32.68	1040	0.8	1040
2.40	4.38		55	38.25	1217	0.9	1217
2.40		0.045	62	43.11	1372	1.0	1372
2.40		0.050	68	47.29	1505	1.1	1505
2.40		0.055	75	52.16	1660	1.3	1660
2.40			79	54.94	1749	1.4	1749
2.40		0.065		57.02	1815	1.5	1815
2.40			88	61.20	1948	1.6	1948
2.40	4.38	0.075	94	65.37	2081	1.7	2081
2.40		0.080	100	69.54	2214	1.8	2214
2.40		0.085		73.71	2346	1.9	2346
2.40	4.38	0.090	110	76.49	2435	2.1	2435
2.40		0.095	112	77.88	2479	2.2	2479
2.40		0.100	108	75.10	2391	2.3	2391
2.40				69.54	2214	2.4	2214
2.40	4.38	0.110	95	66.06	2103	2.5	2103
2.40		0.115	88	61.20	1948	2.6	1948
2.40				54.24	1727	2.7	1727
2.40			65	45.20	1439	2.9	1439
2.40	4.00	0.120		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#017/0!	#17/01	#DIVIO:

Unconfined	Compres	ssion Test	Data (Ro	ck)				
	p. o.	1030		Ring Cons	tant = 0.69	54 lb/div		
CLIENT: Ca	I Engineer	ring and Ge	eology 	Tung conc	0.00	10,011		
PROJECT: V			ology	Sample Di	ameter: 2	40		
PROJ. #:00				Sample Le	ngth:	1.39		
DATE: 2				Wet Wt./Di		1,70		F-66
BORING:	R-6		,	Description	13.7			
DEPTH:	2951			SANDSI	ONE VE	t, V WEX	+ / SOFT	1.21.7
							1,0,000	
C	HANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
0.4	205-204	6			0.26			
الم ا	n/ <del>0:02</del>	11			0.27	,		
1 1	015 0.03	12			0.28			
1 12.1	02 <del>0.04</del>	25			0.29			
	0250.05	33			0.30			
ريام ا	אס <del>0:06</del>	40			0.31			
1 10.0	035 <del>0.07</del>	47			0.32			
0.0	0.08	55			0.33			
4.0	045 0.09	62		` _	0.34			
0.0	0.10	62 68			0.35			
0,0	2550-14	75			0.36			
0,0	0,06 0.12 79				0.37			
1 ·	12 March 1913   87				0.38			
1 1	27 474	88	!	ļ <u> </u>	0.39			
0,0	75 0.15	94			0.40			
Qu.	DB 0.16	100			0.41		·	
p _u	0850.17	106			0.42			
2.0	24 0.18	110		_	0.43			
Q.4	1950-19	112	<del>&lt;</del>	<del>                                     </del>	0.44			
9.	10 0.20	108		<del>                                     </del>	0.45			
- Ge	105024	100			0.46			
4.1	115023	95			0.47			
		88			0.48			
<i>Q.1</i>	1200-24	78			0.49			
01	125 4.20	Ø5			0.50			
Sketch of Sar	mnle After	· Tost·						
- Cholon of Gai	inpic Aitei	, 001.						
		<b>M</b>						
		1						
		/ [						
	<i>[</i>	1						
	· /	1						
	/ [	( )			· -			
	150							
Comments:								

(

# MOISTURE CONT OND DRY DENSITY

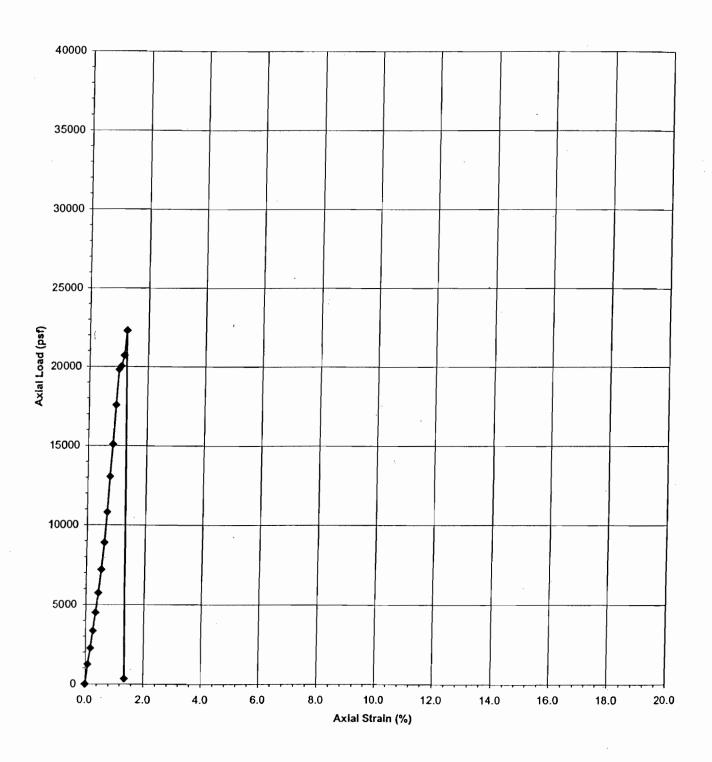

Client Name: CAL CIVETNERING + GEOLOGY Project Name: VAS CO RD

Client Project No: 000 1860

Date Received Date Sampled: Date Tested: 24 (8/6) ( Tested by:

Material Description	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	YEL BAN SHUDSTONES, VEG, VITHAS	YES BRN SHANDSTONDE VEG						Civil and Geotechnical Engineering, Geotechnical Testing
Moisture	(%)	8.5	9.6						eotechnical
Sample	Density (pcf)	134.1	13.8						Civil and G
Dry	weigni + Cup (g)	933.1	919.7						
Wet	weign + Cup (g)	7.986	7.918 2.789						
Cup	(g)	13,5	16,0						]       .
dno V		F-96	F-83						RAYMOND L. FISHER, P.E.
Sample	(in)	2,38	2,38						RAYMOND L.
	(in)	5.87	5.87						
Depth	(11)	13,0	18,0						
Boring		B-7							moisden3.xls

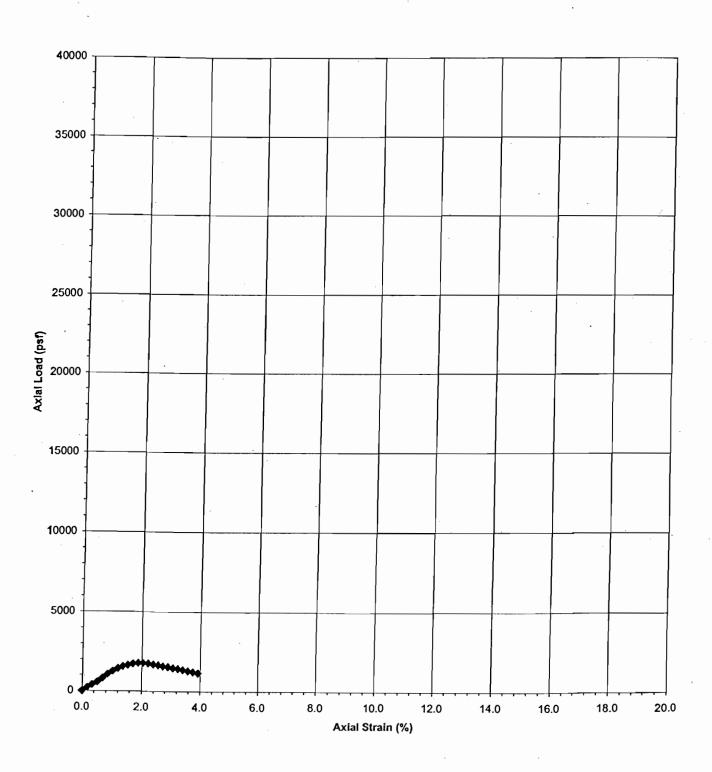
## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-7 @ 13.0' Yel Brn Sandstone (VFG)




				(UNCON	F.XLS)		
CLIENT:	CAL Engine	ering and G	Seology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	02/18/2001						
BORING:	B-7			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	13.0'						
<b>D</b> , 1111				_			
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.38	5.87	0.000	0	0.00	0	0.0	0
2.38	5.87	0.005	108	75.10	2431	0.1	2431
2.38	5.87	0.010	201	139.78	4524	0.2	4524
2.38	5.87	0.015	300	208.62	6753	0.3	6753
2.38	5.87	0.020	415	288.59	9341	0.3	9341
2.38	5.87	0.025	535	372.04	12042	0.4	12042
2.38	5.87		670	465.92	15081	0.5	15081
2.38	5.87	0.035	840	584.14	18907	0.6	18907
2.38	5.87	0.040	1010	702.35	22734	0.7	22734
2.38	5.87	0.045	1200	834.48	27011	0.8	27011
2.38	5.87	0.050	1400	973.56	31512	0.9	31512
2.50	3.07	0.000	1400	0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.14	_	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.14		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.16		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.10		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.17		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.10		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.13		0.00	#DIV/0!	#DIV/0!	#DIV/0!
<u> </u>		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!
ļ		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26	_	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	·	0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34			#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00		#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!		#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Ring Constant = 0.6954 lb/div	<b>Unconfined Compression Test Data (R</b>	Rock)	
PROJ. #: 001860   Sample Diameter: 2, 7, 8     PROJ. #: 001860   Sample Length: 5, 5, 7     DATE: 2/(8/c)   Wet WILDLY W.: \$66,7   F-16     BORING: 3 - 7   Description: Yez Felix Sanves 72002     CHANGE IN PROVING   CHANGE IN PROVING     HEIGHT RING READ   HEIGHT RING READ     (IN) (DIV) (NI) (DIV) (NI) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV)			
PROJ. #: 001860   Sample Diameter: 2, 7, 8     PROJ. #: 001860   Sample Length: 5, 5, 7     DATE: 2/(8/c)   Wet WILDLY W.: \$66,7   F-16     BORING: 3 - 7   Description: Yez Felix Sanves 72002     CHANGE IN PROVING   CHANGE IN PROVING     HEIGHT RING READ   HEIGHT RING READ     (IN) (DIV) (NI) (DIV) (NI) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV) (DIV)	CLIENT: Cal Engineering and Geology		
FRO.J. #: 001860   Sample Length:   5.2.7   Wet WILDDy WI:   96.7   F-96     DORING:   3-7   Description:   12.5   F-96     CHANGE IN   PROVING   CHANGE IN   PROVING     HEIGHT   RING READ   HEIGHT   RING READ     (IN)   (IN)   (IN)   (IN)   (IN)     N)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)     (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (IN)   (		Sample Diameter: 2.38	
BORING:   S   T   Description:   YE   BRN SANDS TEME   13,5		Sample Length: 527	
BORING:   S   T   Description:   YE   BRN SANDS TEME   13,5		Wet Wt./Dry Wt.: 986.7	-96
CHANGEIN   PROVING   CHANGE IN   PROVING	BORING: R-7	Description: YET ZOU SANIAS TRAT	
CHANGE IN PROVING HEIGHT RING READ.  (IN) (DIV) (DIV) (IN) (DIV)  0 005 9-071 10 0 0.26  0 001 0-02 20 1 0.27  0 015 0-08 200 0.28  0 0 0 0-08 115 0.33  0 0 0 0-09 8-10 0.33  0 0 0 0-09 0-00 0.34  0 0 0-0 0-00 0.34  0 0 0-0 0-00 0.35  0 0-0 0-00 0.31  0 0-0 0-00 0.32  0 0-0 0-00 0.33  0 0-0 0-00 0.34  0 0-0 0-0 0.01  0 0-0 0-0 0.01  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0-0 0.03  0 0-0 0.04  0 0-0 0.05  0 0-0 0.04  0 0-10 0-0 0.03  0 0-10 0-0 0.03  0 0-10 0-0 0.03  0 0-10 0-0 0.03  0 0-10 0-0 0.03  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10 0-0 0.33  0 0-10		VF-G	, -,
HEIGHT   RING READ   (IN)			
HEIGHT   RING READ   (IN)	CHANGE IN PROVING	CHANGE IN PROVING	
(N) (DIV) (IN) (IN) (DIV)  0 ,655 0.07 10 R  0 ,010 0.00 20 L  0 ,015 0.00 7,00 0.28  0 ,02 0.00 115 0.00 0.29  0 ,02 0.00 115 0.00 0.30  0 ,02 0.00 5.3 5 0.30  0 ,03 0.00 0.31  0 ,03 0.00 0.32  0 ,04 0.00 10 10 0 0.33  0 ,04 0.00 10 10 0 0.35  0 ,055 0.11 100 4 MAx 0.36  0 ,055 0.11 100 4 MAx 0.36  0 ,05 0.13 CAP 0.38  0 ,07 0.14 0.39  0 ,15 0.00 0.15  0 ,016 0.01  0 ,016 0.01  0 ,019 0.00 0.44  0 ,020 0.01  0 ,021 0.04  0 ,025 0.00 0.04  0 ,025 0.00 0.04  0 ,020 0.04  0 ,021 0.04  0 ,025 0.05  Sketch of Sample After Test:		· · · · · · · · · · · · · · · · · · ·	
0 ,305 0.01 10 8			
0   0   0   0   0   0   0   0   0   0			
0,015 0.00 200 0.28 0 0 0 0.00 115 0.00 0.29 0,0250.05 535 0.030 0,0250.05 6470 0.31 0,035 0.07 840 0.32 0,04 0.00 12.00 0.33 0,045 0.00 12.00 0.35 0,0550.11 1400 + MAx 0.36 0,05 0.10 1400 + 0.39 0,05 0.13			
0.02 0.04 A 15 0.02 50.05 A 15 0.02 50.05 A 15 0.03 0.06 0.03 0.06 C 70 0.331 0.032 0.04 0.06 A 10 0.04 0.06 A 10 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.01 IMO 0.05 0.04 IMO 0.05 0.04 IMO 0.05 0.04 IMO 0.05 0.04 IMO 0.05 0.04 IMO 0.05 0.04 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO 0.05 0.05 IMO	0.015 0.00 700		
0,059.05   235   0.30   0.31   0.32   0.35   0.07   0.41   0.08   0.07   0.04   0.08   0.07   0.04   0.08   0.05   0.04   0.05   0.01   0.05   0.01   0.05   0.01   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05	0 02 0.04 115		
0.03 0.06	0 02 50.05		
C1035 0.07 840   C10	003 006 170		
O, 045 0.00   1200   0.34   0.35   0.05 0.10   1400   0.35   0.36   0.37   0.05 0.11   1400   0.36   0.37   0.06 0.13   0.10   0.15   0.40   0.15   0.40   0.16   0.16   0.41   0.17   0.42   0.18   0.19   0.44   0.20   0.45   0.21   0.46   0.22   0.47   0.23   0.24   0.24   0.49   0.25   0.50     Sketch of Sample After Test:	0.035 0.07 9410		_
0.045 0.08 1200 0.34 0.35 0.35 0.055 0.10 1400 4.4 0.36 0.37 0.42 0.18 0.49 0.20 0.45 0.22 0.21 0.23 0.24 0.24 0.25 0.25 0.50 0.50 0.50 0.50 0.50 0.50			
C, O5 0.10   HOO   0.35   0.36   0.35   0.36   0.35   0.36   0.37   0.36   0.37   0.37   0.38   0.37   0.38   0.37   0.38   0.39   0.39   0.40   0.40   0.41   0.42   0.41   0.42   0.48   0.43   0.19   0.44   0.20   0.45   0.45   0.21   0.46   0.22   0.47   0.23   0.48   0.24   0.24   0.49   0.25   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50	0 045 0.00 (2.00)		
0.055 0.11   1400 + MAx	0.05 0.10 1400		_
C106   0.12   R NA			
CAP   0.38   0.39   0.15   0.40   0.15   0.40   0.16   0.41   0.42   0.18   0.49   0.20   0.47   0.23   0.24   0.24   0.25   0.50   Sketch of Sample After Test:	0,06 0.12 RIX		_
0.15	M.0650.13 CAP		
0.15 0.16 0.17 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.24 0.25  Sketch of Sample After Test:	0.07 0.14	<i>(</i> .	
0.17 0.18 0.19 0.44 0.20 0.21 0.22 0.23 0.24 0.25  Sketch of Sample After Test:	0.15		
0.18	0.16	0.41	
0.19 0.44 0.20 0.45 0.45 0.46 0.21 0.46 0.22 0.47 0.23 0.48 0.24 0.25 0.50 0.50 0.50 0.50 0.50 0.50 0.50	0.17	0.42	
0.20 0.21 0.22 0.23 0.24 0.25 0.25  Sketch of Sample After Test:	0.18	0.43	
0.21	0.19	0.44	
0.22	0.20	0.45	
0.23	0.21	0.46	
0.24 0.25 0.50  Sketch of Sample After Test:  NO FMILUR	0.22	0.47	
Sketch of Sample After Test:  NO FAILURE	0.23	0.48	
Sketch of Sample After Test:  NO FAILURE	0.24		
NO FAILURE	0.25	0.50	
NO FAILURE			
FAILURE	Sketch of Sample After Test:		
FAILURE			
		DRE .	
Comments: 164R 5/4 5/6 YEL BRN			
Comments: 164R 5/H 5/6 YEL BRAU			
Comments: 164R 5/4 5/6 YEL BRAU			
Comments: 164R 5/4 5/6 YEL BRN			
Comments: 164R 5/4 5/6 YEL BRAU			
	Comments: 164R 5/4 5/6 Ye	EL BRN	

(

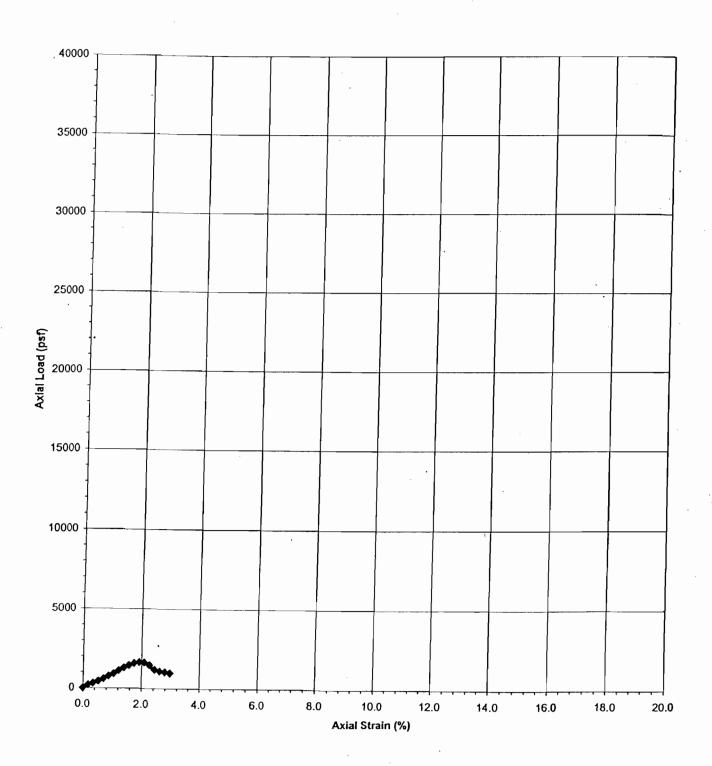

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-7 @ 18.0' Yel Brn Sandstone (VFG)



CLIENT:	CAL Engine	oring and C	Coology	(UNCON	NF.XLS)	Т	T
PROJECT			Tology				
PROJ. #:	001860						
DATE:	02/18/2001						1
BORING:	B-7			Ping Conc	tant = 0.695	1 lb/div	
DEPTH:	18.0'			King Cons	Tant - 0.095	+ ID/UIV	
DEP In.	10.0						
044515	ODIONAL .	01141105 111	556,4110	55011110			
SAMPLE	ORIGINAL	CHANGE IN		PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD	(505)		
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.38	5.87	0.000	0	0.00	0	0.0	0
2.38	5.87	0.005	55	38.25		0.1	1238
2.38	5.87	0.010	100	69.54		0.2	2251
2.38	5.87	0.015	149	103.61	3354	0.3	3354
2.38	5.87	0.020	200	139.08	4502	0.3	4502
2.38	5.87	0.025	255	177.33	5740	0.4	5740
2.38	5.87	0.030	320	222.53	7203	0.5	7203
2.38	5.87	0.035	395	274.68	8891	0.6	8891
2.38	5.87	0.040	480	333.79	10804	0.7	10804
2.38	5.87	0.045	580	403.33	13055	0.8	13055
2.38	5.87	0.050	670	465.92	15081	0.9	15081
2.38	5.87	0.055	780	542.41	17557	0.9	17557
2.38	5.87	0.060	880	611.95	19808	1.0	19808
2.38	5.87	0.065	890	618.91	20033	1.1	20033
2.38	5.87	0.070	920	639.77	20708	1.2	20708
2.38	5.87	0.075	990	688.45	22284	1.3	22284
2.38	5.87	0.080	15	10.43	338	1.4	338
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
				0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.23	1	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
	-	0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.10		0.00			., 51770:

<b>Unconfined Compression Test Data (Ro</b>	ck)
, , , , , , , , , , , , , , , , , , , ,	Ring Constant = 0.6954 lb/div
CLIENT: Cal Engineering and Geology	
PROJECT: Vasco Road	Sample Diameter: 2,38
PROJ. #: 001860	Sample Length: 5,87
DATE: 2/10/0 (	Wet Wt./Dry Wt.: 997,5 = 83
BORING: 13-7	Description: YET BEN STRUSTONE 1610
DEPTH: (%, 0	VFW
CHANGE IN PROVING	CHANGE IN PROVING
HEIGHT RING READ.	HEIGHT RING READ.
(IN) (DIV)	(IN) (DIV)
0,005 0.01 55	0.26
001 0.02 100	0.27
0.05 0.03 149	0.28
1 1,02,0,04 7,00 1	0.29
0.025 (105) 255	0.30
1 320   320	0.31
0.035 0.07 395	0.32
1 day 0.08 Han	0.33
000 500	0.34
0.05 0.40 670	0.35
0.05 0.10 670 0.05 0.11 780 0.06 0.12 880	0.36
0,06 0.12 880	0.37
0.065 0.13 840	0.38
0,07 0.14 920	0.39
0.075 0.15 990 BRITTE	0.40
0.085017	0.42
0,09 0.48	0.43
0.0950.49	0.44
0,10 0.20	0.45
0.22	0.46
0.23	0.47
0.24	0.49
0.25	0.50
0.25	0.00
Sketch of Sample After Test:	
Comments: 10 YR 5/4 5/6	YOL BRN
	· · · · · · · · · · · · · · · · · · ·

## Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-8 @ 15.25' Yel Brn Sandstone (VFG-FG) w/clayey zones and Wt tuff seam

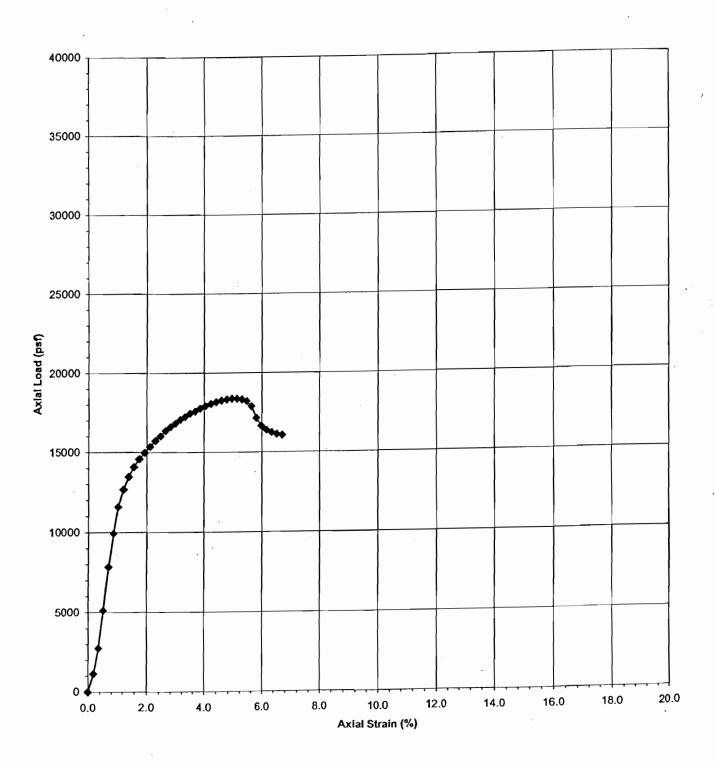



	- · ·			(UNCON	r.ALO)		
	CAL Engine		eology			_	
	Vasco Road						
	001860				_	<u> </u>	
DATE:	03/02/2001				2 225	11 / 11	
BORING:	B-8			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	15.25'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.42	5.87	0.00	0	0.00	0	0.0	0
2.42	5.87	0.01	10	6.95	218	0.2	218
2.42	5.87	0.02	18	12.52	392	0.3	392
2.42	5.87	0.03	26	18.08	566	0.5	566
2.42	5.87	0.04	37	25.73	806	0.7	806
2.42	5.87	0.05	48	33.38	1045	0.9	1045
2.42	5.87	0.06	57	39.64	1241	1.0	1241
2.42	5.87	0.07	65	45.20	1415	1.2	1415
2.42	5.87	0.08	71	49.37	1546	1.4	1546
2.42	5.87	0.09	75	52.16	1633	1.5	1633
2.42	5.87	0.10	79	54.94	1720	1.7	1720
2.42	5.87	0.11	81	56.33	1763	1.9	1763
2.42	5.87	0.12	81	56.33	1763	2.0	1763
2.42	5.87	0.13	80	55.63	1742	2.2	1742
2.42	5.87	0.13	77	53.55	1676	2.4	1676
2.42	5.87	0.14		52.16	1633	2.6	1633
2.42	5.87	0.15		50.07	1568	2.7	1568
2.42	5.87	0.10		48.68	1524	2.9	1524
2.42	5.87	0.17		46.59	1459	3.1	1459
2.42		0.18		45.20	1415	3.2	1415
2.42	5.87	0.19		43.11	1350	3.4	1350
			59	41.03	1284	3.6	1284
2.42	5.87	0.21		38.94	1219	3.7	1219
2.42		0.22	56		1154	3.9	1154
2.42	5.87	0.23		36.86	#DIV/0!	#DIV/0!	#DIV/0!
		0.24		0.00		#DIV/0!	#DIV/0!
		0.25		0.00	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0!
		0.26		0.00			#DIV/0!
		0.27		0.00	#DIV/0!	#DIV/0!	
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.31		0.00	#DIV/0!	#DIV/0!	, #DIV/0!
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.33		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.34	,	0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfined Comp	ression Test	Data (Roc	k)		<del></del>			
	10051011 1051	Data (1100	Ring Cons	tant = 0.695	54 lb/div			
CLIENT: Cal Engin	eering and Ge		rung cono	10/11 0.00	1			
PROJECT: Vasco		ology	Sample Di	ameter:	2 / 17			
PROJ. #: 001860	Noau		Sample Di	ameter: 💈 ngth: 💪	207	_		
			Wat Wt /Dr	With	101		F-304	
DATE: 3/2/01 BORING: B-も			Wet Wt./Dry Wt.:  Description: SANDSTONE, VFGFG,  CLAYEY ZONES, N/TUGE 3:000					
DEPTH: 15.25	· · ·		Description	7-1-100	MONE,	VIGITA		
DEPTH: 15,25			CLATET	CONEZ,	0/104-	₹:271\max	_	
0111105				OUANIOE IN	DDO\#NG			
CHANGE				CHANGE IN				
HEIGH				HEIGHT	RING READ.	*****	<del>-</del>	
(IN)	(DIV)	**		(IN)	(DIV)			
	01 10			0.26				
	02 18			0.27				
	03 26	,		0.28				
	04 37			0.29				
	05 48			0.30				
	06 57			0.31				
	05 H8 06 57 07 65			0.32				
	08 71			0.33				
	09 75			0.34				
	10 79			0.35				
	11 81			0.36				
	12  g			0.37				
	13 80			0.38				
0.	14 77			0.39			_	
0.	15 75			0.40			,	
0.	16 72			0.41				
0.	17 70			0.42	•			
0.	18 67			0.43				
0.	19 65 20 62			0.44				
0.2	20 62			0.45				
0.3	21 59			0.46				
	22 56			0.47				
	23 53			0.48				
0.2				0.49				
0.2				0.50	-			
-	-							
ketch of Sample A	fter Test				-			
l con or cample ?	ator rost.	<del></del>						
	<del></del> -	<b>A</b>						
	· `	1						
<del></del>	- W	.		7 (5)	0/2 04			
	Y-1:	70		Z.54	SYS PA	E YEN	cow.	
	16.	10		€03 ¢	OR TUFF	CONE		
	١,	/ /			-			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/						
	$\overline{}$							
		Y						
comments:	YELBEN	10 YR 5	16					

(

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-8 @ 18.5' Yel Brn slightly clayey Sandstone (VFG-FG)

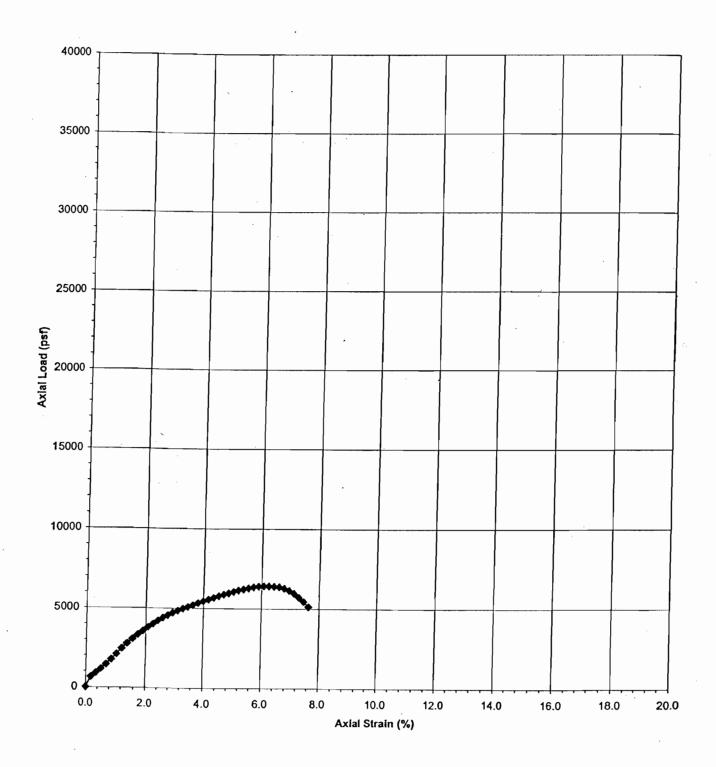


CLIENT	CAL Engineering and Geology (UNCONF.XLS)											
CLIENT:	Vasco Road		eology				ļ					
DATE:	03/02/2001											
	B-8			Ping Cons	l tant = 0.6954	Ib/div						
	18.5'			King Cons	lant - 0.0954	ID/UIV						
DEPTH:	18.5											
044515	05101111			556,414	555661155	0704111	PDECOLIDE					
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE					
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD	(= a=)	/0/ >	(505)					
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)					
2.42	5.75	0.00	0	0.00	0	0.0	196					
2.42	5.75	0.01	9	6.26	196							
2.42	5.75	0.02	14	9.74	305	0.3	305					
2.42	5.75	0.03	20	13.91	435	0.5	435					
2.42	5.75	0.04	27	18.78	588	0.7	588					
2.42	5.75	0.05	35	24.34	762	0.9	762					
2.42	5.75	0.06	42	29.21	914	1.0	914					
2.42	5.75	0.07	51	35.47	1110	1.2	1110					
2.42	5.75	0.08	59	41.03	1284	1.4	1284					
2.42	5.75	0.09	66	45.90	1437	1.6	1437					
2.42	5.75	0.10	72	50.07	1568	1.7	1568					
2.42	5.75	0.11	75	52.16	1633	1.9	1633					
2.42	5.75	0.12	74	51.46	1611	2.1	1611					
2.42	5.75	0.13	67	46.59	1459	2.3	1459					
2.42	5.75	0.14	54	37.55	1176	2.4	1176					
2.42	5.75	0.15	49	34.07	1067	2.6	1067					
2.42	5.75	0.16	47	32.68	1023	2.8	1023					
2.42	5.75	0.17	44	30.60	958	3.0	958					
ļ		0.18		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.19		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
ļ		0.20		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.21		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.22		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.23		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.24		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.25		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
·		0.26		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.27		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.28		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.29		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.30		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.31		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.32		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.33	• •	0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.34		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.35		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.36		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.37		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.38		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!					
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!					

Unconfined Compr	ession Test Da	ita (Rock)				
			stant = 0.69	54 lb/div		
CLIENT: Cal Engine						
PROJECT: Vasco R	Sample D	iameter:	7.42			
PROJ. #: 001860	Sample Le	Sample Diameter: 2,4 > Sample Length: 5,75				
DATE: 3/2/01						
DATE: 3201 BORING: B-8	Descriptio	Description: VP7 ROAN CHAINSTINK				
DEPTH: 18,5	VF1x-F6	Description: YEZ BRN SANDSTONE VFG-FG, SL CLAYEY, V MOIST,				
		V. C	1	7		
CHANGE I	N PROVING		CHANGE IN	PROVING		
HEIGHT	RING READ.		HEIGHT	RING READ.		
(IN)	(DIV)		(IN)	(DIV)		
0.0			0.26	- · · ·		
0.0	2 14		0.27			
0.0	3 20		0.28			
0.0	4 27		0.29			
0.0	5 35 6 HZ		0.30			
0.0	6 42		0.31			
0.0	7 51		0.32			
0.0	8 59		0.33			
0.0	9 66		0.34			
0.1	0 72		0.35			
0.1	1 75		0.36			
0.1			0.37			
0.1			0.38			
0.1	4 54		0.39			
0.1			0.40			
0.1			0.41			
0.1			0.42			
0.1			0.43			
0.19			0.44			
0.20			0.45			
0.2			0.46			
0.22			0.47			
0.23			0.48			
0.24	1		0.49			
0.25)		0.50			
	1					
Sketch of Sample Aft	er Test:					
)					
	/					
	/			, , , , , , , , , , , , , , , , , , , ,		
	/					
	/		_			
	/					
/						
Commonto	2710	1040	51	- D 0		
Comments:	<u> </u>	10112	5/6 YE.	L BRN		

(.

Vasco Road, Project 001860 Boring B-14 @ 9.0' V Dk Gry Clay (CH)


Sheet1 UNCONFINED COMPRESSION (UNCONF.XLS)

				(UNCON	F.XLS)	,	
CLIENT:	CAL Engine	ering and G	Seology				
PROJECT	Vasco Road						
PROJ.#:	001860						
DATE:	03/02/2001						
BORING:	B-14			Ring Cons	tant = 0.6954	lb/div	
DEPTH:	9.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.37	5.68	0.00	0	0.00	0	0.0	0
2.37	5.68	0.01	50	34.77	1135	0.2	1135
2.37	5.68	0.02	121	84.14	2747	0.4	2747
2.37	5.68		225	156.47	5107	0.5	5107
2.37	5.68	0.04	345	239.91	7831	0.7	7831
2.37	5.68		437	303.89	9920	0.9	9920
2.37	5.68			354.65	11577	1.1	11577
2.37	5.68	0.07	558	388.03	12666	1.2	12666
2.37	5.68	0.08	593	412.37	13461	1.4	13461
2.37	5.68		620	431.15	14073	1.6	14073
2.37	5.68	0.10	642	446.45	14573	1.8	14573
2.37	5.68	0.11	660	458.96	14981	1.9	14981
2.37	5.68		676	470.09	15345	2.1	15345
2.37	5.68		692	481.22	15708	2.3	15708
2.37	5.68			490.26	16003	2.5	16003
2.37	5.68			500.69	16343	2.6	16343
2.37	5.68			508.34	16593	2.8	16593
2.37	5.68		741	515.29	16820	3.0	16820
2.37	5.68		751	522.25	17047	3.2	17047
2.37	5.68	0.19	759	527.81	17229	3.3	17229
2.37	5.68	0.20	768	534.07	17433	3.5	17433
2.37	5.68	0.21	774	538.24	17569	3.7	17569
2.37	5.68	0.22	782	543.80	17751	3.9	17751
2.37	5.68	0.23	789	548.67	17910	4.0	17910
2.37	5.68			552.84	18046	4.2	18046
2.37	5.68	0.25	800	556.32	18159	4.4	18159
2.37	5.68		804	559.10	18250	4.6	18250
2.37	5.68	0.27	807	561.19	18318	4.8	18318
2.37	5.68	0.27	809	562.58	18364	4.9	18364
2.37	5.68		809	562.58	18364	5.1	18364
	5.68	0.29	807	561.19	18318	5.3	18318
2.37		0.30	802	557.71	18205	5.5	18205
2.37	5.68 5.68		788	547.98	17887	5.6	17887
2.37		0.32		525.03	17138	5.8	17138
2.37	5.68	0.33	755 733	525.03	16638	6.0	16638
2.37	5.68	0.34	733		16389	6.2	16389
2.37	5.68	0.35	722	502.08	16230	6.3	16230
2.37	5.68	0.36	715	497.21		6.5	16116
2.37	5.68	0.37	710	493.73	16116		
2.37	5.68	0.38	707	491.65	16048	6.7	16048
		0.39		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.40		0.00	#DIV/0!	#DIV/0!	#DIV/0!

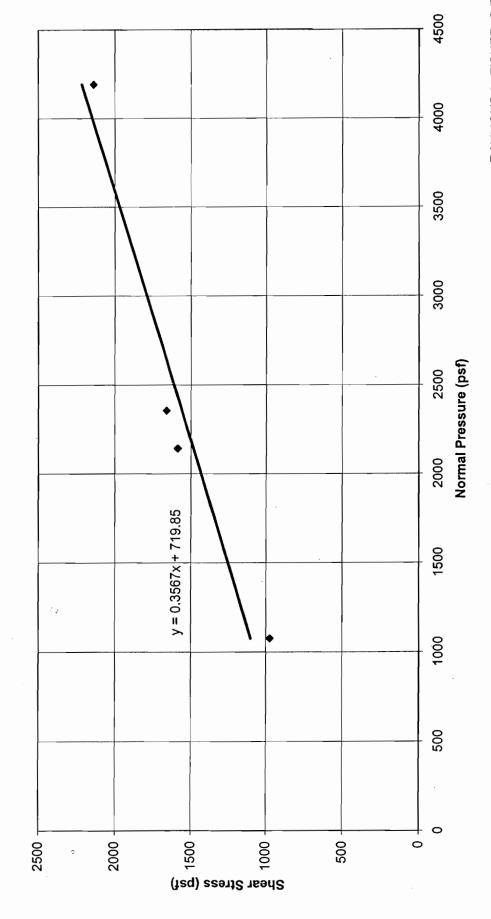
Unconfine	ed Compre	ssion Test	Data (Roc	k)	Ι -			
					tant = 0.695	54 lb/div		
CLIENT: C	Cal Enginee	ring and Ge	eology	rung come	10.11			
	: Vasco Ro		ology	Sample Di	ameter: 7	37		
PROJ. #:				Sample Le	ameter: 2 ength: 4	.69		
	3/2/01			Wet Wt /D	ny Wt	3100		F-104
BORING:	13-14			Description	1. 1/ P/ V	RUCIA	U (C.H)	, ,,,,
DEPTH:	9.0			V CM	== / 1/140 1	RY CLA	7 50,,,	
DC1 111.	4.0	·		V > 111	-1-11111-1			
	CHANGE IN	PROVING		1	CHANGE IN	PROVING		
	HEIGHT	RING READ.			HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	50		1	0.26			
	0.02	50 121 225			0.27			
	0.03	772			0.28	20		
	0.04	345			0.29	809 809	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	
	0.04	437			0.30	807		
	0.06	510			0.31	807		
	0.07	558			0.32			
	0.08	555			0.33	755		
	0.09	175			0.34			
	0.10	593 620 642			0.35	722		
	0.11	610			0.36			
	0.12	660 676 692			0.37	710		
	0.13	602			0.38	707		
	0.14	705			0.39	,		
	0.15	720			0.40		l	
	0.16	731	-		0.41			
	0.17	741			0.42			
	0.18	751			0.43			
	0.19	759			0.44			
	0.20	768			0.45			
	0.21	774			0.46	,	_	
	0.22	782			0.47		,	
	0.23	789			0.48			
	0.24	795	_	_	0.49			
	0.25	800			0.50			
		- 63.22		_				
Sketch of S	Sample Afte	r Test:						
		\	X	-				
			579	,				
		/						
			√ ✓					-
				_				
-		***			, .			
Comments	104	R 3/1	V Nr	(-1) Li	NDV C	DLV BRN	\ \	
- Commonto		3/ 1	V DIN	7 - 1	() ()	- BIN) 	
					_	· · · · · · · · · · · · · · · · · · ·		

(

Unconfined Compression Test Results Vasco Road, Project 001860 Boring B-14 @ 14.0' Dk Yel Brn Claystone

Sheet1 UNCONFINED COMPRESSION (UNCONF.XLS)

				(UNCON	F.XL5)		
CLIENT:	CAL Engine	ering and G	eology				
PROJECT	Vasco Road						
PROJ.#:	001860		-				
DATE:	03/02/2001						
BORING:	B-14			Ring Const	tant = 0.6954	lb/div	
DEPTH:	14.0'						
SAMPLE	ORIGINAL	CHANGE IN	PROVING	PROVING	PRESSURE	STRAIN	PRESSURE
DIAMETER	HEIGHT	HEIGHT	RING READ.	RING LOAD			
(IN)	(IN)	(IN)		(LBS)	(PSF)	(%)	(PSF)
2.38	5.76	0.00	0	0.00	0	0.0	0
2.38	5.76	0.01	29	20.17	653	0.2	653
2.38	5.76	0.02	40	27.82	900	0.3	900
2.38	5.76	0.03	51	35.47	1148	0.5	1148
2.38	5.76	0.04	64	44.51	1441	0.7	1441
2.38	5.76	0.05	78	54.24	1756	0.9	1756
2.38	5.76	0.06	93	64.67	2093	1.0	2093
2.38	5.76	0.07	109	75.80	2453	1.2	2453
2.38	5.76	0.08	123	85.53	2769	1.4	2769
2.38	5.76	0.09	136	94.57	3061	1.6	3061
2.38	5.76	0.10	148	102.92	3331	1.7	3331
2.38	5.76	0.11	158	109.87	3556	1.9	3556
2.38	5.76	0.12	169	117.52	3804	2.1	3804
2.38	5.76	0.13	178	123.78	4007	2.3	4007
2.38	5.76	0.14	187	130.04	4209	2.4	4209
2.38	5.76	0.15	195	135.60	4389	2.6	4389
2.38	5.76	0.16	202	140.47	4547	2.8	4547
2.38	5.76	0.17	209	145.34	4704	3.0	4704
2.38	5.76	0.18	215	149.51	4839	3.1	4839
2.38	5.76	0.19	221	153.68	4974	3.3	4974
2.38	5.76		226	157.16	5087	3.5	5087
2.38	5.76	0.21	231	160.64	5200	3.6	5200
2.38	5.76	0.22	237	164.81	5335	3.8	5335
2.38	5.76	0.23	242	168.29	5447	4.0	5447
2.38		0.24		171.76	5560	4.2	5560
2.38	5.76		252	175.24	5672	4.3	5672
2.38	5.76			178.72	5785	4.5	5785
	5.76		261	181.50	5875	4.7	5875
2.38	5.76	0.27	265	184.28	5965	4.9	5965
2.38	5.76	0.28	269	187.06	6055	5.0	6055
2.38	5.76	0.29	273	189.84	6145	5.2	6145
2.38			276	191.93	6212	5.4	6212
2.38	5.76	0.31			6280	5.6	6280
2.38	5.76	0.32	279	194.02 196.10	6347	5.7	6347
2.38	5.76	0.33	282	196.10	6392	5.7	6392
2.38	5.76	0.34	284		6415	6.1	6415
2.38	5.76	0.35	285	198.19		6.3	6415
2.38	5.76	0.36	285	198.19	6415	6.4	6392
2.38	5.76	0.37	284	197.49	6392		6370
2.38	5.76	0.38	283	196.80	6370	6.6	6280
2.38	5.76	0.39	279	194.02	6280	6.8	
2.38	5.76	0.40	273	189.84	6145	6.9	6145

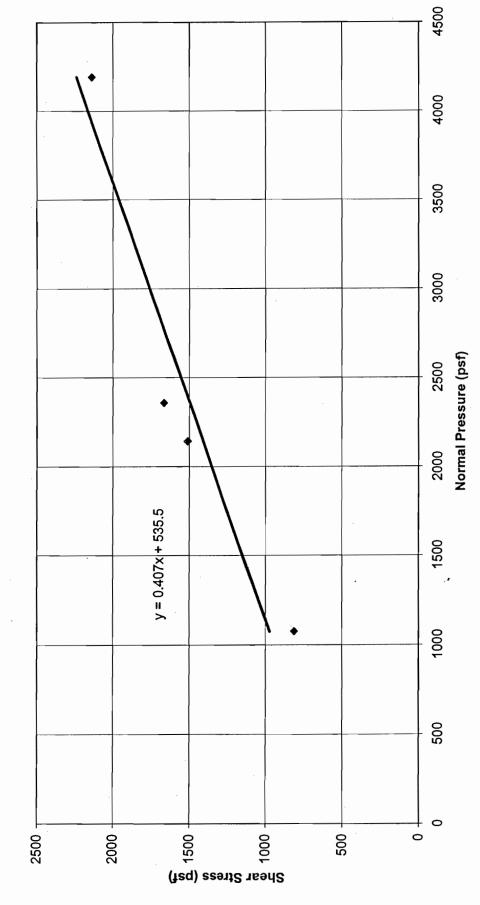

Sheet1 UNCONFINED COMPRESSION (UNCONF.XLS)

				10110011	1 ./\		
2.38	5.76	0.41	265	184.28	5965		5965
2.38	5.76	0.42	254	176.63	5717	7.3	5717
2.38	5.76	0.43	242	168.29	5447	7.5	
2.38	5.76	0.44	228	158.55	5132	7.6	5132
		0.45		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.46		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.47		0.00	#DIV/0!	#DIV/0!	#DIV/0!
_		0.48		0.00	#DIV/0!	#DIV/0!	#DIV/0!
-		0.49		0.00	#DIV/0!	#DIV/0!	#DIV/0!
		0.50		0.00	#DIV/0!	#DIV/0!	#DIV/0!

Unconfin	ed Compre	ssion Test	Data (Roc	:k)	1	1	<u> </u>	
3		1030			tant = 0.69	54 lb/div		
CLIENT: (Cal Enginee	ring and Ge	ology	9 00110			·	
	Γ: Vasco Ro		01091	Sample Di	ameter: 2	7.30		
PROJ. #:				Sample Le	ameter: Zength: 5	76		
	312101			Wet Wt./D	ry Wt.:			F-300
BORING:	B-14			Description	J: DKYE	BRAL		
DEPTH:	14.0			CLAY	STONE	<u> </u>		
					,,,,,,,			
	CHANGE IN	PROVING			CHANGE IN	PROVING		
	HEIGHT	RING READ.		-	HEIGHT	RING READ.		
	(IN)	(DIV)			(IN)	(DIV)		
	0.01	201			0.26	251		
	0.02				0.27	261		
	0.03	40			0.28			
	0.04	64			0.29	269		
	0.05	78			0.30	273		
	0.06	93			0.31	276		
	0.07	109			0.32	279		
	0.08	123			0.33			
	0.09	136			0.34			
	0.10	148 158 169			0.35			
	0.11	158			0.36	285		
	0.12	169			0.37	Z84		
	0.13	178		,	0.38	Z83		
	0.14	187			0.39	279		
	0.15	195			0.40	273		
· .	0.16	202			0.41	265		
	0.17	209			0.42	254		
	0.18	215			0.43	242		
	0.19	221			0.44	228		
	0.20	226			0.45			
	0.21	231			0.46			
	0.22	237			0.47			
	0.23	242			0.48			
	0.24 0.25	247			0.49			
	0.25	252		<u> </u>	0.50			
01. 1.1		- ,					_	
Sketch of S	Sample Afte	r lest:	·					
		, vi. i -				'		
	. 1	7						
		الأسلم						
	,	TY						
		W) 1						
		٠ ٢						
		1						
		-		_				
Comments		Inst.	11.7 %					
Comments	· .	IOAK	7/4 1K	YET BRN				

(

DIRECT SHEAR RESULTS (Peak)
Vasco Road, Project No. 001860
Boring B-3, Depth 47.0'
Friction Angle 19.6 deg., Cohesion 720 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Dk Gry Brn w/Olv Yel Claystone

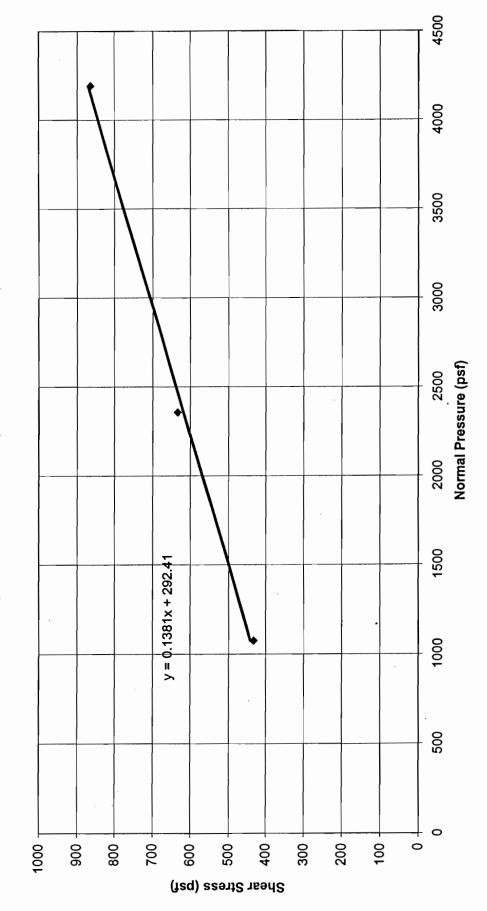


CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Peak) Project: Vasco Rd. Project #: Boring: 1860 B-3 Depth: 47.0' 1075 975 2142 1588 2356 1662 4190 2137

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

DIRECT SHEAR RESULTS (Ultimate)
Vasco Road, Project No. 001860
Boring B-3, Depth 47.0'
Friction Angle 22.1 deg., Cohesion 536 psf
Test Type CU., Inundation Time 24 hrs.
Sample Type Weathered Dk Gry Brn w/Olv Yel Claystone



CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Ultimate)
Project: Vasco Rd.
Project #: 1860
Boring: B-3 Depth: 47.0'
1075 807
2142 1510
2356 1662
4190 2137

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

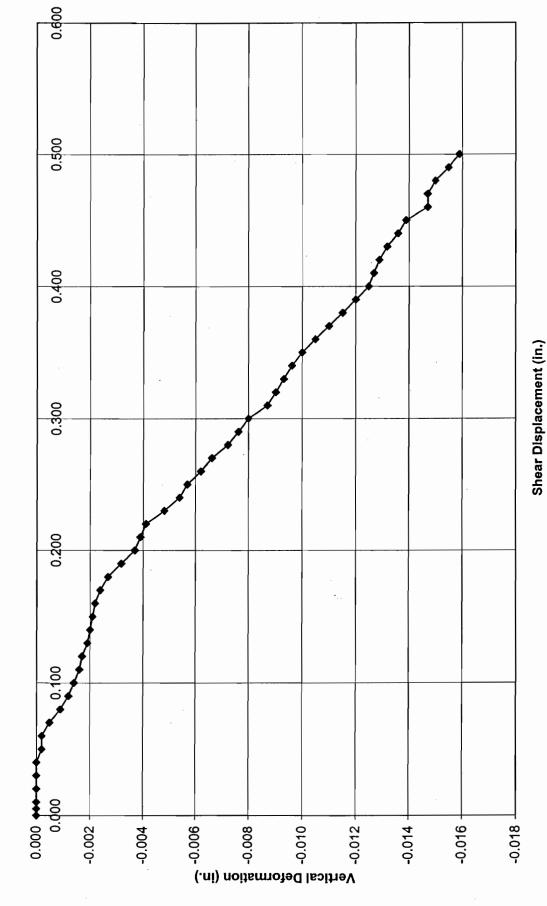
DIRECT SHEAR RESULTS (Residual - 4 Cycles)
Vasco Road, Project No. 001860
Boring B-3, Depth 47.0'
Friction Angle 7.9 deg., Cohesion 292 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Dk Gry Brn w/Olv Yel Claystone

CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Residual) Project: Vasco Rd. 1860 Project #: Boring: B-3 47.0' Depth: 1075 432 Values at 5% horizontal strain. 2356 633 4190 865 411 This point plots too far of the line of best fit. 2142

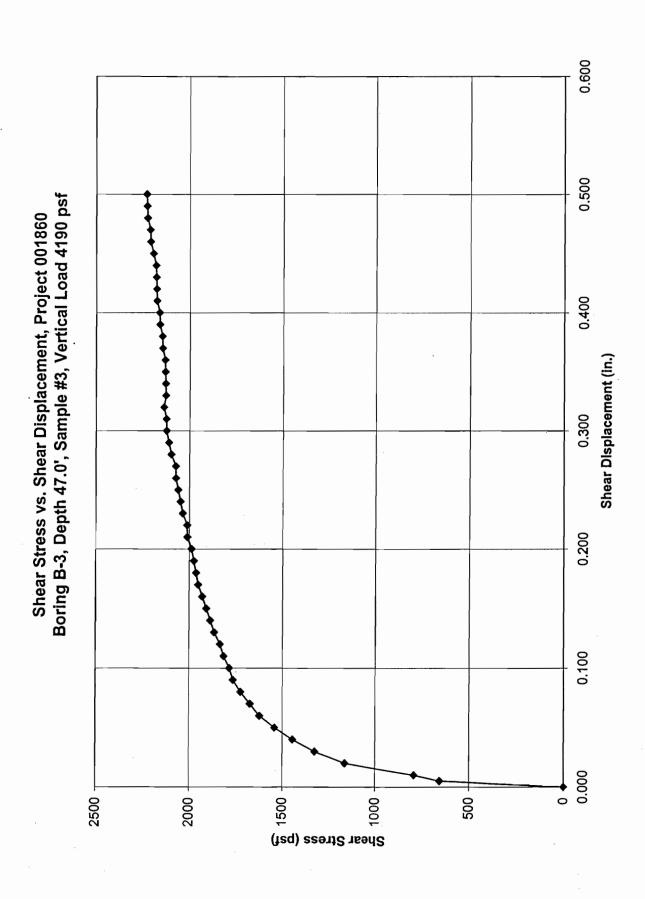
0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #1, Vertical Load 1075 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 • 200 1000 909 400 1200 800 Shear Stress (psf)

0.600 0.500 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 0.000 Vertical Deformation (in.) 0.002 0.014 0.012 0.010 0.004


Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #1, Vertical Load 1075 psf

					DATA	SHEET						
CLIENT:	Cal Engine		Geology						nstant = (
PROJECT:	Vasco Road	<u> </u>							<u>Diameter</u>		2.42	
PROJ.#:	001860		TEST DATE	E:	01/07/2001			_	ple Heig		1.20	
BORING:	B-3		DEPTH:		47.0'				. Dial Rea		0	-
SAMPLE #:	1			<u> </u>		<u> </u>	<u> </u>		Pressure		1075	
					Sample O							
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading .	fn(dia.)	Reading		Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	2494	2494	0	0.00	4.600	0.000	0	-	0.000	
2.42	5	0.2	2494	2494	60	18.94	4.588	0.005	594	0.005	0.000	0.3
2.42	10	0.4	2494	2494	76	23.99	4.575	0.010	755	0.010	0.000	0.5
2.42	20	0.8	2494	2494	86	27.14	4.551	0.020	859	0.020	0.000	1.1
2.42	30	1.2	2498	2494	89	28.09	4.527	0.030	893	0.030	0.000	1.6
2.42	40	1.7	2504	2494	91	28.72	4.503	0.040	918	0.040	0.001	2.1
2.42	50	2.1	2509	2494	94	29.67	4.479	0.050	954	0.050	0.002	2.6
2.42	60	2.5	2519	2494	95	29.98	4.454	0.060	969	0.060	0.003	3.2
2.42	70	2.9	2528	2494	95	29.98	4.430	0.070	975	0.070	0.003	3.7
2.42	80 90	3.3	2535	2494 2494	94	29.67 29.67	4.406 4.382	0.080	970 975	0.080	0.004	4.2 4.7
2.42	100	4.1	2537 2539	2494	92	29.07	4.358	0.100	959	0.090	0.004	5.3
2.42	110	4.1	2549	2494	92	29.04	4.333	0.100	965	0.100	0.003	5.8
	120	5.0		2494		28.72	4.333	0.110	960	0.110	0.006	6.3
2.42	130	5.4	2558 2565	2494	91 89	28.09	4.309	0.120	944	0.120	0.007	6.8
2.42	140	5.4	2566	2494	86	27.14	4.265	0.130	917	0.130	0.007	7.4
2.42	150	6.2	2571	2494	84	26.51	4.237	0.140	901	0.140	0.007	7.9
2.42	160	6.6	2576	2494	82	25.88	4.237	0.160	885	0.160	0.008	8.4
2.42	170	7.0	2579	2494	81	25.56	4.189	0.170	879	0.170	0.009	8.9
2.42	180	7.4	2589	2494	79	24.93	4.164	0.180	862	0.180	0.010	9.5
2.42	190	7.9	2596	2494	78	24.62	4.140	0.190	856	0.190	0.010	10.0
2.42	200	8.3	2599	2494	78	24.62	4.116	0.200	861	0.200	0.011	10.5
2.42	210	8.7	2604	2494	75	23.67	4.092	0.210	833	0.210	0.011	11.0
2.42	220	9.1	2606	2494	74	23.35	4.068	0.220	827	0.220	0.011	11.6
2.42	230	9.5	2607	2494	73	23.04	4.044	0.230	820	0.230	0.011	12.1
2.42	240	9.9	2607	2494	73	23.04	4.020	0.240	825	0.240	0.011	12.6
	250	10.3	2608	2494		22.72	3.996	0.250	819	0.250	0.011	
	260	10.7	2608	2494		22.41	3.972	0.260	812	0.260	0.011	13.7
	270	11.2	2609	2494	A 100 A 100 A	22.09	3.948	0.270	806	0.270	0.012	14.2
2.42	280	11.6	2609	2494	70	22.09	3.924	0.280	811	0.280	0.012	14.7
2.42	290	12.0	2607	2494	70	22.09	3.899	0.290	816	0.290	0.011	15.2
2.42	300	12.4	2607	2494	69	21.78	3.875	0.300	809	0.300	0.011	15.7
2.42	310	12.8	2606	2494	69	21.78	3.851	0.310	. 814	0.310	0.011	16.3
2.42	320	13.2	2602	2494	68	21.46	3.827	0.320	807	0.320	0.011	16.8
2.42		13.6	2601	2494	68	21.46	3.803	0.330	813	0.330	0.011	17.3
2.42	A 41 A 45 W. 1	14.0	2598	2494	68	21.46	3.780	0.340	818	0.340	0.010	17.8
2.42	350	14.5	2595	2494	68	21.46	3.756	0.350	823	0.350	0.010	18.4
2.42	360	14.9	2591	2494	71	22.41	3.732	0.360	865	0.360	0.010	18.9
2.42	370	15.3	2590	2494	% 1.71	22.41	3.708	0.370	870	0.370	0.010	19.4
2.42	380	15.7	2587	2494	69	21.78	3.684	0.380	851	0.380	0.009	19.9
2.42	390	16.1	2581	2494	69	21.78	3.660	0.390	857	0.390	0.009	20.4
2.42	400	16.5	2578	2494	68	21.46	3.636	0.400	850	0.400	0.008	20.9
		12.0										7.5

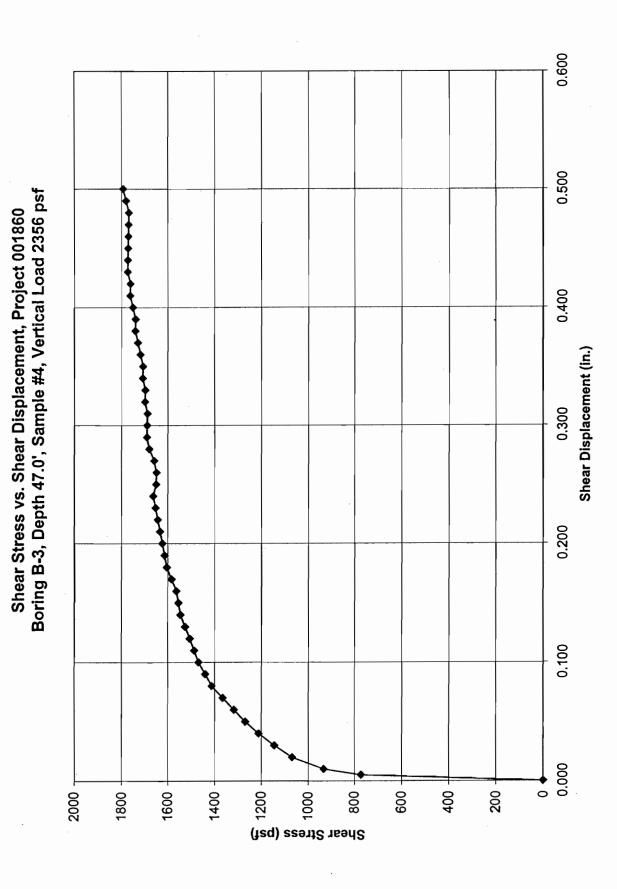
						<u> </u>						
Sample	Horiz, Dial	Strain	Vert. Dial	Orig. Vert.	Proving'	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	2575	2494	.68	21.46	3.612	0.410	856	0.410	0.008	21.5
2.42	420	17.4	2573	2494	68	21.46	3.588	0.420	861	0.420	0.008	22.0
2.42	430	17.8	2571	2494	.69	21.78	3.565	0.430	880	0.430	0.008	22.5
2.42	440	18.2	2569	2494	69	21.78	3.541	0.440	886	0.440	0.008	23.0
2.42	450	18.6	2566	2494	69	21.78	3.517	0.450	892	0.450	0.007	23.5
2.42	460	19.0	2562	2494	69	21.78	3.493	0.460	898	0.460	0.007	24.1
2.42	470	19.4	2558	2494	69	21.78	3.469	0.470	904	0.470	0.006	24.6
2.42	480	19.8	2555	2494	69	21.78	3.446	0.480	910	0.480	0.006	25.1
2.42	490	20.2	2550	2494	69	21.78	3.422	0.490	916	0.490	0.006	25.6
2.42	500	20.7	2548	2494	70	22.09	3.398	0.500	936	0.500	0.005	26.1


0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #2, Vertical Load 2142 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 Shear Stress (psf) 200 1800 1600 1400 1200 009 400

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #2, Vertical Load 2142 psf

				r –	DATA	SHEET						
	Cal Engine	ering and	Geology						nstant = (
PROJECT:	Vasco Road	<u> </u>	_					<u> </u>	Diameter	, ,	2.42	
	001860		TEST DATE	Ξ:	01/07/2001				ple Heig		1.20	
BORING:	B-3		DEPTH:		47.0'				. Dial Re		0	
SAMPLE #:	2						L		Pressure	** *	2142	
			or 2.42" L			nly. Refer						
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading		Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1590	1590	0	0.00	4.600	0.000	0	0.000	0.000	
2.42	- 5	0.2	1590	1590	80	25.25	4.588	0.005	793	0.005	0.000	0.3
2.42	10	0.4	1590	1590	104	32.82	4.575	0.010	1033	0.010		0.5
2.42	20	0.8	1590	1590	119	37.56	4.551	0.020	1188	0.020	0.000	1.1
2.42	30	1.2	1590	1590	130	41.03	4.527	0.030	1305	0.030	0.000	1.6
2.42	40	1.7	1590	1590	142	44.82	4.503	0.040	1433	0.040	0.000	2.1
2.42	50	2.1	1588	1590	148	46.71	4.479	0.050	1502	0.050	0.000	2.6
2.42	60	2.5	1588	1590		47.66	4.454	0.060	1541	0.060	0.000	3.2
2.42	70	2.9	1585	1590	152	47.97	4.430	0.070	1559	0.070	-0.001	3.7
2.42		3.3	1581	1590	154	48.60	4.406	0.080	1588	0.080	-0.001	4.2
2.42	90	3.7	1578	1590	153	48.29	4.382	0.090	1587	0.090	-0.001	4.7
2.42	100	4.1	1576	1590	152	47.97	4.358	0.100	1585	0.100	-0.001	5.3
2.42		4.5	1574	1590	151 £	47.66	4.333	0.110	1584	0.110	-0.002	5.8
2.42	120	5.0	1573	1590	149	47.02	4.309	0.120	1571	0.120	-0.002	6.3
2.42	130	5.4	1571	1590	147	46.39	4.285	0.130	1559	0.130	-0.002	6.8
2.42	140	5.8	1570	1590		46.08	4.261	0.140	1557	0.140	-0.002	7.4
2.42	150	6.2	1569	1590	144	45.45	4.237	0.150	1545	0.150	-0.002	7.9
2.42	160	6.6	1568	1590	.,142	44.82	4.213	0.160	1532	0.160	-0.002	8.4
2.42	170	7.0	1566	1590	.3.2.141	44.50	4.189	0.170	1530	0.170	-0.002	8.9
2.42	180	7.4	1563	1590	139	43.87	4.164	0.180	1517	0.180	-0.003	9.5
2.42	190	7.9	1558	1590	ź	43.55	4.140	0.190	1515	0.190	-0.003	10.0
2.42	,200	8.3	1553	1590	137	43.24	4.116	0.200	1513	0.200	-0.004	10.5
2.42	210	8.7	1551	1590	136	42.92	4.092	0.210	1510	0.210	-0.004	11.0
2.42	220	9.1	1549	1590	136	42.92	4.068	0.220	1519	0.220	-0.004	11.6
2.42	230	9.5	1542	1590	135	42.61	4.044	0.230	1517	0.230	-0.005	12.1
2.42	240	9.9	1536	1590	134	42.29	4.020	0.240	1515	0.240	-0.005	12.6
2.42	250	10.3	1533	1590	134	42.29	3.996	0.250	1524	0.250	-0.006	13.1
2.42	260	10.7	1528	1590	133	41.97	3.972	0.260	1522	0.260	-0.006	13.7
2.42	270	11.2	1524	1590	134	42.29	3.948	0.270	1543	0.270	-0.007	14.2
2.42	280	11.6	1518		132	41.66	3.924	0.280	1529	0.280	-0.007	14.7
2.42	290	12.0	1514	1590	131	41.34	3.899	0.290	1527	0.290	-0.008	15.2
2.42	300	12.4		1590	130	41.03	3.875	0.300	1524	0.300	-0.008	15.7
2.42	310	12.8	1503	1590	129	40.71	3.851	0.310	1522	0.310	-0.009	16.3
2.42	320	13.2	1500		129	40.71	3.827	0.320	1532	0.320	-0.009	16.8
2.42	330	13.6	1497	1590	afair and committee	40.40	3.803	0.330	1529	0.330	-0.009	17.3
2.42	340	14.0	1494	1590		40.40	3.780	0.340	1539	0.340	-0.010	17.8
2.42	1.12.3 1.180 455	14.5	1490	1590	128	40.40	3.756	0.350	1549	0.350	-0.010	18.4
2.42	360	14.9	1485	1590	127	40.08	3.732	0.360	1547	0.360	-0.011	18.9
2.42	370	15.3	1480	1590	126	39.77	3.708	0.370	1544	0.370	-0.011	19.4
2.42	380	15.7	1475	1590	125	39.45	3.684	0.380	1542	0.380	-0.012	19.9
2.42	390	16.1	1470	1590	125	39.45	3.660	0.390	1552	0.390	-0.012	20.4
2.42	400	16.5	1465	1590	123	38.82	3.636	0.400	1537	0.400	-0.013	20.9
2.72	100		1,700	,000	34 4. J. J. 36 120	00.02	0.000	300		300	3.010	_5.5

					D. 17. 1							
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001*	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1463	1590	122	38.50	3.612	0.410	1535	0.410	-0.013	21.5
2.42	420	17.4	1461	1590	121	38.19	3.588	0.420	1532	0.420	-0.013	22.0
2.42	430	17.8	1458	1590	120	37.87	3.565	0.430	1530	0.430	-0.013	22.5
2.42	440	18.2	1454	1590	119	37.56	3.541	0.440	1527	0.440	-0.014	23.0
2.42	450	18.6	1451	1590	118	37.24	3.517	0.450	1525	0.450	-0.014	23.5
2.42	460	19.0	1443	1590	117	36.93	3.493	0.460	1522	0.460	-0.015	24.1
2.42	470	19.4	1443	1590	116	36.61	3.469	0.470	1520	0.470	-0.015	24.6
2.42	480	19.8	1440	1590	115	36.29	3.446	0.480	1517	0.480	-0.015	25.1
2.42	490	20.2	1435	1590	115	36.29	3.422	0.490	1527	0.490	-0.016	25.6
2.42	500	20.7	1431	1590	114	35.98	3.398	0.500	1525	0.500	-0.016	26.1



0.600 0.500 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 Vertical Deformation (in.) -0.005 -0.020 -0.025

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #3, Vertical Load 4190 psf

CLIENT:	Cal Engine	ering and	Geology		DATA	SHEET		Ring Co	nstant = (3156 lb	 /div	
PROJECT:	Vasco Road		Coology						Diameter		2.42	<u> </u>
PROJ.#:	001860	-	TEST DATE	l =.	01/07/2001				ple Heig		1.20	
BORING:	B-3		DEPTH:	-· 	47.0'				. Dial Rea	<u> </u>	0	-
SAMPLE #:	3		DEF III.		41.0				Pressure		4190	
OAM EL #.	_	l Area t	for 2 42" F) Diameter S	Sample Or	olv Refer	to Deriva			., ,		
Sample	Horiz, Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.		Area
Diameter	Reading	fn(dia.)	Reading		Ring Read.	Ring Load		Deform.		Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1497	1497	0	0.00	4.600	0.000		-	· · ·	
2.42	5	0.2	1497	1497	66	20.83	4.588	0.005		0.005		0.3
2.42	10	0.4	1497	1497	80	25.25	4.575	0.010		0.010		0.5
2.42	20	0.8	1487	1497	117	36.93	4.551	0.020	_	0.020		1.1
2.42	30	1.2	1480	1497	132	41.66	4.527	0.030		0.030		1.6
2.42	40	1.7	1473	1497	143	45.13	4.503	0.040		0.040	-0.002	2.1
2.42	50	2.1	1462	1497	152	47.97	4.479	0.050		0.050	_	2.6
2.42	60	2.5	1453	1497	159	50.18	4.454	0.060		0.060		3.2
2.42	70	2.9	1443	1497	163	51.44	4.430	0.070		0.070		3.7
2.42	80	3.3	1432	1497		52.71	4.406	0.080		0.080	-0.007	4.2
2.42	90	3.7	1421	1497	170	53.65	4.382	0.090		0.090		4.7
2.42	100	4.1	1408	1497	/171	53.97	4.358	0.100	_	0.100		5.3
2.42	110	4.5	1399	1497	173	54.60	4.333	0.110		0.110		5.8
2.42	120	5.0	1388	1497	174	54.91	4.309	0.120		0.120		6.3
2.42	130	5.4	1380	1497	176	55.55	4.285	0.130	_	0.130		6.8
2.42	140	5.8	1370	1497	177	55.86	4.261	0.140	1888	0.140		7.4
2.42	150	6.2	1362	1497	178	56.18	4.237	0.150		0.150		7.9
2.42	160	6.6	1358	1497	179	56.49	4.213	0.160	 	0.160		8.4
2.42	170	7.0	1354	1497	180	56.81	4.189	0.170		0.170		8.9
2.42	180	7.4	1351	1497	180	56.81	4.164	0.180	1964	0.180		9.5
2.42	190	7.9	1350	1497	180	56.81	4.140	0.190	_	0.190	-0.015	10.0
2.42	200	8.3	1348	1497	180	56.81	4.116	0.200	1987	0.200		10.5
2.42	210	8.7	1346	1497	.181	57.12	4.092	0.210		0.210		11.0
2.42	220	9.1	1343	1497	180	56.81	4.068	0.220	2011	0.220		11.6
2.42	230	9.5	1340	1497	181	57.12	4.044	0.230		0.230	-0.016	12.1
2.42	240	9.9	1336	1497	181	57.12	4.020	0.240		0.240	-0.016	12.6
	250		1332		A commence of the late to	57.12				0.250		
2.42	260	10.7	1327	1497	J81	57.12		0.260		0.260		13.7
2.42	270	11.2	1323	1497	180	56.81	3.948	0.270		0.270		14.2
	280	11.6	1320	1497	180	57.12		0.280		0.280		14.7
2.42	290	12.0		1497	181	57.12		0.290		0.290		
2.42	300	12.4	1313	1497	,181	57.12		0.300		0.300		15.7
2.42	310	12.4	1310	1497	180	56.81	3.851	0.310		0.310		
2.42	320	13.2	1307	1497	180	56.81	3.827	0.320		0.320	-0.019	16.8
2.42	330	13.6	4004	1497	178	56.18	3.803	0.330		0.330		17.3
2.42	340	14.0	1301 1299	1497	177	55.86	3.780	0.340		0.340		17.8
2.42	350	14.5	1295	1497	176	55.55	3.756	0.350	_	0.350		18.4
2.42	360	14.5	1293	1497	4 175	55.23	3.732	0.360	2131	0.360	_	18.9
2.42	370	15.3	1293	1497	175	55.23	3.732	0.370		0.370	-	19.4
2.42	380	15.3	1292	1497	174	54.91	3.684	0.370		0.370		19.9
	390					54.91	3.660	0.390	2161	0.390		20.4
2.42		16.1	1290	1497								
2.42	400	16.5	1288	1497	173	54.60	3.636	0.400	2162	0.400	-0.021	20.9

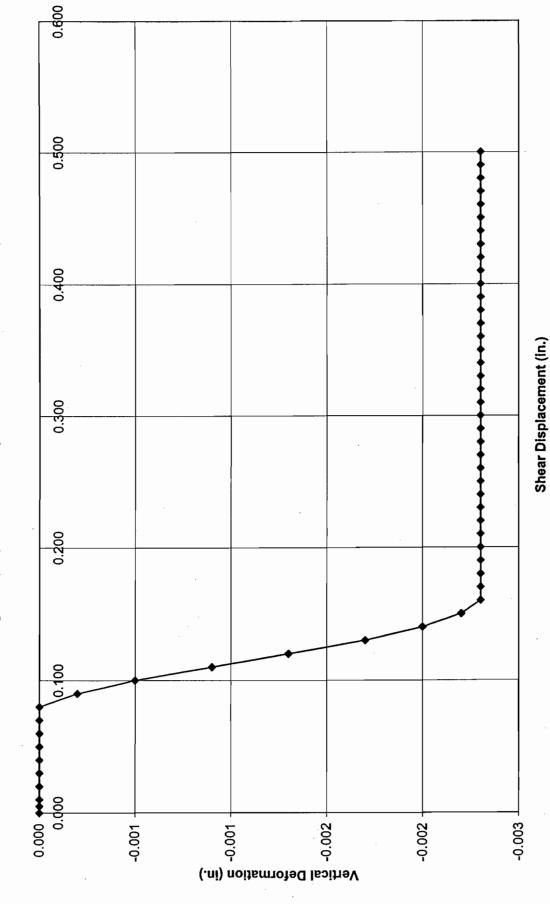
						+						
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001*	X 0.0001*	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1287	1497	173	54.60	3.612	0.410	2177	0.410	-0.021	21.5
2.42	420	17.4	1282	1497	172	54.28	3.588	0.420	2178	0.420	-0.022	22.0
2.42	430	17.8	1281	1497		53.97	3.565	0.430	2180	0.430	-0.022	22.5
2.42	440	18.2	1279	1497	170	53.65	3.541	0.440	2182	0.440	-0.022	23.0
2.42	450	18.6	1275	1497	170	53.65	3.517	0.450	2197	0.450	-0.022	23.5
2.42	460	19.0	1275	1497	170	53.65	3.493	0.460	2212	0.460	-0.022	24.1
2.42	470	19.4	1274	1497	169	53.34	3.469	0.470	2214	0.470	-0.022	24.6
2.42	480	19.8	1271	1497	169	53.34	3.446	0.480	2229	0.480	-0.023	25.1
2.42	490	20.2	1270	1497	168	53.02	3.422	0.490	2231	0.490	-0.023	25.6
2.42	500	20.7	1268	1497	167	52.71	3.398	0.500	2233	0.500	-0.023	26.1

0.600 0.500 0.400 0.300 0.200 0.100 0.000 Vertical Deformation (in.) -0.035 -0.005 -0.010 -0.025 -0.030

Shear Displacement (in.)

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #4, Vertical Load 2356 psf

					DATA	SHEET		I				11
CLIENT:	Cal Engine		Geology						nstant = (
PROJECT:	Vasco Road	<u> </u>						· · ·	Diameter	``	2.42	
PROJ.#:	001860		TEST DATE	<u>:</u>	01/07/2001				ple Heigl	_ `	1.20	
BORING:	B-3		DEPTH:		47.0'		ŀ		. Dial Rea		0	
SAMPLE #:	<u>4</u>	J A 4	0 40" F) ·]	D-6-			Pressure		2356	
					Sample O			_			T	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading		Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.) -	(%)
2.42	0	0.0	1697	1697	0	0.00	4.600	0.000	0			0.0
2.42	5	0.2	1695	1697	78	24.62	4.588	0.005	773	0.005		0.3
2.42	10	0.4	1689	1697	94	29.67	4.575	0.010	934	0.010		0.5
2.42	20	0.8	1682	1697	107	33.77	4.551	0.020	1068	0.020		1.1
2.42	30	1.2	1673	1697	.114	35.98	4.527	0.030	1144	0.030	-0.002	1.6
2.42	. 40	1.7	1665	1697	120	37.87	4.503	0.040	1211	0.040	-0.003	· 2.1
2.42	50	2.1	1657	1697	125	39.45	4.479	0.050	1268	0.050	-0.004	2.6
2.42	60	2.5	1649	1697	129	40.71	4.454	0.060	1316	0.060	-0.005	3.2
2.42	70	2.9	1637	1697	133	41.97	4.430	0.070	1364	0.070	-0.006	3.7
2.42	. 80	3.3	1628	1697	137	43.24	4.406	0.080	1413	0.080	-0.007	4.2
2.42	. 90	3.7	1617	1697	139	43.87	4.382	0.090	1442	0.090	-0.008	4.7
2.42	100	4.1	1606	1697	141	44.50	4.358	0.100	1470	0.100	-0.009	5.3
2.42	110	4.5	1598	1697	142	44.82	4.333	0.110	1489	0.110	-0.010	5.8
2.42	120	5.0	1590	1697	143	45.13	4.309	0.120	1508	0.120	-0.011	6.3
2.42	130	5.4	1584	1697	3144	45.45	4.285	0.130	1527	0.130	-0.011	6.8
2.42	140	5.8	1577	1697	145	45.76	4.261	0.140	1547	0.140	-0.012	7.4
2.42	150	6.2	1574	1697	* 145	45.76	4.237	0.150	1555	0.150	-0.012	7.9
2.42		6.6	1568	1697	145	45.76	4.213	0.160	1564	0.160	-0.013	8.4
2.42	170	7.0	1566	1697	146	46.08	4.189	0.170	1584	0.170	-0.013	8.9
2.42	180	7.4	1561	1697	147	46.39	4.164	0.180	1604	0.180	-0.014	9.5
2.42	190	7.9	1555	1697	147	46.39	4.140	0.190	1614	0.190	-0.014	10.0
2.42	200	8.3	1548	1697	147	46.39	4.116	0.200	1623	0.200	-0.015	10.5
2.42	210	8.7	.1540	1697	147	46.39	4.092	0.210	1633	0.210	-0.016	11.0
2.42	220	9.1	1535	1697	147	46.39	4.068	0.220	1642	0.220	-0.016	11.6
2.42	230	9.5	1530	1697	147	46.39	4.044	0.230	1652	0.230	-0.017	12.1
2.42	240	9.9	1522	1697	4. 7.4. 14.4.4.	46.39	4.020	0.240	1662	0.240	-0.018	12.6
2.42	250	10.3			145	45.76	3.996	0.250	1649	0.250	-0.018	13.1
2.42	260	10.7	1510	1697	144	45.45	3.972	0.260	1648	0.260	-0.019	13.7
2.42	270	11.2	1501	1697	144	45.45	3.948	0.270	1658	0.270	-0.020	14.2
2.42	280	11.6	1495	1697	145	45.76	3.924	0.280	1680	0.280	-0.020	14.7
2.42	290	12.0	1488	1697	145	45.76	3.899	0.290	1690	0.290	-0.021	15.2
2.42	300	12.4	1482	1697	144	45.45	3.875	0.300	1689	0.300	-0.022	15.7
2.42	310	12.8	1475	1697	143	45.13	3.851	0.310	1687	0.310	-0.022	16.3
2.42	320	13.2	1467	1697	143	45.13	3.827	0.320	1698	0.320	-0.023	16.8
2.42	330	13.6	1465	1697	142	44.82	3.803	0.330	1697	0.330	-0.023	17.3
2.42	. 340	14.0	1460	1697	142	44.82	3.780	0.340	1707	0.340	-0.024	17.8
2.42	350	14.5	1455	1697	141	44.50	3.756	0.350	1706	0.350	-0.024	18.4
2.42	360	14.9	1448	1697	141	44.50	3.732	0.360	1717	0.360	-0.025	18.9
2.42		15.3	1442	1697	141	44.50	3.708	0.370	1728	0.370	-0.026	19.4
2.42	380	15.7	1438	1697	141	44.50	3.684	0.380	1739	0.380	-0.026	19.9
2.42	390	16.1	1434	1697	140	44.18	3.660	0.390	1738	0.390	-0.026	20.4
2.42	400	16.5	1431	1697	140	44.18	3.636	0.400	1750	0.400	-0.027	20.9

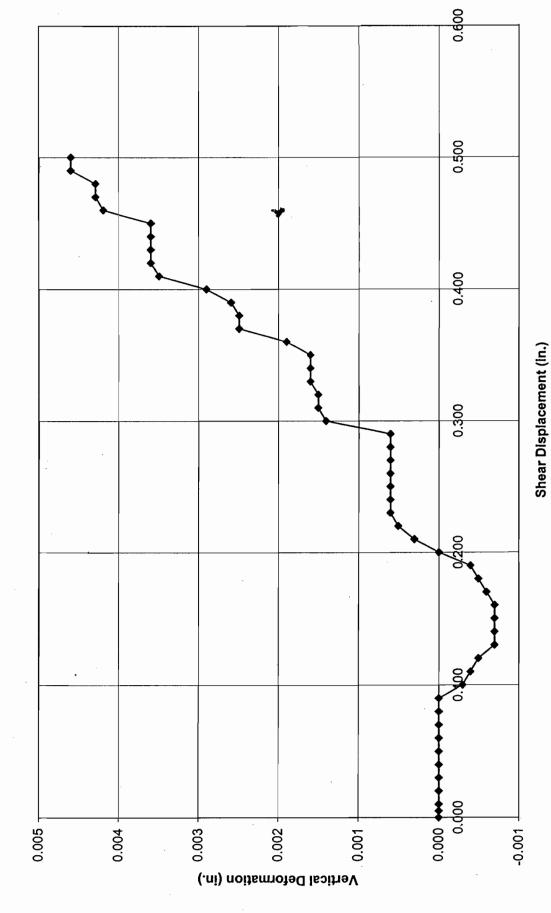

2:::// 0/1221												
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1425	1697	140	44.18	3.612	0.410	1761	0.410	-0.027	21.5
2.42	420	17.4	1422	1697	139	43.87	3.588	0.420	1760	0.420	-0.028	22.0
2.42	430	17.8	1415	1697	139	43.87	3.565	0.430	1772	0.430	-0.028	22.5
2.42	440	18.2	. 1411	1697	138	43.55	3.541	0.440	1771	0.440	-0.029	23.0
2.42	450	18.6	1407	1697	137	43.24	3.517	0.450	1770	0.450	-0.029	23.5
2.42	460	19.0	1403	1697	136	42.92	3.493	0.460	1769	0.460	-0.029	24.1
2.42	470	19.4	1397	1697	135	42.61	3.469	0.470	1768	0.470	-0.030	24.6
2.42	480	19.8	1394	1697	.134	42.29	3.446	0.480	1767	0.480	-0.030	25.1
2.42	490	20.2	1387	1697	134	42.29	3.422	0.490	1780	0.490	-0.031	25.6
2.42	500	20.7	1381	1697	134	42.29	3.398	0.500	1792	0.500	-0.032	26.1

	-			,	DATA	SHEET						
	Cal Engine		Geology					Ring Co				
PROJECT:	Vasco Road	1			Residual/4	th cycle		Sample	Sample Diameter (in.):			
PROJ. #:	001860		TEST DATE	Ξ:	01/07/2001			Init. San	nple Heig	ht (in.):	1.20	
BORING:	B-3		DEPTH:		47.0'			Init.Horz	. Dial Re	ading:	0	
SAMPLE #:	1								Pressure		1075	
	Corrected	d Area t	for 2.42" [Diameter S	Sample O	nly. Refer	to Deriva	tion for	Other I	Diamet	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1721	1721	0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1721	1721	.4	1.26	4.588	0.005	40	0.005	0.000	0.3
2.42	. 10	0.4	1721	1721	8	2.52	4.575	0.010	79	0.010	0.000	0.5
2.42	20	0.8	1721	1721	21	6.63	4.551	0.020	210	0.020	0.000	1.1
2.42	30	1.2	1721	1721	26	8.21	4.527	0.030	261	0.030	0.000	1.6
2.42	40	1.7	1721	1721	28	8.84	4.503	0.040	283	0.040	0.000	2.1
2.42		2.1	1721	1721	30	9.47	4.479	0.050	304	0.050	0.000	2.6
2.42	60	2.5	1721	1721	30	9.47	4.454	0.060	306	0.060	0.000	3.2
2.42	70	2.9	1721	1721	34	10.73	4.430	0.070	349	0.070	0.000	3.7
2.42	.80	3.3	1721	1721	36	11.36	4.406	0.080	371	0.080	0.000	4.2
2.42	90	3.7	1719	1721	37	11.68	4.382	0.090	384	0.090	0.000	4.7
2.42	100	4.1	1716	1721	39	12.31	4.358	0.100	407	0.100	-0.001	5.3
2.42	110	4.5	1712	1721	40	12.62	4.333	0.110	419	0.110	-0.001	5.8
2.42	120	5.0	1708	1721	41	12.94	4.309	0.120	432	0.120	-0.001	6.3
2.42	130	5.4	1704	1721	41	12.94	4.285	0.130	435	0.130	-0.002	6.8
2.42	140	5.8	1701	1721	.42	13.26	4.261	0.140	448	0.140	-0.002	7.4
2.42	150	6.2	1699	1721	- 42	13.26	4.237	0.150	451	0.150	-0.002	7.9
2.42	160	6.6	1698	1721	43	13.57	4.213	0.160	464	0.160	-0.002	8.4
2.42	170	7.0	1698	1721	43	13.57	4.189	0.170	467	0.170	-0.002	8.9
2.42	180	7.4	. 1698	1721	43	13.57	4.164	0.180	469	0.180	-0.002	9.5
2.42	190	7.9	1698	1721	43	13.57	4.140	0.190	472	0.190	-0.002	10.0
2.42	200	8.3	1698	1721	44	13.89	4.116	0.200	486	0.200	-0.002	10.5
2.42	210	8.7	1698	1721	45	14.20	4.092	0.210	500	0.210	-0.002	11.0
2.42	220	9.1	1698	1721	45	14.20	4.068	0.220	503	0.220	-0.002	11.6
2.42	230	9.5	1698	1721		14.20	4.044	0.230	506	0.230	-0.002	12.1
2.42	240	9.9	1698	1721	45	14.20	4.020	0.240	509	0.240	-0.002	12.6
2.42	250	10.3	1698	1721	45	14.20	3.996	0.250	512	0.250	-0.002	13.1
2.42	260	10.7	1698	1721	. 45	14.20	3.972	0.260	515	0.260	-0.002	13.7
2.42	270	11.2	1698	1721	46	14.52	3.948	0.270	530	0.270	-0.002	14.2
2.42	280	11.6	1698	1721	46	14.52	3.924	0.280	533	0.280	-0.002	14.7
2.42	290	12.0	1698	1721	47	14.83	3.899	0.290	548	0.290	-0.002	15.2
2.42	300	12.4	1698	1721	47	14.83	3.875	0.300	551	0.300	-0.002	15.7
2.42	310	12.8	1698	1721	47	14.83	3.851	0.310	555	0.310	-0.002	16.3
2.42	320	13.2	1698	1721	47	14.83	3.827	0.320	558	0.320	-0.002	16.8
2.42	330	13.6	1698	1721	47	14.83	3.803	0.330	562	0.330	-0.002	17.3
2.42	340	14.0	1698	1721	48	15.15	3.780	0.340	577	0.340	-0.002	17.8
2.42	350	14.5	1698	1721	48	15.15	3.756	0.350	581	0.350	-0.002	18.4
2.42	360	14.9	1698	1721	48	15.15	3.732	0.360	585	0.360	-0.002	18.9
2.42	370	15.3	1698	1721	* 49	15.46	3.708	0.370	601	0.370	-0.002	19.4
2.42	380	15.7	1698	1721	49	15.46	3.684	0.380	605	0.380	-0.002	19.9
2.42	390	16.1	1698	1721	√49	15.46	3.660	0.390	608	0.390	-0.002	20.4
2.42		16.5	1698	1721	50	15.78	3.636	0.400	625	0.400	-0.002	20.9
			.500			10.70	0.000	0.700	025	0.700	-0.00Z	20.9

Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1698	1721	50	15.78	3.612	0.410	629	0.410	-0.002	21.5
2.42	420	17.4	1698	1721	50	15.78	3.588	0.420	633	0.420	-0.002	22.0
2.42	430	17.8	1698	1721	50	15.78	3.565	0.430	637	0.430	-0.002	22.5
2.42	440	18.2	1698	1721	50	15.78	3.541	0.440	642	0.440	-0.002	23.0
2.42	450	18.6	1698	1721	50	15.78	3.517	0.450	646	0.450	-0.002	23.5
2.42	460	19.0	1698	1721	50	15.78	3.493	0.460	651	0.460	-0.002	24.1
2.42	470	19.4	1698	1721	50	15.78	3.469	0.470	655	0.470	-0.002	24.6
. 2.42	480	19.8	1698	1721	51	16.10	3.446	0.480	673	0.480	-0.002	25.1
2.42	490	20.2	1698	1721	52	16.41	3.422	0.490	691	0.490	-0.002	25.6
2.42	500	20.7	1698	1721	51	16.10	3.398	0.500	682	0.500	-0.002	26.1

0.600 Shear Stress vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #1, Vertical Load 1075 psf 0.500 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 Shear Stress (psf) 800 200 009 300 200 100

Vertical Deformation vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #1, Vertical Load 1075 psf

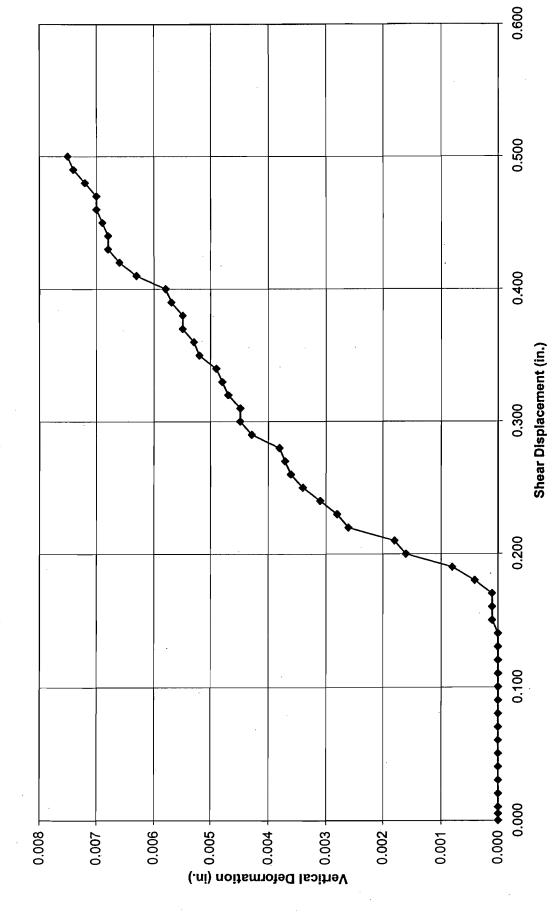


DATA SHEET												
CLIENT:	Cal Engineering and Geology Ring Constant = 0.3156 lb/div							/div				
PROJECT:	Vasco Road	t			Residual/4	th cycle		Sample	Diameter	(in.):	2.42	
PROJ. #:	001860		TEST DATE	:	01/07/2001			Init. San	ple Heig	ht (in.):	1.20	
BORING:	B-3		DEPTH:	_	47.0'			Init.Horz	. Dial Rea	ading:	0	
SAMPLE #:	2							Vertical	Pressure	(psf):	2142	
	Corrected	d Area f	for 2.42" [Diameter S	Sample O	nly. Refer	to Deriva	tion for	Other I	Diamete	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	603	603	.:0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	603	603	31	9.78	4.588	0.005	307	0.005	0.000	0.3
2.42	10	0.4	603	603	32	10.10	4.575	0.010	318	0.010	0.000	0.5
2.42	20	0.8	603	603	34	10.73	4.551	0.020	340	0.020	0.000	1.1
2.42	. 30	1.2	603	603	35	11.05	4.527	0.030	351	0.030	0.000	1.6
2.42	40	1.7	603	603	36	11.36	4.503	0.040	363	0.040	0.000	2.1
2.42	50	2.1	603	603	37	11.68	4.479	0.050	375	0.050	0.000	2.6
2.42	60	2.5	603	603	38	11.99	4.454	0.060	388	0.060	0.000	3.2
2.42	70	2.9	603	603	38	11.99	4.430	0.070	390	0.070	0.000	3.7
2.42	80	3.3	603	603	38	11.99	4.406	0.080	392	0.080	0.000	4.2
2.42	.90	3.7	603	603	∵ 39	12.31	4.382	0.090	404	0.090	0.000	4.7
2.42	100	4.1	600	603	∜39	12.31	4.358	0.100	407	0.100	0.000	5.3
2.42	110	4.5	599	603	39	12.31	4.333	0.110	409	0.110	0.000	5.8
2.42	120	5.0	598	603	39	12.31	4.309	0.120	411	0.120	-0.001	6.3
2.42	130	5.4	596	603	40	12.62	4.285	0.130	424	0.130	-0.001	6.8
2.42	140	5.8	596	603	40	12.62	4.261	0.140	427	0.140	-0.001	7.4
2.42	150	6.2	596	603	40	12.62	4.237	0.150	429	0.150	-0.001	7.9
2.42	160	6.6	1596	603		12.62	4.213	0.160	432	0.160	-0.001	8.4
2.42		7.0	≟	603	40	12.62	4.189	0.170	434	0.170	-0.001	8.9
2.42	180	7.4	598	603	41	12.94	4.164	0.180	447	0.180	-0.001	9.5
2.42	190	7.9	599	603	. 41	12.94	4.140	0.190	450	0.190	0.000	10.0
2.42	200	8.3	603	603	41	12.94	4.116	0.200	453	0.200	0.000	10.5
2.42	210	8.7	606	603	- 42	13.26	4.092	0.210	466	0.210	0.000	11.0
2.42	220	9.1	608	603	42	13.26	4.068	0.220	469	0.220	0.001	11.6
2.42	230	9.5	609	603	42	13.26	4.044	0.230	472	0.230	0.001	12.1
2.42	240	9.9	609	603	43	13.57	4.020	0.240	486	0.240	0.001	12.6
2.42	250	10.3	609	603	### #43	13.57	3.996	0.250	489	0.250	0.001	13.1
2.42	-260	10.7	609	603	44	13.89	3.972	0.260	-503	0.260	0.001	13.7
2.42	270	11.2	609	603	44	13.89	3.948	0.270	507	0.270	0.001	14.2
2.42	280	11.6	609	603	44	13.89	3.924	0.280	510	0.280	0.001	14.7
2.42	290	12.0	609	603	44	13.89	3.899	0.290	513	0.290	0.001	15.2
2.42	300	12.4	£617	603	44	13.89	3.875	0.300	516	0.300	0.001	15.7
2.42	310	12.8	618	603	45	14.20	3.851	0.310	531	0.310	0.002	16.3
2.42	320	13.2	618	603	45	14.20	3.827	0.320	534	0.320	0.002	16.8
2.42	330	13.6	619	603	45	14.20	3.803	0.330	538	0.330	0.002	17.3
2.42	340	14.0	619	603	45	14.20	3.780	0.340	541	0.340	0.002	17.8
2.42	350	14.5	619	603	45	14.20	3.756	0.350	545	0.350	0.002	18.4
2.42	360	14.9	622	603	. 45	14.20	3.732	0.360	548	0.360	0.002	18.9
2.42	370	15.3	628	603	45	14.20	3.708	0.370	552	0.370	0.003	19.4
2.42	380	15.7	628	603	46	14.52	3.684	0.380	567	0.380	0.003	19.9
2.42	390	16.1	629	603	46	14.52	3.660	0,390	571	0.390	0.003	20.4
2.42	400	16.5	632	603	46	14.52	3.636	0.400	575	0.400	0.003	20.9
	1											

Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	638	603	47	14.83	3.612	0.410	591	0.410	0.004	21.5
2.42	420	17.4	639	603	47	14.83	3.588	0.420	595	0.420	0.004	22.0
2.42	430	17.8	639	603	<i>≛</i> 47	14.83	3.565	0.430	599	0.430	0.004	22.5
2.42	440	18.2	639	603	47	14.83	3.541	0.440	603	0.440	0.004	23.0
2.42	450	18.6	639	603	48	15.15	3.517	0.450	620	0.450	0.004	23.5
2.42	460	19.0	645	603	49	15.46	3.493	0.460	637	0.460	0.004	24.1
2.42	470	19.4	646	603	48	15.15	3.469	0.470	629	0.470	0.004	24.6
2.42	480	19.8	646	603	49	15.46	3.446	0.480	646	0.480	0.004	25.1
2.42	490	20.2	649	603	50	15.78	3.422	0.490	664	0.490	0.005	25.6
2.42	500	20.7	649	603	50	15.78	3.398	0.500	669	0.500	0.005	26.1

0.600 Shear Stress vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #2, Vertical Load 2142 psf 0.500 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 Chear Stress (psf) 200 100 800 009 200 300

Vertical Deformation vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #2, Vertical Load 2142 psf

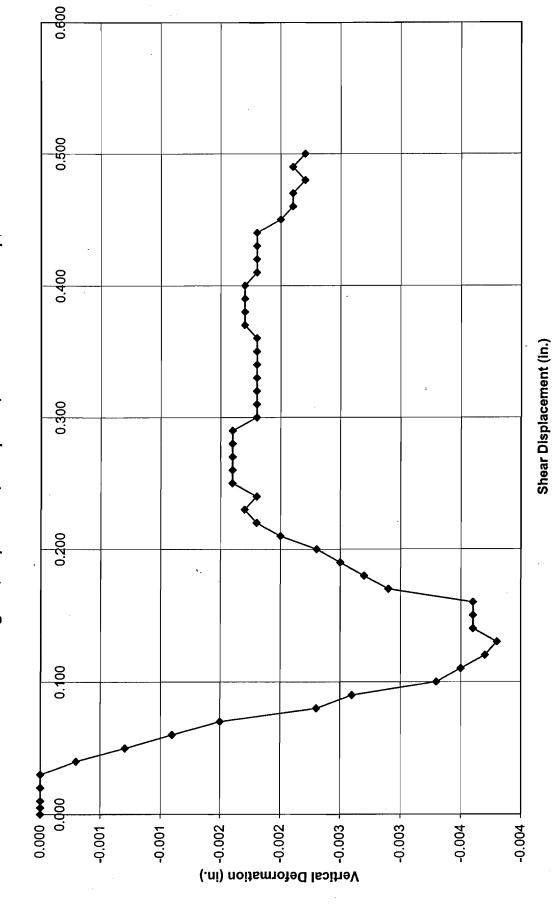


					DATA	SHEET						
CLIENT:	Cal Engine		Geology						nstant = (
PROJECT:	Vasco Road	d 	· ·		Residual/4	th cycle	ļ	<u> </u>	Diameter	` 	2.42	
PROJ.#:	001860		TEST DATE	E:	01/07/2001				ple Heig	- 	1.20	
BORING:	B-3		DEPTH:		47.0'				. Dial Rea		0	
SAMPLE #:	3		0.400.5						Pressure	** *	4190	
			or 2.42" [Diamete	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading		Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	. 0	0.0	701	701	. 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	701	701	44	13.89	4.588	0.005	436	0.005	0.000	0.3
2.42	10	0.4	. 701	701	53	16.73	4.575	0.010	526	0.010	0.000	0.5
2.42	20	0.8	701	701	.57	17.99	4.551	0.020	569	0.020	0.000	1.1
2.42	30	1.2	701	701	67	21.15	4.527	0.030	673	0.030	0.000	1.6
2.42	40	1.7	7.01	701	90	28.40	4.503	0.040	908	0.040	0.000	2.1
2.42	50	2.1	701	701	85	26.83	4.479	0.050	863	0.050	0.000	2.6
2.42	60	2.5	701	. 701	85	26.83	4.454	0.060	867	0.060	0.000	3.2
2.42	70	2.9	701	701		26.83	4.430	0.070	872	0.070	0.000	3.7
2.42	.80	3.3	701	701	₹ 283	26.19	4.406	0.080	856	0.080	0.000	4.2
2.42	.90	3.7	701	701		26.19	4.382	0.090	861	0.090	0.000	4.7
2.42	100	4.1	701	701	81	25.56	4.358	0.100	845	0.100	0.000	5.3
2.42	110	4.5	701	701	81	25.56	4.333	0.110	849	0.110	0.000	5.8
2.42	120	5.0	701	701		25.88	4.309	0.120	865	0.120	0.000	6.3
2.42	130	5.4	701	701	82	25.88	4.285	0.130	870	0.130	0.000	6.8
2.42	140	5.8	701	701	83	26.19	4.261	0.140	885	0.140	0.000	7.4
2.42	150	6.2	702	701	. 84	26.51	4.237	0.150	901	0.150	0.000	7.9
2.42	160	6.6	702	701	. ∜84	26.51	4.213	0.160	906	0.160	0.000	8.4
2.42	170	7.0	702	701	85	26.83	4.189	0.170	922	0.170	0.000	8.9
2.42	180	7.4	705	701	85	26.83	4.164	0.180	928	0.180	0.000	9.5
2.42	190	7.9	709	701	85	26.83	4.140	0.190	933	0.190	0.001	10.0
2.42	200	8.3	717	701	8 5	26.83	4.116	0.200	938	0.200	0.002	10.5
2.42	210	8.7	7.19	701		27.14	4.092	0.210	955	0.210	0.002	11.0
2.42	220	9.1	727	701		27.14	4.068	0.220	961	0.220	0.003	11.6
2.42	230	9.5	729	701		27.14	4.044	0.230	967	0.230	0.003	12.1
2.42	240	9.9	732	701	· 85	26.83	4.020	0.240	961	0.240	0.003	12.6
2.42	- 250	10.3	735	701	85	26.83	3.996	0.250	967	0.250	0.003	13.1
2.42	260	10.7	737	701		26.83	3.972	0.260	973	0.260	0.004	13.7
2.42	270	11.2	738	701	85	26.83	3.948	0.270	979	0.270	0.004	14.2
2.42	280	11.6	739	701	86	27.14	3.924	0.280	996	0.280	0.004	14.7
2.42	290	12.0	744	701	: 86	27.14	3.899	0.290	1002	0.290	0.004	15.2
2.42	300	12.4	746	701		27.14	3.875	0.300	1008	0.300	0.005	15.7
2.42	310	12.8	746	701		27.14	3.851	0.310	1015	0.310	0.005	16.3
2.42	320	13.2	748	701		27.46	3.827	0.320	1033	0.320	0.005	16.8
2.42	330	13.6	749	701	. 87	27.46	3.803	0.330	1040	0.330	0.005	17.3
2.42	340	14.0	750	701	. 88	27.77	3.780	0.340	1058	0.340	0.005	17.8
2.42	350	14.5	753	701	87	27.46	3.756	0.350	1053	0.350	0.005	18.4
2.42	360	14.9	754	701	88	27.77	3.732	0.360	1072	0.360	0.005	18.9
2.42	370	15.3	756	701	88	27.77	3.708	0.370	1079	0.370	0.006	19.4
2.42	380	15.7	756	701	89	28.09	3.684	0.380	1098	0.380	0.006	19.9
2.42	390	16.1	758	701	89	28.09	3.660	0.390	1105	0.390	0.006	20.4
2.42	400	16.5	759	701	90	28.40	3.636	0.400	1125	0.400	0.006	20.9
2.72		. 0.0				20.70	3.000	· ·	. 120	0.400	0.000	_0.0

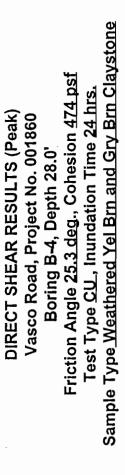
					D/ 11/1	<u> </u>						
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	764	701	90	28.40	3.612	0.410	1132	0.410	0.006	21.5
2.42	420	17.4	767	701	91	28.72	3.588	0.420	1153	0.420	0.007	22.0
2.42	430	17.8	769	701	92	29.04	3.565	0.430	1173	0.430	0.007	22.5
2.42	440	18.2	769	701	92	29.04	3.541	0.440	1181	0.440	0.007	23.0
2.42	450	18.6	770	701	92	29.04	3.517	0.450	1189	0.450	0.007	23.5
2.42	460	19.0	771	701	93	29.35	3.493	0.460	1210	0.460	0.007	24.1
2.42	470	19.4	771	701	93	29.35	3.469	0.470	1218	0.470	0.007	24.6
2.42	480	19.8	773	701	94	29.67	3.446	0.480	1240	0.480	0.007	25.1
2.42	490	20.2	775	701	95	29.98	3.422	0.490	1262	0.490	0.007	25.6
2.42	500	20.7	776	701	96	30.30	3.398	0.500	1284	0.500	0.008	26.1

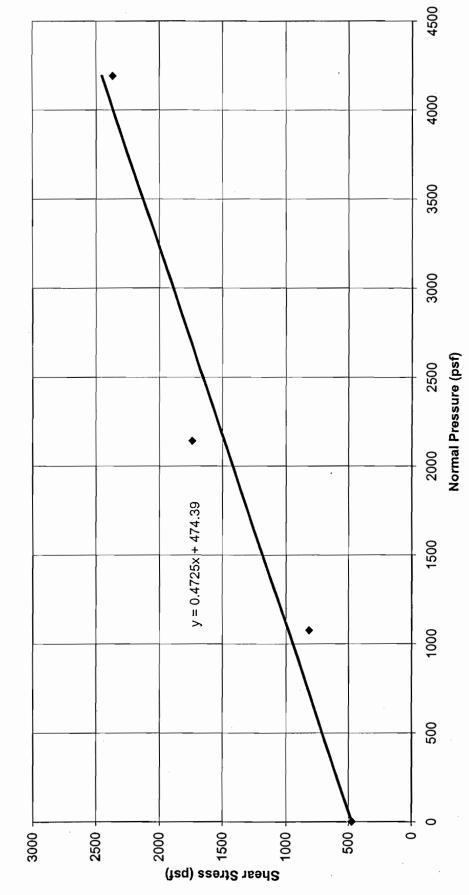
0.600 Shear Stress vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #3, Vertical Load 4190 psf 0.500 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 0 200 1400 1200 1000 800 009 400 Shear Stress (psf)

Vertical Deformation vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #3, Vertical Load 4190 psf



CLIENT:	Cal Engine	ndna e= 1	Godos		DATA	SHEET		Die - O		2450 "	lalia e	
	Cal Enginee Vasco Road		Сеоюду		Deeld 111	40. a.a.a.l.			nstant = (
				<u> </u>	Residual/4	th cycle			Diameter	- /	2.42	
PROJ. #:	001860		TEST DATI	=: 	01/07/2001	,			ple Heig	` _	1.20	
BORING:	B-3		DEPTH:		47.0'	_			. Dial Re		0	
SAMPLE #:	Corrector	l Area	for 2 42" F	liameter (l Sample Oi	oly Dofor	to Dorivo		Other I		2356	
Sample	Horiz. Dial	Strain		Orig. Vert.								A == =
Diameter	Reading	fn(dia.)	Vert. Dial Reading		Proving Ring Read.	Proving	Corr. Area	Horiz.	Shear Stress	Horiz.	Deform.	Area
(in.)	X 0.001*	(%)	X 0.0001".	X 0.0001"			2.42" only	Deform.		Deform.	Vert.	Reduct.
. 2.42	0.001	0.0		1385	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42		0.0	1385		0	0.00	4.600	0.000	0	0.000		0.0
2.42	10	0.2	1385	1385	35	11.05	4.588	0.005	347	0.005	0.000	0.3
2.42	20	0.4		1385	38	11.99	4.575	0.010	377	0.010	0.000	0.5
2.42	30	1.2	1385 1385	1385	39 40	12.31	4.551	0.020	389	0.020	0.000	1.1
2.42	40	1.7		1385		12.62	4.527	0.030	402	0.030	0.000	1.6
2.42	50	2.1	1382	1385	46	14.52	4.503	0.040	464	0.040	0.000	2.1
2.42	60	2.1	1378 1374	1385 1385	52 54	16.41 17.04	4.479 4.454	0.050	528 551	0.050	-0.001 -0.001	2.6 3.2
2.42	70	2.9	1374	1385	55	17.04	4.434	0.000	564	0.060	-0.001	3.2
2.42	80	3.3	1362	1385	57	17.99	4.406	0.070	588	0.080	-0.002	4.2
2.42	90	3.7	±1359	1385	57	17.99	4.382	0.090	591	0.080	-0.002	4.7
2.42	100	4.1	1352	1385		18.30	4.358	0.100	605	0.100	-0.003	5.3
2.42	110	4.5	1350	1385		18.62	4.333	0.110	619	0.110	-0.003	5.8
2.42	120	5.0	1348	1385	60	18.94	4.309	0.110	633	0.120	-0.004	6.3
2.42	130	5.4	1347	1385	60	18.94	4.285	0.120	636	0.130	-0.004	6.8
2.42	140	5.8	1349	1385	60	18.94	4.261	0.140	640	0.140	-0.004	7.4
2.42	150	6.2	1349	1385	60	18.94	4.237	0.150	644	0.150	-0.004	7.9
2.42	160	6.6	1349	1385	1_60	18.94	4.213	0.160	647	0.160	-0.004	8.4
2.42	170	7.0	1356	1385	61	19.25	4.189	0.170	662	0.170	-0.003	8.9
2.42	180	7.4	1358	1385	61	19.25	4.164	0.180	666	0.180	-0.003	9.5
2.42	190		1360	1385	62	19.57	4.140	0.190	681	0.190	-0.003	10.0
2.42	200	8.3	31362	1385	2 62	19.57	4.116	0.200	685	0.200	-0.002	10.5
2.42	210	8.7	4 1365	1385	63	19.88	4.092	0.210	700	0.210	-0.002	11.0
2.42	220	9.1	⊤⊬∄1367	1385	63	19.88	4.068	0.220	704	0.220	-0.002	11.6
2.42	230	9.5	1368	1385	63	19.88	4.044	0.230	708	0.230	-0.002	12.1
2.42	240	9.9	1367	1385	5.64	20.20	4.020	0.240	724	0.240	-0.002	12.6
2.42	250	10.3	1369	1385	The second second	20.20	3.996	0.250	728	0.250	-0.002	13.1
2.42	260	10.7	1369	1385	. 65	20.51	3.972	0.260	744	0.260	-0.002	13.7
2.42	270	11.2	1369		65	20.51	3.948	0.270	748	0.270	-0.002	14.2
		-	<u>.</u> 1369		65	20.51	3.924	0.280	753	0.280	-0.002	14.7
	290		1369		66	20.83	3.899	0.290	769	0.290	-0.002	15.2
	300		1367		66	20.83	3.875	0.300	774	0.300	-0.002	15.7
2.42	310	12.8	1367	1385	67	21.15	3.851	0.310	791	0.310	-0.002	16.3
2.42		13.2	1367	1385	68	21.46	3.827	0.320	807	0.320	-0.002	16.8
2.42	330	13.6	1367	1385	69	21.78	3.803	0.330	824	0.330	-0.002	17.3
2.42	340	14.0	1367	1385	68	21.46	3.780	0.340	818	0.340	-0.002	17.8
2.42	350	14.5	1367	1385	68	21.46	3.756	0.350	823	0.350	-0.002	18.4
2.42	360	14.9	1367	1385	69	21.78	3.732	0.360	840	0.360	-0.002	18.9
2.42	370	15.3	1368	1385	69	21.78	3.708	0.370	846	0.370	-0.002	19.4
2.42	380	15.7	1368	1385	69	21.78	3.684	0.380	851	0.380	-0.002	19.9
2.42	390	16.1	1368	1385	70	22.09	3.660	0.390	869	0.390	-0.002	20.4
2.42	400	16.5	1368	1385	70	22.09	3.636	0.400	875	0.400	-0.002	20.9
2.72		, 0.0	1,000	1303	7.0	22.03	0.000	0.400	5/3	0.400	-0.002	20.9

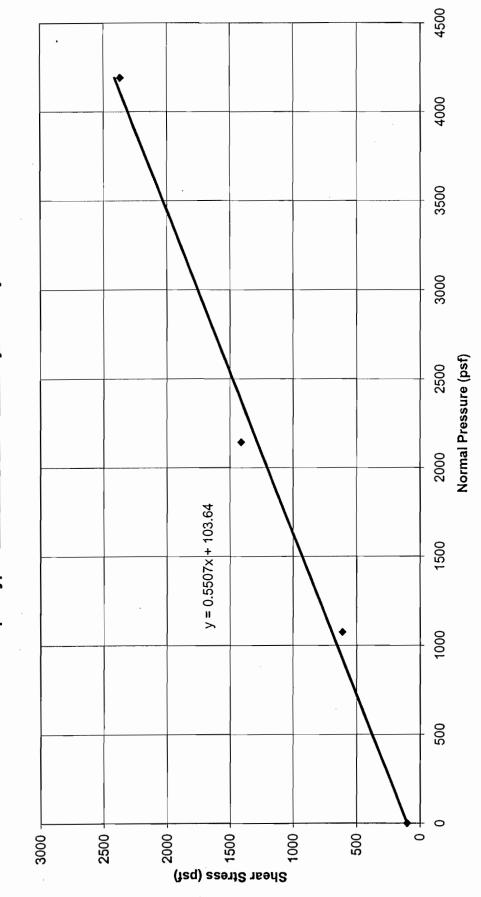

					שאוא	OHLLI						
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001*	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1367	1385	70	22.09	3.612	0.410	881	0.410	-0.002	21.5
2.42	420	17.4	1367	1385	70	22.09	3.588	0.420	887	0.420	-0.002	22.0
2.42	430	17.8	1367	1385	71	22.41	3.565	0.430	905	0.430	-0.002	22.5
2.42	440	18.2	1367	1385	71	22.41	3.541	0.440	911	0.440	-0.002	23.0
2.42	450	18.6	1365	1385	71	22.41	3.517	0.450	917	0.450	-0.002	23.5
2.42	460	19.0	1364	1385	72	22.72	3.493	0.460	937	0.460	-0.002	24.1
2.42	470	19.4	1364	1385	72	22.72	3.469	0.470	943	0.470	-0.002	24.6
2.42	480	19.8	1363	1385	.72	22.72	3.446	0.480	950	0.480	-0.002	25.1
2.42	490	20.2	1364	1385	73	23.04	3.422	0.490	969	0.490	-0.002	25.6
2.42	500	20.7	1363	1385	73	23.04	3.398	0.500	976	0.500	-0.002	26.1


0.600 0.500 Shear Stress vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #4, Vertical Load 2356 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 200 1200 1000 800 009 400 Shear Stress (psf)

Vertical Deformation vs. Residual Shear Displacement, Project 001860 Boring B-3, Depth 47.0', Sample #4, Vertical Load 2356 psf

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

CLIENT: CAL Engineering and Geology


Direct Shear Envelope Plot (Peak) Project: Vasco Rd.
Project #: 1860

Boring: B-4 Depth: 28

0 474.39
1075 815
2142 1741
4190 2367

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

DIRECT SHEAR RESULTS (Ultimate)
Vasco Road, Project No. 001860
Boring B-4, Depth 28.0'
Friction Angle 28.8 deg., Cohesion 104 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Yel Brn and Gry Brn Claystone

CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Ultimate) Project: Vasco Rd.
Project #: 1860
Boring: B-4 Depth: 28

0 103.64
1075 611
2142 1412
4190 2367

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 28.0', Sample #3, Vertical Load 1075 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 0 900 800 200 100 902 - 009 Shear Stress (psf) 300

0.600 0.500 0.400 0.200 0.100 0.000 Vertical Deformation (in.) 0.000 0.002 -0.008 -0.010 -0.012 0.006 -0.006 0.004

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 28.0', Sample #3, Vertical Load 1075 psf

· Shear Displacement (in.)

CLIENT:	Cal Engine	ering and	Geology		DATA	SHEET		Ring Co	nstant = (3156 lb	/div	
PROJECT:	Vasco Road		Cology						Diameter	_	2.42	
PROJ.#:	001860		TEST DATE	:·	01/11/2001				ple Heig		1.20	
BORING:	B-4		DEPTH:		28.0				. Dial Rea	· · ·	1.20	
SAMPLE #:	3		DEI III.		20.0				Pressure		1075	
SAIVII LL #.	-	d Area t	for 2.42" [Diameter S	Sample O	nlv. Refe	to Deriva					
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.		Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1910	1910	. 0	0.00	4.600	0.000			0.000	-
2.42	5	0.2	1919	1910	30	9.47	4.588	0.005		0.005	0.001	0.3
2.42	10	0.4	1920	1910	· 31	9.78	4.575	0.010	308	0.010		0.5
2.42	20	0.8	1923	1910	35	11.05	4.551	0.020	349	0.020	0.001	1.1
2.42	30	1.2	1924	1910	39	12.31	4.527	0.030	392	0.030	0.001	1.6
2.42	40	1.7	1924	1910	67	21.15	4.503	0.040	676	0.040	0.001	2.1
2.42	50	2.1	1921	1910	75	23.67	4.479	0.050	761	0.050	0.001	2.6
2.42	60	2.5	1921	1910	78	24.62	4.454	0.060	796	0.060	0.001	3.2
2.42	70	2.9	1921	1910	79	24.93	4.430	0.070	810	0.070	0.001	3.7
2.42	80	3.3	1923	1910	79	24.93	4.406	0.080	815	0.080	0.001	4.2
2.42	90	3.7	1928	1910	No. 1 Cont	24.62	4.382	0.090	809	0.090	0.002	4.7
2.42	100	4.1	1929	1910	77	24.30	4.358	0.100	803	0.100	0.002	5.3
2.42	110	4.5	1935	1910	75	23.67	4.333	0.110	787	0.110	0.002	5.8
2.42	120	5.0	1939	1910	72	22.72	4.309	0.120	759	0.110	0.003	6.3
2.42	130	5.4	1942	1910	70	22.09	4.285	0.130	742	0.120	0.003	6.8
2.42	140	5.8	1946	1910	67	21.15	4.261	0.130	715	0.130	0.003	7.4
2.42	150	6.2	1949	1910	64	20.20	4.237	0.150	686	0.150	0.004	7.9
2.42	160	6.6	1949	1910	62	19.57	4.213	0.160	669	0.160	0.004	8.4
2.42	170	7.0	1949	1910	60	18.94	4.189	0.170	651	0.170	0.004	8.9
2.42	180	7.4	1952	1910	58	18.30	4.164	0.180	633	0.180	0.004	9.5
	190	7.9	1953	1910	57	17.99	4.140	0.190	626	0.190	0.004	10.0
2.42	200	8.3	1953	1910	56	17.67	4.116	0.200	618	0.200	0.004	10.5
2.42	210	8.7	1953	1910	55	17.36	4.092	0.210	611	0.210	0.004	11.0
2.42	220	9.1	1953	1910	55	17.36	4.068	0.220	614	0.210	0.004	11.6
	230	9.5	1953	1910	54	17.04	4.044	0.230	607	0.230	0.004	
2.42	240	9.9	1948	1910	54	17.04	4.020	0.240	611	0.230	0.004	12.1 12.6
2.42	3. 77 11 11	10.3	1942	1910		17.04	3.996	0.250	614	0.250		
2.42	260	10.3	1936	1910	. 54	17.04	3.972	0.250	618	0.260	0.003	13.1
2.42	270	11.2	1930	1910	53	16.73	3.948	0.200	610	0.270		
2.42		11.6	1932	1910	53	16.73	3.924	0.270	614	0.270	0.002	14.2
2.42		12.0	1920	1910	53	16.73	3.899	0.290	618	0.290	0.002	14.7 15.2
2.42	.,	12.4	1920	1910	53	16.73	3.875	0.290	622	0.290	0.001	
2.42	11-1-1-1	12.8	1905	1910	52	16.73	3.851	0.300	614			15.7
2.42		13.2	1899	1910	52	16.41	3.827	0.310	617	0.310	-0.001	16.3
2.42		13.6	1891	1910	52	16.41	3.827	0.320			-0.001	16.8
2.42	340	14.0	1884	1910	51	16.10	3.780	0.330	621 613	0.330	-0.002 -0.003	17.3
2.42	350	14.5	1880	1910	51	16.10	3.756	0.340	617			17.8
2.42	360	14.9	1874	1910	51	16.10				0.350	-0.003	18.4
2.42	370	15.3	1866	1910	50	15.78	3.732	0.360	621	0.360	-0.004	18.9
2.42	370	15.3		1910	50	15.78	3.708	0.370	613	0.370	-0.004	19.4
			1861				3.684	0.380	617	0.380	-0.005	19.9
2.42		16.1	1856	1910	50 50	15.78	3.660		621	0.390	-0.005	20.4
2.42	400	16.5	1852	1910	50	15.78	3.636	0.400	625	0.400	-0.006	20.9

Sample	Horiz, Dial	Strain	Vert. Dial,	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001,"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1846	1910	50	15.78	3.612	0.410	629	0.410	-0.006	21.5
2.42	420	17.4	1843	1910	50	15.78	3.588	0.420	633	0.420	-0.007	22.0
2.42	430	17.8	1839	1910	50	15.78	3.565	0.430	637	0.430	-0.007	22.5
2.42	440	18.2	1835	1910	50	15.78	3.541	0.440	642	0.440	-0.008	23.0
2.42	450	18.6	1831	1910	50	15.78	3.517	0.450	646	0.450	-0.008	23.5
2.42	460	19.0	1822	1910	49	15.46	3.493	0.460	637	0.460	-0.009	24.1
2.42	470	19.4	1816	1910	49	15.46	3.469	0.470	642	0.470	-0.009	24.6
2.42	480	19.8	1808	1910	49	15.46	3.446	0.480	646	0.480	-0.010	25.1
2.42	490	20.2	1803	1910	49	15.46	3.422	0.490	651	0.490	-0.011	25.6
2.42	war a day of the first of the	20.7	1798	1910		15.46	3.398	0.500	655	0.500	-0.011	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 28.0', Sample #2, Vertical Load 2142 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 **+** 1600 200 Shear Stress (psf)
800 1800 -1400 009 400 2000

0.600 0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 28.0', Sample #2, Vertical Load 2142 psf 0.400 0.300 0.100 0.000 0.0 -0.002 0.006 -0.004 0.012 0.010 0.008 0.004 0.002 Vertical Deformation (in.)

Shear Displacement (in.)

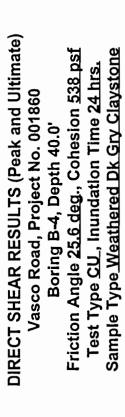
					DATA	SHEET_						
CLIENT:	Cal Enginee	ering and	Geology					Ring Co	nstant = (0.3156 lb	/div	
PROJECT:	Vasco Road	i							Diameter	<u>-: </u>	2.42	
PROJ. #:	001860	3	TEST DATE	<u>:</u>	01/09/2001			_	ple Heig	_ -	1.20	
BORING:	B-4		DEPTH:		28.0			Init.Horz	. Dial Rea	ading:	0	
SAMPLE #:	2								Pressure		2142	
	Corrected	l Area	for 2.42" [Diameter S	Sample O	nly. Refe	r to Deriva	ition for	Other	Diamet	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1943	1943	. 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1937	1943	73	23.04	4.588	0.005	723	0.005	-0.001	0.3
2.42	10	0.4	1933	1943	90	28.40	4.575	0.010	894	0.010	-0.001	0.5
2.42	20	0.8	1928	1943	112	35.35	4.551	0.020	1118	0.020	-0.002	1.1
2.42	30	1.2	1928	1943	129	40.71	4.527	0.030	1295	0.030	-0.002	1.6
2.42	40	1.7	1929	1943	141	44.50	4.503	0.040	1423	0.040	-0.001	2.1
2.42	50	2.1	1933	1943	150	47.34	4.479	0.050	1522	0.050	-0.001	2.6
2.42	60	2.5	1937	1943	157	49.55	4.454	0.060	1602	0.060		3.2
2.42	70	2.9	1944	1943	162	51.13	4.430	0.070	1662	0.070		3.7
2.42	80	3.3	1949	1943	165	52.07	4.406	0.080	1702	0.080	0.001	4.2
2.42	90	3.7	1952	1943	166	52.39	4.382	0.090	1722	0.090	0.001	4.7
2.42	100	4.1	1960	1943	166	52.39	4.358	0.100	1731	0.100	0.002	5.3
2.42	110	4.5	1969	1943	166	52.39	4.333	0.110	1741	0.110	0.003	5.8
2.42	120	5.0	1979	1943	165	52.07	4.309	0.120	1740	0.120	0.004	6.3
2.42	130	5.4	1989	1943	163	51.44	4.285	0.130	1729	0.130	0.005	6.8
2.42	140	5.8	1999	1943	161	50.81	4.261	0.140	1717	0.140	0.006	7.4
2.42	150	6.2	2009	1943	157	49.55	4.237	0.150	1684	0.150		7.9
2.42	160	6.6	2009	1943	153	48.29	4.213	0.160	1651	0.160	0.007	8.4
	170	7.0	2010	1943	151	47.66	4.189	0.170	1638	0.100	0.007	8.9
2.42	180	7.4	2020	1943	148	46.71	4.164	0.170	1615	0.180	0.009	9.5
2.42	190	7.9	2029	1943	146	46.08	4.140	0.190	1603	0.100	0.009	10.0
2.42	200	8.3	2037	1943	144	45.45	4.116	0.200	1590	0.200	0.010	10.5
	210	8.7	2039	1943	141	44.50	4.092	0.210	1566	0.210	0.010	11.0
2.42	210	9.1	2045	1943	140	44.30	4.092	0.210	1564	0.210	0.010	11.6
2.42	7				4							
2.42	230	9.5	2047	1943	137	43.24	4.044	0.230	1540	0.230	0.010	12.1
2.42	240	9.9	2049	1943	134	42.29	4.020	0.240	1515	0.240	0.011	12.6
2.42		10.3		1943		41.66						13.1
2.42		10.7	2049	1943	131	41.34	3.972	0.260	1499	0.260	0.011	13.7
2.42	270	11.2	2050	1943	129	40.71	3.948	0.270	1485	0.270		14.2
2.42	280	11.6		1943	128	40.40	3.924	0.280	1483	0.280	0.011	14.7
2,42	290	12.0	2050	1943	126	39.77	3.899	0.290	1468	0.290	0.011	15.2
2.42		12.4		1943	125	39.45	3.875	0.300	1466	0.300	0.011	15.7
2.42		12.8		1943	124	39.13	3.851	0.310	1463	0.310	0.011	16.3
2.42	320	13.2	2049	1943	122	38.50	3.827	0.320	1449	0.320	0.011	16.8
2.42	330	13.6	2047	1943	121	38.19	3.803	0.330	1446	0.330	0.010	17.3
2.42	340	14.0	2042	1943	120	37.87	3.780	0.340	1443	0.340	0.010	17.8
2.42	350	14.5	2041	1943	. 118	37.24	3.756	0.350	1428	0.350	0.010	18.4
2.42	360	14.9	2040	1943	; 117	36.93	3.732	0.360	1425	0.360	0.010	18.9
2.42	370	15.3		1943	116	36.61	3.708	0.370	1422	0.370	0.010	19.4
2.42	380	15.7	2039	1943		36.29	3.684	0.380	1419	0.380	0.010	19.9
2.42	390	16.1	2037	1943	114	35.98	3.660	0.390	1416	0.390	0.009	20.4
2.42	400	16.5	2033	1943	113	35.66	3.636	0.400	1412	0.400	0.009	20.9

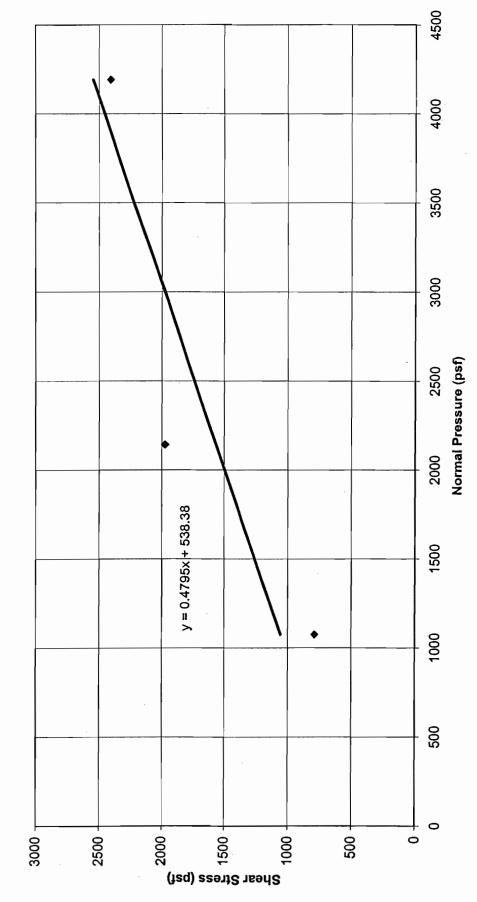
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X.0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	2029	1943	112	35.35	3.612	0.410	1409	0.410	0.009	21.5
2.42	420	17.4	2027	1943	113	35.66	3.588	0.420	1431	0.420	0.008	22.0
2.42	430	17.8	2021	1943	113	35.66	3.565	0.430	1441	0.430	0.008	22.5
2.42	440	18.2	2017	1943	112	35.35	3.541	0.440	1438	0.440	0.007	23.0
2.42	450	18.6	2013	1943	112	35.35	3.517	0.450	1447	0.450	0.007	23.5
2.42	460	19.0	2010	1943	111	35.03	3,493	0.460	1444	0.460	0.007	24.1
2.42	470	19.4	2005	1943	112	35.35	3.469	0.470	1467	0.470	0.006	24.6
2.42	480	19.8	147	1943	112	35.35	3.446	0.480	1477	0.480	0.006	25.1
2.42	. 490	20.2	1998	1943	112	35.35	3.422	0.490	1487	0.490	0.006	25.6
2.42	500	20.7	1994	1943	113	35.66	3.398	0.500	1511	0.500	0.005	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 28.0', Sample #1, Vertical Load 4190 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 2000 500 Shear Stress (psf) 2500

0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 28.0', Sample #1, Vertical Load 4190 psf 0.400 0.300 0.200 0.000 Vertical Deformation (in.) -0.005 -0.020 -0.025

0.600


Shear Displacement (in.)


-0.030

					DATA	SHEET						
CLIENT:	Cal Engineering and Geology Ring Constant = 0.3156 lb/d							/div				
PROJECT:	Vasco Road	1						Sample	Diameter	(in.):	2.42	
PROJ.#:	001860		TEST DATE	: :	01/07/2001			Init. Sam	ple Heig	ht (in.):	1.20	
BORING:	B-4		DEPTH:	,	28.0			Init.Horz	. Dial Re	ading:	0	
SAMPLE #:	1								Pressure		4190	
	Corrected	Area t	for 2.42" [Diameter S	Sample O	nly. Refe	to Deriva	ition for	Other	Diamet	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading.	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1270	1270		0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1259	1270	87	27.46	4.588	0.005	862	0.005	-0.001	0.3
2.42	10	0.4	1255	1270	100	31.56	4.575	0.010	993	0.010	-0.002	0.5
2.42	20	0.8	1243	1270	113	35.66	4.551	0.020	1128	0.020	-0.003	1.1
2.42	30	1.2	1229	1270	122	38.50	4.527	0.030	1225	0.030	-0.004	1.6
2.42	40	1.7	1215	1270	127	40.08	4.503	0.040	1282	0.040	-0.006	2.1
2.42	50	2.1	1202	1270	131	41.34	4.479	0.050	1329	0.050	-0.007	2.6
2.42	60	2.5	1187	1270	137	43.24	4.454	0.060	1398	0.060	-0.008	3.2
2.42	į 70	2.9	1176	1270	141	44.50	4.430	0.070	1446	0.070	-0.009	3.7
2.42	46 4 . 3 CN	3.3	1166	1270	144	45.45	4.406	0.080	1485	0.080	-0.010	4.2
2.42	90	3.7	1154	1270	147	46.39	4.382	0.090	1525	0.090	-0.012	4.7
2.42	100	4.1	1139	1270	149	47.02	4.358	0.100	1554	0.100	-0.013	5.3
2.42	. 110	4.5	1131	1270	152	47.97	4.333	0.110	1594	0.110	-0.014	5.8
2.42	120	5.0	1123	1270	153	48.29	4.309	0.120	1614	0.120	-0.015	6.3
2.42	130	5.4	1117	1270	156	49.23	4.285	0.130	1654	0.130	-0.015	6.8
2.42	140	5.8	1111	1270	158	49.86	4.261	0.140	1685	0.140	-0.016	7.4
2.42	150	6.2	1107	1270	160	50.50	4.237	0.150	1716	0.150	-0.016	7.9
2.42	160	6.6	1103	1270	. 162	51.13	4.213	0.160	1748	0.160	-0.017	8.4
2.42	170	7.0	1100	1270	164	51.76	4.189	0.170	1779	0.170	-0.017	8.9
2.42	180	7.4	1094	1270	166	52.39	4.164	0.180	1812	0.180	-0.018	9.5
2.42	190	7.9	1089	1270	169	53.34	4.140	0.190	1855	0.190	-0.018	10.0
2.42	200	8.3	1083	1270	171	53.97	4.116	0.200	1888	0.200	-0.019	10.5
2.42	210	8.7	1077	1270	172	54.28	4.092	0.210	1910	0.210	-0.019	11.0
2.42	220	9.1	1073	1270	∌173	54.60	4.068	0.220	1933	0.220	-0.020	11.6
2.42	230	9.5	1069	1270	175	55.23	4.044	0.230	1967	0.230	-0.020	12.1
2.42	240	9.9	1065	1270	175	55.23	4.020	0.240	1979	0.240	-0.021	12.6
2.42		10.3		1270		55.55	3.996			0.250		13.1
2.42		10.7	1056	1270		55.86	3.972	0.260	2025	0.260	-0.021	13.7
2.42	270	11.2	1053	1270		56.18	3.948	0.270	2049	0.270	-0.022	14.2
2.42		11.6	1049	1270		56.49	3.924	0.280	2073	0.280	-0.022	14.7
	290	12.0		1270		56.81	3.899	0.290	2098	0.290	-0.023	15.2
2.42		12.4	1041	1270		57.12	3.875	0.300	2123	0.300	-0.023	15.7
2.42		12.8	1039	1270		57.12	3.851	0.310	2136	0.310	-0.023	16.3
2.42	320	13.2	1036	1270	182	57.44	3.827	0.320	2161	0.320	-0.023	16.8
2.42	330	13.6	1032	1270	182	57.44	3.803	0.330	2175	0.330	-0.024	17.3
2.42	340	14.0	1031	1270	182	57.44	3.780	0.340	2188	0.340	-0.024	17.8
2.42	350	14.5	1031	1270	182	57.44	3.756	0.350	2202	0.350	-0.024	18.4
2.42	360	14.9	1029	1270		57.44	3.732	0.360	2217	0.360	-0.024	18.9
2.42		15.3	1027	1270	_	57.44	3.708	0.370	2231	0.370	-0.024	19.4
2.42		15.7	1024	1270		57.44	3.684	0.380	2245	0.380	-0.025	19.9
-	390	16.1	1021		182	57.44	3.660	0.390	2260	0.390	-0.025	20.4
	400	16.5		1270		57.44	3.636	0.400	2275	0.400	-0.025	20.9
	8. Jan 18. 19. 34.00	, 0.0			10. 10 10 1 10 1 10 10 10 10 10 10 10 10 10	<u></u>	3.000	555		2. 100	0.020	20.0

Sample	Horiz, Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1016	1270	2 182	57.44	3.612	0.410	2290	0.410	-0.025	21.5
2.42	420	17.4	1014	1270	183	57.75	3.588	0.420	2318	0.420	-0.026	22.0
2.42	430	17.8	1011	1270	182	57.44	3.565	0.430	2320	0.430	-0.026	22.5
2.42	440	18.2	1010	1270	181	57.12	3.541	0.440	2323	0.440	-0.026	23.0
2,42	450	18.6	1007	1270	181	57.12	3.517	0.450	2339	0.450	-0.026	23.5
2.42	460	19.0	1005	1270	180	56.81	3.493	0.460	2342	0.460	-0.027	24.1
2.42	470	19.4	1002	1270	179	56.49	3.469	0.470	2345	0.470	-0.027	24.6
2.42	480	19.8	1001	1270	178	56.18	3.446	0.480	2348	0.480	-0.027	25.1
2.42	490	20.2	999	1270	178	56.18	3.422	0.490	2364	0.490	-0.027	25.6
2.42	500	20.7	997	1270	177	55.86	3.398	0.500	2367	0.500	-0.027	26.1

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot

(Peak and Ultimate)

Project:

Vasco Rd.

Project #:

1860

B-4 Boring:

1075 784

2142

1976

4190

2407

Depth:

40.0'

Diameter Reading fn(dia.) Reading Dial. Read. Ring Read. Ring Load 2.42° only Deform Stress Deform Verticol (in.) X 0.001° (%) X 0.0001° X 0.0001° (Div.) (lbs.) (sq. in.) (in.) (psf) (in.) (in.) (psf) (in.) (psf) (in.) (in.) (psf) (in.) (psf) (in.) (form. Ar	Area Reduct %) 0.0 0.1 1.0 2.0 3.0
PROJ. #: 001860 TEST DATE: 01/07/2001 Init Sample Height (in.): DORING: B-4 DEPTH: 40.0° Init Horz. Dial Reading: Vertical Pressure (psf): Vertical Pressure (psf	1.20 0 1075 form. Ar rt. Re) (% 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004	Reduct %) 0.0 0.1 1.1 2.2
BORING: B-4 DEPTH: 40.0' Init.Horz. Dial Reading: Vertical Pressure (psf):	0 1075	Reduct %) 0.0 0.1 1.1 2.2
SAMPLE #: 3 Vertical Pressure (psf):	1075 form. Arr.t. Ref.) (% 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004	Reduct %) 0.0 0.1 1.1 2.2
Corrected Area for 2.42" Diameter Sample Only. Refer to Derivation for Other Diameters Sample Horiz Dial Strain Vert. Dial Orig. Vert. Froving Proving Corr. Area Horiz Shear Horiz Dial Dial Reading Dial. Read. Ring Read. Ring Read. Ring Load 2.42" only Deform. Stress Deform. Vert. Deform Deform Vert. Deform	form. Arrt. Re) (% 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004	Reduct %) 0.0 0.1 1.1 2.2
Sample Horiz Díal Strain Vert. Díal Orig. Vert. Proving Proving Corr. Area Horiz Shear Horiz Díal Díal Reading In(dia.) Reading Díal. Read. Ring Read. Ring Load 2.42" only Deform Stress Deform Vert. Díal Vert. Díal Vert. Díal Vert. Díal No.001" (%) X 0.0001" X 0.0001" X 0.0001" (lbs.) (sq. in.) (in.) (psf) (in.) (psf) (in.) (in.) (psf) (in.)	form. Ar tt. Re) (% 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004	Reduct %) 0.0 0.1 1.1 2.2
Diameter Reading fn(dia.) Reading Dial. Read. Ring Read. Ring Load 2.42° only Deform Stress Deform Verificial	rt. Re 0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004	Reduct %) 0.0 0.1 1.1 2.2
(in.) X 0.001* (%) X 0.0001* X 0.0001* (Div.) (ibs.) (sq. in.) (in.) (psf) (in.) (in.) (in.) (psf) (in.) (in.) (psf) (in.) (in.) (psf) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (psf) (in.) (in) (%).000).001).002).003).003).004).004).004).004).004	%) 0.0 0.1 1. 1.0 2.0
2.42 0 0.0 1416 1416 0 0.00 4.600 0.000 0 0.000 2.42 5 0.2 1416 1403 35 11.05 4.588 0.005 347 0.005 2.42 10 0.4 1416 1397 45 14.20 4.575 0.010 447 0.010 2.42 20 0.8 1416 1391 54 17.04 4.551 0.020 539 0.020 2.42 30 1.2 1416 1384 60 18.94 4.527 0.030 602 0.030 2.42 40 1.7 1416 1380 64 20.20 4.503 0.040 646 0.040 2.42 50 2.1 1416 1379 68 21.46 4.454 0.060 694 0.060 2.42 60 2.5 1416 1379 70 22.09 4.406 0.080 722 <td< td=""><td>0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004</td><td>0.0 0.3 1. 1.0 2.</td></td<>	0.000 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004	0.0 0.3 1. 1.0 2.
2.42 5 0.2 1416 1403 35 11.05 4.588 0.005 347 0.005 2.42 10 0.4 1416 1397 45 14.20 4.575 0.010 447 0.010 2.42 20 0.8 1416 1391 54 17.04 4.551 0.020 539 0.020 2.42 30 1.2 1416 1384 60 18.94 4.527 0.030 602 0.030 2.42 40 1.7 1416 1380 64 20.20 4.503 0.040 646 0.040 2.42 50 2.1 1416 1379 66 20.83 4.479 0.050 670 0.050 2.42 50 2.5 1416 1379 70 22.09 4.430 0.070 718 0.070 2.42 80 3.3 1416 1379 70 22.09 4.362 0.99 726	0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004	0.5 1. 1. 2.
2.42 10 0.4 1416 1397 45 14.20 4.575 0.010 447 0.010 2.42 20 0.8 1416 1391 54 17.04 4.551 0.020 539 0.020 2.42 30 1.2 1416 1384 60 18.94 4.527 0.030 602 0.030 2.42 40 1.7 1416 1380 64 20.20 4.503 0.040 646 0.040 2.42 50 2.1 1416 1379 66 20.83 4.479 0.050 670 0.050 2.42 60 2.5 1416 1379 70 22.09 4.430 0.070 718 0.060 2.42 70 2.9 1416 1379 70 22.09 4.430 0.070 718 0.070 2.42 50 3.7 1416 1386 70 22.09 4.382 0.090 726	0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004	0.9 1. 1.0 2.0 2.0
2.42 20 0.8 1416 1391 54 17.04 4.551 0.020 539 0.020 2.42 30 1.2 1416 1384 60 18.94 4.527 0.030 602 0.030 2.42 40 1.7 1416 1380 64 20.20 4.503 0.040 646 0.040 2.42 50 2.1 1416 1379 66 20.83 4.479 0.050 670 0.050 2.42 60 2.5 1416 1379 68 21.46 4.454 0.060 694 0.060 2.42 70 2.9 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 80 3.3 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 100 4.1 1416 1383 70 22.09 4.382 0.100 730	0.003 0.003 0.004 0.004 0.004 0.004 0.004	1. 1.0 2. 2.0
2.42 30 1.2 1416 1384 60 18.94 4.527 0.030 602 0.030 2.42 40 1.7 1416 1380 64 20.20 4.503 0.040 646 0.040 2.42 50 2.1 1416 1379 66 20.83 4.479 0.050 670 0.050 2.42 60 2.5 1416 1379 68 21.46 4.454 0.060 694 0.060 2.42 70 2.9 1416 1379 70 22.09 4.430 0.070 718 0.070 2.42 80 3.3 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 90 3.7 1416 1383 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.333 0.110 734	0.003 0.004 0.004 0.004 0.004 0.004	1.0 2.0 2.0
2.42 40 1.7 1346 1380 64 20.20 4.503 0.040 646 0.040 2.42 50 2.1 1416 1379 66 20.83 4.479 0.050 670 0.050 2.42 60 2.5 1416 1379 70 22.09 4.430 0.070 718 0.070 2.42 80 3.3 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 90 3.7 1416 1383 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.333 0.110 734 0.110 2.42 120 5.0 1416 1396 70 22.09 4.333 0.110 738	0.004 0.004 0.004 0.004 0.004 0.003	2.
2.42 50 2.1 1346 1379 66 20.83 4.479 0.050 670 0.050 2.42 60 2.5 1416 1379 68 21.46 4.454 0.060 694 0.060 2.42 70 2.9 1416 1379 70 22.09 4.430 0.070 718 0.070 2.42 80 3.3 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 90 3.7 1416 1383 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.382 0.090 726 0.090 2.42 110 4.5 1416 1390 70 22.09 4.333 0.110 734 0.110 2.42 120 5.0 1416 1396 70 22.09 4.309 0.120 738	0.004 0.004 0.004 0.004 0.003	2.0
2.42 60 2.5 1416 1379 68 21.46 4.454 0.060 694 0.060 2.42 70 2.9 1416 1379 70 22.09 4.430 0.070 718 0.070 2.42 80 3.3 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 90 3.7 1416 1383 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.382 0.100 730 0.100 2.42 120 5.0 1416 1396 70 22.09 4.333 0.110 734 0.110 2.42 130 5.4 1416 1400 71 22.41 4.285 0.130 753	0.004	
2.42 70 2.9 1416 1379 70 22.09 4.430 0.070 718 0.070 2.42 80 3.3 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 90 3.7 1416 1383 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.358 0.100 730 0.100 2.42 120 5.0 1416 1396 70 22.09 4.333 0.110 734 0.110 2.42 130 5.4 1416 1396 70 22.09 4.309 0.120 738 0.120 2.42 130 5.4 1416 1400 7.1 22.41 4.285 0.130 753 0.130 2.42 130 5.8 1416 1407 71 22.41 4.261 0.140 757	0.004	V.,
2.42 80 3.3 1416 1379 70 22.09 4.406 0.080 722 0.080 2.42 90 3.7 1416 1383 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.388 0.100 730 0.100 2.42 110 4.5 1416 1390 70 22.09 4.333 0.110 734 0.110 2.42 120 5.0 1416 1396 70 22.09 4.309 0.120 738 0.120 2.42 130 5.4 1416 1400 71 22.41 4.285 0.130 753 0.130 2.42 140 5.8 1416 1407 71 22.41 4.261 0.140 757 0.140 2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 777	0.004	3.
2.42 50 3.7 1416 1383 70 22.09 4.382 0.090 726 0.090 2.42 100 4.1 1416 1386 70 22.09 4.358 0.100 730 0.100 2.42 170 4.5 1416 1390 70 22.09 4.333 0.110 734 0.110 2.42 120 5.0 1416 1396 70 22.09 4.309 0.120 738 0.120 2.42 130 5.4 1416 1400 71 22.41 4.285 0.130 753 0.130 2.42 140 5.8 1416 1407 71 22.41 4.261 0.140 757 0.140 2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 772 0.150 2.42 150 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72	0.003	4.2
2.42 100 4.1 1416 1386 70 22.09 4.358 0.100 730 0.100 2.42 110 4.5 1416 1390 70 22.09 4.333 0.110 734 0.110 2.42 120 5.0 1416 1396 70 22.09 4.309 0.120 738 0.120 2.42 130 5.4 1416 1400 71 22.41 4.285 0.130 753 0.130 2.42 140 5.8 1416 1407 71 22.41 4.261 0.140 757 0.140 2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 772 0.150 2.42 160 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72		4.7
2.42 110 4.5 1416 1390 70 22.09 4.333 0.110 734 0.110 2.42 120 5.0 1416 1396 70 22.09 4.309 0.120 738 0.120 2.42 130 5.4 1416 1400 71 22.41 4.285 0.130 753 0.130 2.42 140 5.8 1416 1407 71 22.41 4.261 0.140 757 0.140 2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 772 0.150 2.42 160 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71		5.3
2.42 120 5.0 1416 1396 70 22.09 4.309 0.120 738 0.120 2.42 130 5.4 1416 1400 71 22.41 4.285 0.130 753 0.130 2.42 140 5.8 1416 1407 71 22.41 4.261 0.140 757 0.140 2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 772 0.150 2.42 160 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71	0.003	5.8
2.42 130 5.4 1416 1400 71 22.41 4.285 0.130 753 0.130 2.42 140 5.8 1416 1407 71 22.41 4.261 0.140 757 0.140 2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 772 0.150 2.42 160 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70	0.002	6.3
2.42 140 5.8 1416 1407 71 22.41 4.261 0.140 757 0.140 2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 772 0.150 2.42 160 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 - 2.42 220 9.1 1416 1427	0.002	6.8
2.42 150 6.2 1416 1409 72 22.72 4.237 0.150 772 0.150 2.42 160 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 2.42 230 9.5 1416 1429 72	0.001	7.4
2.42 160 6.6 1416 1413 72 22.72 4.213 0.160 777 0.160 2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 - 2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 - 2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230 -	0.001	7.9
2.42 170 7.0 1416 1415 72 22.72 4.189 0.170 781 0.170 2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 - 2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 - 2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230 -	0.000	8.4
2.42 180 7.4 1416 1417 72 22.72 4.164 0.180 786 0.180 2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230	0.000	8.9
2.42 190 7.9 1416 1418 71 22.41 4.140 0.190 779 0.190 2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230	0.000	9.5
2.42 200 8.3 1416 1419 71 22.41 4.116 0.200 784 0.200 2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 - 2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 - 2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230 -	0.000	10.0
2.42 210 8.7 1416 1423 70 22.09 4.092 0.210 777 0.210 - 2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 - 2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230 -	.000	10.5
2.42 220 9.1 1416 1427 71 22.41 4.068 0.220 793 0.220 - 2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230 -	.001	11.0
2.42 230 9.5 1416 1429 72 22.72 4.044 0.230 809 0.230 -	.001	11.6
	.001	12.1
2.42 240 9.9 1416 1439 72 22.72 4.020 0.240 814 0.240 -	.002	12.6
Size distriction to reflect to the problem of the p	.003	13.1
	.004	13.7
MCMM No. 2447	.004	14.2
White the second	.004	14.7
	.004	15.2
	.004	15.7
Table 36 (4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.005	16.3
Many and the register Annual State Control of the C	.006	16.8
\$60 a 66 c . 2 c	.006	17.3
2006 C) 1 CO	.006	17.8
The state of the s	.006	18.4
	000	18.9
	.006	19.4
	.006	19.9
		20.4
2.42 400 16.5 1416 1496 80 25.25 3.636 0.400 1000 0.400	.007	

Sample	Horiz, Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001	(%)	X 0.0001	X 0.0001"	(Div.).	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1416	1499	80	25.25	3.612	0.410	1007	0.410	-0.008	21.5
2.42	420	17.4	1416	1500	∮ 80	25.25	3.588	0.420	1013	0.420	-0.008	22.0
2.42	430	17.8	1416	1508	80	25.25	3.565	0.430	1020	0.430	-0.009	22.5
2.42	440	18.2	1416	1514	80	25.25	3.541	0.440	1027	0.440	-0.010	23.0
2.42	450	18.6	1416	1517	80	25.25	3.517	0.450	1034	0.450	-0.010	23.5
2.42	460	19.0	1416	1519	80	25.25	3.493	0.460	1041	0.460	-0.010	24.1
2.42	470	19.4	1416	. 1525	1 80	25.25	3.469	0.470	1048	0.470	-0.011	24.6
2.42	480	19.8	1416	1528	80	25.25	3.446	0.480	1055	0.480	-0.011	25.1
2.42	490	20.2	1416	1529	80	25.25	3.422	0.490	1062	0.490	-0.011	25.6
2.42	500	20.7	1416	1534	81	25.56	3.398	0.500	1083	0.500	-0.012	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 40.0', Sample #3, Vertical Load 1075 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 200 800 1000 400 1200 009 Shear Stress (psf)

0.600 0.500 0.400 Shear Displacement (in.) 0.300 0.100 0.000 Vertical Deformation (in.) 0.002 -0.010 -0.014 -0.012 0.006 0.004 -0.008

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 40.0', Sample #3, Vertical Load 1075 psf

					DATA	SHEET						
CLIENT:	Cal Engine	ering and	Geology					Ring Constant = 0.3156 lb			/div	
PROJECT:	Vasco Road	t						Sample Diameter (in.):			2.42	
PROJ.#:	001860		TEST DATE	≣ :	01/07/2001			Init. Sam	nple Heig	ht (in.):	1.20	
BORING:	B-4		DEPTH:		40.0'			Init.Horz	. Dial Re	ading:	0	
SAMPLE #:	2							Vertical	Pressure	(psf):	2142	
	Corrected	d Area t	or 2.42" [Diameter S	Sample Or	nly. Refer	to Deriva	tion for	Other I	Diamete	ers.	
Sample	Horiz Dial	Strain	Vert. Dial.	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	2328	2328	0	0.00	4.600	0.000	0	0.000	0.000	· · · · ·
2.42	5	0.2	2328	2318	56	17.67	4.588	0.005	555	0.005	0.001	0.3
2.42	10	0.4	2328	2309	79	24.93	4.575	0.010	785		0.002	0.5
2.42	20	0.8	2328	2294	86	27.14	4.551	0.020	859	0.020	0.003	1.1
2.42	30	1.2	2328	2281	100	31.56	4.527	0.030	1004	0.030	0.005	1.6
2.42	40	1.7	2328	2279	STORY STORY	35.98	4.503	0.040	1151	0.040	0.005	2.1
2.42	50	2.1	2328	2279	40 (45) 30 (45)	39.77	4.479	0.050	1279	0.050	0.005	2.6
		2.5	2328	2279	134	42.29	4.454	0.060	1367	0.060	0.005	3.2
2.42	70	2.9	2328	2286	142	44.82	4.430	0.070	1457	0.070	0.003	3.7
2.42	80	3.3	2328	2295	154	48.60	4.406	0.080	1588	0.070	0.004	4.2
2.42	90	3.7	2328	2308	West and the state	53.02	4.382	0.090	1742	0.000	0.003	4.2
2.42	law secti	4.1	2328	2324	early many of the	55.55	4.358	0.090	1836	0.100	0.002	
	110	4.5	2328	2346	Manual to take in the city	56.81		0.100				5.3
	4 120		2328		184	58.07	4.333		1888	0.110	-0.002	5.8
	130	5.4	2328		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		4.309	0.120	1940	0.120	-0.003	6.3
			141 241 2 1 1		444-40-14 A.A.B.C.	58.39	4.285	0.130	1962	0.130	-0.006	6.8
	140		2328		185	58.39	4.261	0.140	1973	0.140	-0.007	7.4
	150	6.2	2328		185	58.39	4.237	0.150	1984	0.150	-0.009	7.9
	160	6.6	2328	2440	240 11 11 11 11	58.39	4.213	0.160	1996	0.160	-0.011	8.4
	170	7.0	2328	2460	184	58.07	4.189	0.170	1996	0.170	-0.013	8.9
3	180	7.4	2328	2479		57.12	4.164	0.180	1975	0.180	-0.015	9.5
2.42	190	7.9	2328	2500	79000 41 112	56.81	4.140	0.190	1976	0.190	-0.017	10.0
2.42	200	8.3	2328	2520	179	56.49	4.116	0.200	1976	0.200	-0.019	10.5
2.42	210	8.7	2328	2539	196171351955	55.86	4.092	0.210	1966	0.210	-0.021	11.0
	220	9.1	2328		177	55.86	4.068	0.220	1977	0.220	-0.023	11.6
2.42	deliberal Mont. iii	9.5	2328		175	55.23	4.044	0.230	1967	0.230	-0.025	12.1
2.42		9.9	Proposition of		175	55.23	4.020	0.240	1979	0.240	-0.028	12.6
	250		2328		173	54.60	3.996	0.250	1968	0.250	-0.030	13,1
2.42	200100 7 1 20	10.7	2328	2639	100	53.65	3.972	0.260	1945	0.260	-0.031	13.7
2.42		11.2	2328	2655	169	53.34	3.948	0.270	1946	0.270	-0.033	14.2
2.42	280	11.6	2328	. 2675	168	53.02	3.924	0.280	1946	0.280	-0.035	14.7
2.42	290	12.0	2328	2697	166	52.39	3.899	0.290	1935	0.290	-0.037	15.2
2.42	300	12.4	2328	2709	166	52.39	3.875	0.300	1947	0.300	-0.038	15.7
2.42	310	12.8	2328	2729	166	52.39	3.851	0.310	1959	0.310	-0.040	16.3
2.42	320	13.2	2328	2745	166	52.39	3.827	0.320	1971	0.320	-0.042	16.8
2.42	330	13.6	2328	2758	166	52.39	3.803	0.330	1983	0.330	-0.043	17.3
2.42	340	14.0	2328	2766	165	52.07	3.780	0.340	1984	0.340	-0.044	17.8
2.42	350	14.5	2328	2779	165	52.07	3.756	0.350	1997	0.350	-0.045	18.4
2.42		14.9	2328	2800	165	52.07	3.732	0.360	2009	0.360	-0.047	18.9
	370	15.3			164	51.76	3.708	0.370	2010	0.370	-0.049	19.4
	380	15.7			164	51.76	3.684	0.380	2023	0.380	-0.050	19.9
	390		2328		164	51.76	3.660	0.390	2036	0.390	-0.052	20.4
	400		2328		163	51.44	3.636	0.400	2037	0.400	-0.054	20.9

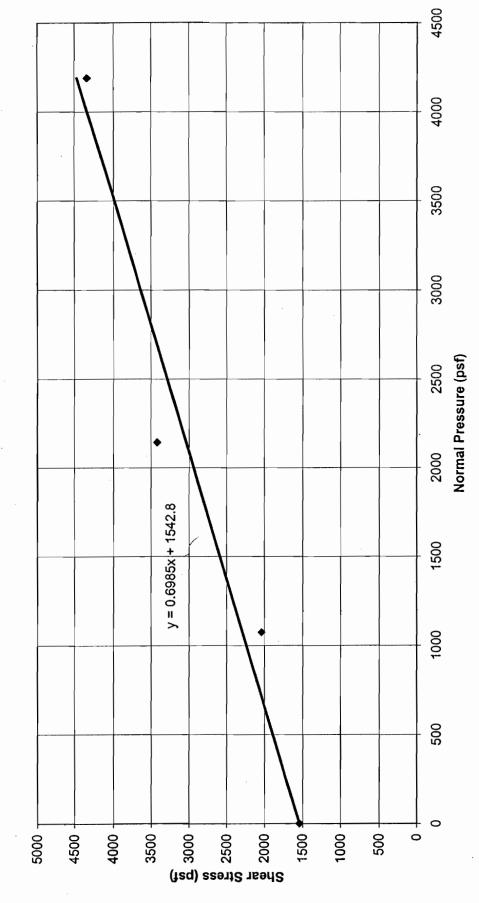
						OF ILL						
Sample	Horiz. Diál	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001	(%)	X 0.0001	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	2328	2883	163	51.44	3.612	0.410	2051	0.410	-0.056	21.5
2.42	420	17.4	2328	2890	163	51.44	3.588	0.420	2064	0.420	-0.056	22.0
2.42	430	17.8	2328	2909	163	51.44	3.565	0.430	2078	0.430	-0.058	22.5
2.42	440	18.2	1 - 12		163	51.44	3.541	0.440	2092	0.440	-0.060	23.0
2.42	450	18.6	2328	2941	164	51.76	3.517	0.450	2119	0.450	-0.061	23.
2.42	460	19.0	2328	2958	164	51.76	3.493	0.460	2134	0.460	-0.063	24.
2.42	470	19.4	2328	2972	164	51.76	3,469	0.470	2148	0.470	-0.064	24.6
2.42	480	19.8			164	51.76	3.446	0.480	2163	0.480	-0.066	25.1
2.42	490	20.2	2328	3008	164	51.76	3.422	0.490	2178	0.490	-0.068	25.6
2.42	500	20.7	2328	3019	164	51.76	3.398	0.500	2193	0.500	-0.069	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 40.0', Sample #2, Vertical Load 2142 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 500 2000 Shear Stress (psf) 250 000 2500

0.600 0.500 Boring B-4, Depth 40.0', Sample #2, Vertical Load 2142 psf 0.400 0.200 0.00 0.000 0.010 -0.010 Vertical Deformation (in.) -0.080 -0.060 -0.070 -0.050

Shear Displacement (in.)

Vertical Deformation vs. Shear Displacement, Project 001860

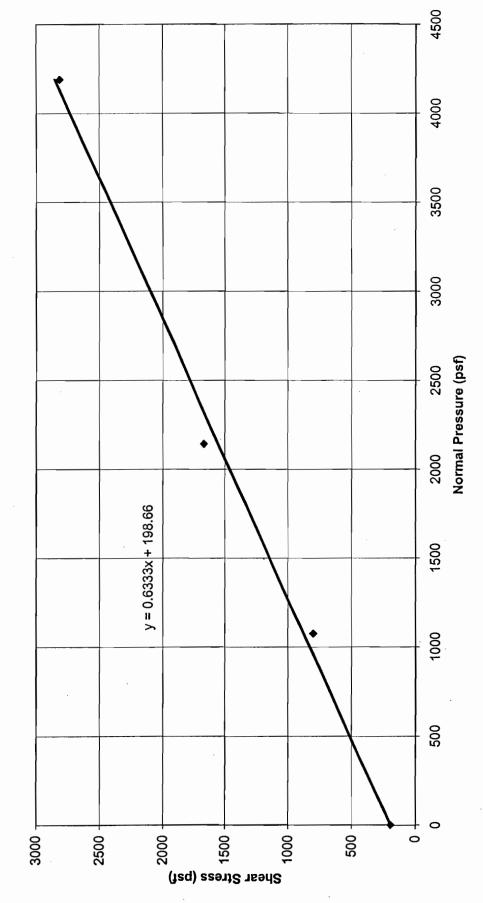

		`			DATA	SHEET						
CLIENT:	Cal Enginee	ering and	Geology					Ring Constant = 0.3156 lb/			/div	
PROJECT:	Vasco Road	i						Sample Diameter (in.):			2.42	
PROJ. #:	001860		TEST DATE	Ξ:	01/07/2001			Init. Sam	ple Heig	ht (in.):	1.20	
BORING:	B-4		DEPTH:		40.0'			Init.Horz	. Dial Re	ading:	0	
SAMPLE #:	1							Vertical	Pressure	(psf):	4190	
	Corrected	Area	for 2.42" [Diameter S	Sample Or	nly. Refer	to Deriva	tion for	Other	Diamete	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1842	1842	0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1842	1839	94	29.67	4.588	0.005	931	0.005	0.000	0.3
2.42	. 10	0.4	1842	1834	‡, 121	38.19	4.575	0.010	1202	0.010	0.001	0.5
2.42	20	0.8	1842	1822	148	46.71	4.551	0.020	1478	0.020	0.002	1.1
2.42	30	1.2	1842	1815	162	51.13	4.527	0.030	1626	0.030	0.003	1.6
2.42	40	1.7	1842	1804	180	56.81	4.503	0.040	1817	0.040	0.004	2.1
2.42	50	2.1	1842	1797	193	60.91	4.479	0.050	1958	0.050	0.005	2.6
2.42	60	2.5	1842	1788	200	63.12	4.454	0.060	2041	0.060	0.005	3.2
2.42	70	2.9	1842	1782	204	64.38	4.430	0.070	2093	0.070	0.006	3.7
2.42	80	3.3	1842	1774	208	65.64	4.406	0.080	2145	0.080	0.007	4.2
2.42	90	3.7	1842	1769	-212	66.91	4.382	0.090	2199	0.090	0.007	4.7
2.42	100	4.1	1842	1766	27	67.54	4.358	0.100	2232	0.100	0.008	5.3
2.42	110	4.5	1842	1764	214	67.54	4.333	0.110	2244	0.110	0.008	5.8
2.42	120	5.0	1842	1763	217	68.49	4.309	0.120	2288	0.120	0.008	6.3
2.42	130	5.4	1842	1762	219	69.12	4.285	0.130	2323	0.130	0.008	6.8
2.42	140	5.8	1842	1762	219	69.12	4.261	0.140	2336	0.140	0.008	7.4
2.42	150	6.2	1842	1758	213	67.22	4.237	0.150	2285	0.150	0.008	7.9
	160	6.6	1842	1754	214	67.54	4.213	0.160	2309	0.160	0.009	8.4
2.42	170	7.0	1842	1750	214	67.54	4.189	0.170	2322	0.170	0.009	8.9
2.42	180	7.4	1842	1747	215	67.85	4.164	0.180	2346	0.180	0.010	9.5
2.42	190	7.9	1842	1742	216	68.17	4.140	0.190	2371	0.190	0.010	10.0
2.42	200	8.3	1842	1736	218	68.80	4.116	0.200	2407	0.200	0.011	10.5
2.42	210	8.7	1842	1735	218	68.80	4.092	0.210	2421	0.210	0.011	11.0
	220		1842	1733	218	68.80	4.068	0.220	2435	0.220	0.011	11.6
2.42	230	9.5	1842	1731	217	68.49	4.044	0.230	2439	0.230	0.011	12.1
2.42	S. 11	9.9	1842	1727	216	68.17	4.020	0.240	2442	0.240	0.012	12.6
	250		1842	1723		67.85	3.996	0.250	2445	0.250	0.012	13.1
2.42	260	10.7	1842	1720	214	67.54	3.972	0.260	2449	0.260	0.012	13.7
2.42	Section of the	11.2	1842	1717	According to the strains of	67.54	3.948	0.270	2449	0.270	0.012	14.2
2.42	280	11.6	1842	1715		67.22	3.924	0.270	2467	0.270	0.013	14.7
2.42	the section of the section of	12.0	the continuous and a second	1715		67.22	3.899	0.290	2482	0.290	0.013	15.2
	300	12.4	1842	1713	29 -15 - 1 - 1 - 1 - 1 - 1	66.91	3.875	0.300	2486	0.300	0.013	15.2
2.42	ACC 1 1 1 10 10 10 10 10 10 10 10 10 10 10	12.4	de Aventa a mark	1710		66.91	3.851	0.300	2502	0.310	0.013	16.3
2.42		13.2	To the Control of the	1710	213	67.22	3.827	0.310	2529	0.320	0.013	
2.42		13.6	1.0	1707	213	66.59	3.803	0.320	2529	0.320	0.014	16.8
2.42		14.0	1 1 1 1	1704	211	66.91	3.780	0.340	2549	0.340	0.014	17.3 17.8
2.42	350	14.5		1703	209	65.96	3.756	0.340	2529	0.340	0.014	
2.42	360		1842	1697	209	65.33						18.4
		14.9	2 5 7 2 2 2 2 2		7	65.01	3.732	0.360	2521	0.360	0.015	18.9
2.42	1.74	15.3	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1696	Maria Carlo		3.708	0.370	2525	0.370	0.015	19.4
	380	15.7		1694	and a second sec	65.33	3.684	0.380	2554	0.380	0.015	19.9
	390		1842	1692	206	65.01	3.660	0.390	2558	0.390	0.015	20.4
2.42	400	76.5	1842	1692	202	63.75	3.636	0.400	2525	0.400	0.015	20.9

Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1842	1691	200	63.12	3.612	0.410	2516	0.410	0.015	21.5
2.42	420	17.4	1842	1687	198	62.49	3.588	0.420	2508	0.420	0.016	22.0
2.42	430	17.8	1842	1684	196	61.86	3.565	0.430	2499	0.430	0.016	22.5
2.42	440	18.2	1842	1680	193	60.91	3.541	0.440	2477	0.440	0.016	23.0
2.42	450	18.6	1842	1679	191	60.28	3.517	0.450	2468	0.450	0.016	23.5
2.42	460	19.0	1842	1676	<u> </u>	60.28	3.493	0.460	2485	0.460	0.017	24.
2.42	470	19.4	1842	1675	192	60.60	3.469	0.470	2515	0.470	0.017	24.6
2.42	480	19.8	1842	1674	191	60.28	3.446	0.480	2519	0.480	0.017	25.1
2.42	490	20.2	1842	1670	191	60.28	3.422	0.490	2537	0.490	0.017	25.6
2.42	500	20.7	1842	1669	190	59.96	3.398	0.500	2541	0.500	0.017	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 40.0', Sample #1, Vertical Load 4190 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 Shear Stress (psf) 2000 200 2500 1000 3000

0.600 0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 40.0', Sample #1, Vertical Load 4190 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 0.000 0.018 Vertical Deformation (in.)
0.010
0.012 0.016 0.002 0.020 0.014 900.0 0.004

DIRECT SHEAR RESULTS (Peak)
Vasco Road, Project No. 001860
Boring B-4, Depth 62.5'
Friction Angle 34.9 deg., Cohesion 1543 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Gray Claystone w/Sand



CLIENT: CAL Engineering and Geology

Direct Shea	r Envelope Plot	(Peak)	Project:	Vaso	o Rd.
0	1543		Project #:		1860
1075	2041		Boring:	B-4	
2142	3423		Depth:		62.5
<i>4</i> 190	4338				

 $oldsymbol{G}_{i}$, which is the state of $oldsymbol{G}_{i}$.

DIRECT SHEAR RESULTS (Ultimate)
Vasco Road, Project No. 001860
Boring B-4, Depth 62.5'
Friction Angle 32.3 deg., Cohesion 199 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Gray Claystone w/Sand

CLIENT: CAL Engineering and Geology

Direct Shear	Envelope Plot	(Ultimate)	Project:	Vasc	o Rd.
0	198.66		Project #:		1860
1075	806		Boring:	B-4	
2142	1667		Depth:		62.5
4190	2814				

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 62.5', Sample #1, Vertical Load 1075 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 Shear Stress (psf) 200 2500 2000

0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 62.5', Sample #1, Vertical Load 1075 psf 0.300 0.200 0.100 0.000 0.00 0.0 0.010 -0.008 0.006 0.004 -0.002 -0.004 0.002 Vertical Deformation (In.)

Shear Displacement (in.)

CLIENT:	Cal Engineering and Geology Ring Constant = 0.3156 lb/div											
	Vasco Road		Geology									
	001860	_	TEGT DATE		40/00/0004				Diameter		2.42	
	B-4		TEST DATE	=:	12/22/2001 62.5				ple Heig		1.20	
20111111	B-4		DEPTH:		62,5				. Dial Re		1075	
SAMPLE #:	Corrected	i Aroa i	for 2.42" [l Diameter 9	Sample O	alv Pofor	to Doriva		Pressure		1075	
\vdash	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area		Shear	Horiz.		A
Sample Diameter	Reading	fn(dia.)	Reading	Dial. Read.		Ring Load	2.42" only	Horiz. Deform.	Stress	Deform.	Deform. Vert.	Area
(in.)	X 0.001"	(%)	X 0.0001"		(Div.)	(lbs.)	(sq. in.)					Reduct.
								(in.)	(psf)	(in.)	(in.)	-
2.42	0	0.0	1500	1500	0	0.00	4.600	0.000	100			+
2.42	5	0.2 0.4	1490	1500	47	14.83	4.588	0.005	466			0.3
2.42	10 20		1485	1500	53	16.73	4.575	0.010	526			0.5
2.42		0.8	1476	1500	86	27.14	4.551	0.020	859		_	
2.42	30	1.2	1468	1500	122	38.50	4.527	0.030	1225	 		
2.42	40	1.7	1468	1500	158	49.86	4.503	0.040	1595			
2.42	50	2.1	1477	1500	191	60.28	4.479	0.050	1938			2.6
2.42	60 70	2.5 2.9	1509 1546	1500 1500	200 160	63.12 50.50	4.454	0.060	2041	0.060		3.2
2.42	20 20	3.3	1546	1500	120		4.430 4.406	0.070	1641	0.070		
	90	3.7	1568	1500	120	37.87 31.88	4.406	0.080	1238			
2.42	100	4.1	1570	1500	95	29.98	4.358	0.090	1048 991	0.090		4.7
2.42	110	4.1	1575	1500	86	27.14	4.333		902		0.007	5.3
2.42	110	5.0	1575	1500	82	25.88	4.333	0.110 0.120		0.110		5.8
	130	5.4	1575	1500	81				865	0.120	0.008	6.3
2.42					79	25.56	4.285	0.130	859	0.130	0.008	6.8
2.42	140	5.8 6.2	1577 1577	1500 1500	79 78	24.93 24.62	4.261	0.140 0.150	843	0.140	0.008	7.4
2.42	150 160	6.6	1577	1500	77	24.82	4.237 4.213	0.150	837 831	0.150 0.160	0.008	7.9
2.42	170	7.0	1576	1500	74	23.35	4.213	0.170	803	0.160	0.008	8.4 8.9
2.42	180	7.4	1574	1500	73	23.04	4.164	0.170	797	0.170	0.008	
2.42	190	7.9	1572	1500	73	23.04	4.140	0.190	801	0.180	0.007	9.5 10.0
2.42	200	8.3	1572	1500	73	23.04	4.116	0.190	806	0.190	0.007	10.5
2.42	210	8.7	1572	1500	73	23.35	4.110	0.200	822	0.210	0.007	11.0
2.42	210	9.1	1572	1500	75	23.67	4.068	0.210	838	0.210	0.007	11.6
2.42	230	9.5	1570	1500	75 75	23.67	4.044	0.230	843	0.220	0.007	12.1
2.42	240	9.9	1570	1500	79	24.93	4.044	0.230	893	0.240	0.007	12.1
		10.3	1569	1500	. 81	25.56	3.996	0.250	921			
2.42		10.3	1569	1500	79	24.93	3.972	0.250	904	0.250	0.007	13.1 13.7
2.42	260	11.2	1569	1500	79 78	24.62	3.948	0.270	898	0.270	0.007	14.2
2.42	280	11.6	1568	1500	77	24.30	3.924	0.270	892	0.270	0.007	14.7
2.42	290	12.0	1565	1500	76	23.99	3.899	0.290	886	0.290	0.007	15.2
2.42	300	12.4	1563	1500	75	23.67	3.875	0.300	880	0.300	0.007	15.7
2.42		12.4	1562	1500	75	23.67	3.851	0.310	885	0.300	0.006	16.3
2.42		13.2	1562	1500	76	23.99	3.827	0.310	902	0.310	0.006	16.8
2.42	330	13.6	1562	1500	78	24.62	3.803	0.330	932	0.320	0.006	17.3
2.42	340	14.0	1562	1500	76	23.99	3.780	0.340	914	0.340	0.006	17.8
2.42	350	14.5	1558	1500	73	23.99	3.756	0.340	883	0.340	0.006	18.4
2.42	360	14.9	1557	1500	75	23.67	3.732	0.360	913	0.360	0.006	18.9
2.42		15.3	1557	1500	75	23.67	3.708	0.370	919	0.370	0.006	19.4
2.42	380	15.7	1559	1500	74	23.35	3.684	0.370	913	0.380	0.006	19.4
2.42		16.1	1559	1500	74	23.35	3.660	0.390	919	0.390	0.006	20.4
		16.5	1558	1500	71	22.41	3.636	0.390	887	0.400	0.006	
2.42	400	10.5	1008	1000	e, . _w ;£.t	22.41	3.030	0.400	667	0.400	0.006	20.9

Sample	Horiz, Dial	Strain	, Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001*	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1557	1500	7.1	22.41	3.612	0.410	. 893	0.410	0.006	21.5
2.42	420	17.4	1557	1500	72	22.72	3.588	0.420	912	0.420	0.006	22.0
2.42	430	17.8	1557	1500	. 70	22.09	3.565	0.430	892	0.430	0.006	22.5
2.42	440	18.2	1555	1500	70	22.09	3.541	0.440	898	0.440	0.006	23.0
2.42	450	18.6	1554	1500	70	22.09	3.517	0.450	905	0.450	0.005	23.5
2.42	460	19.0	1554	1500	, 70	22.09	3.493	0.460	911	0.460	0.005	24.1
2.42	470	19.4	1552	1500	69	21.78	3.469	0.470	904	0.470	0.005	24.6
2.42	480	19.8	1549	1500	69	21.78	3.446	0.480	910	0.480	0.005	25.1
2.42	490	20.2	1549	1500	70	22.09	3.422	0.490	930	0.490	0.005	25.6
2.42	500	20.7	1548	1500	70	22.09	3.398	0.500	936	0.500	0.005	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 62.5', Sample #2, Vertical Load 2142 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 ***** Shear Stress (psf) 1000 200 4000 3500 3000

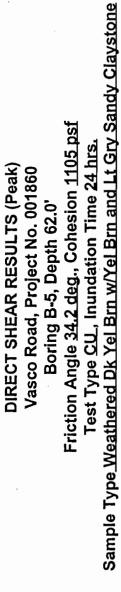
0.600 0.500 0.400 Shear Displacement (in.) 0.300 0.200 8 0.000 0.000 -0.002 0.008 0.006 -0.004 0.004 0.002 Vertical Deformation (in.)

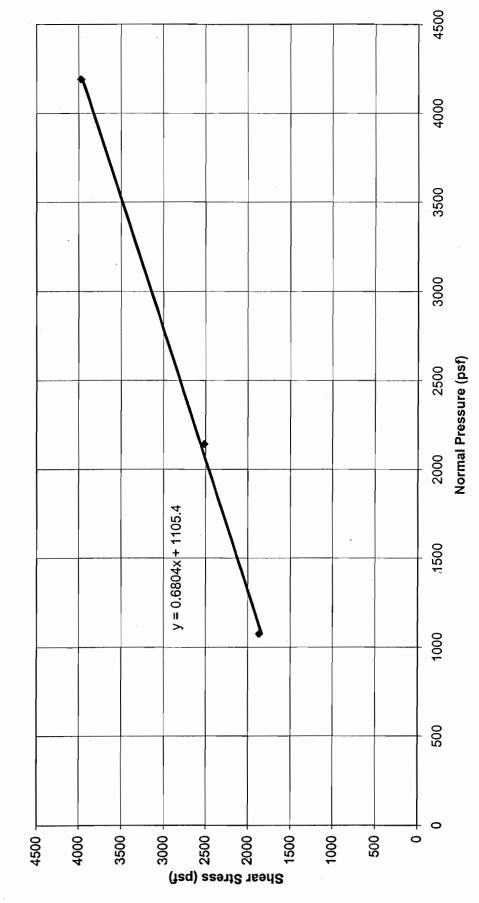
Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 62.5', Sample #2, Vertical Load 2142 psf

	DATA SHEET Cal Engineering and Geology Ring Constant = 0.3156 lb/div											
CLIENT:	Cal Enginee		Geology									
	Vasco Road	ı							Diameter	_`	2.42	
	001860		TEST DATE	:	12/22/2001				ple Heigl	`	1.20	
BORING:	B-4	_	DEPTH:		62.5				. Dial Rea	_ <u> </u>	0	
SAMPLE #:	2					. 5 (Pressure		2142	
						nly. Refe		tion for			ers.	
Sample	Horiz. Dial	Strain	Vert. Dial		Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1209	1209	% 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1209	1209	42	13.26	4.588	0.005	416	0.005	0.000	0.3
2.42	10	0.4	1209	1209	¢ 65	20.51	4.575	0.010	646	0.010	0.000	0.5
2.42	20	0.8	1209	1209	92	29.04	4.551	0.020	919	0.020	0.000	. 1.1
2.42	- 30	1.2	1202	1209	123	38.82	4.527	0.030	1235	0.030	-0.001	1.6
2.42	40	1.7	1194	1209	161	50.81	4.503	0.040	1625	0.040	-0.002	2.1
2.42	50	2.1	1188	1209	203	64.07	4.479	0.050	2060	0.050	-0.002	2.6
2.42	60	2.5	1187	1209	230	72.59	4.454	0.060	2347	0.060	-0.002	3.2
2.42	70	2.9	1181	1209	265	83.63	4.430	0.070	2718	0.070	-0.003	3.7
2.42	80	3.3	1189	1209	307	96.89	4.406	0.080	3167	0.080	-0.002	4.2
2.42	90	3.7	1205	1209	330	104.15	4.382	0.090	3423	0.090	0.000	4.7
2.42	100	4.1	1225	1209	325	102.57	4.358	0.100	3389	0.100	0.002	5.3
2.42	/ 110	4.5	1245	1209	275	86.79	4.333	0.110	2884	0.110	0.004	5.8
2.42	120	5.0	1246	1209	230	72.59	4.309	0.120	2426	0.120	0.004	6.3
2.42	130	5.4	1247	1209	195	61.54	4.285	0.130	2068	0.130	0.004	6.8
2.42	140	5.8	1247	1209	178	56.18	4.261	0.140	1898	0.140	0.004	7.4
2.42	150	6.2	1247	1209	163	51.44	4.237	0.150	1748	0.150	0.004	7.9
2,42	160	6.6	1247	1209	162	51.13	4.213	0.160	1748	0.160	0.004	8.4
2.42	170	7.0	1249	1209	160	50.50	4.189	0.170	1736	0.170	0.004	8.9
2.42	180	7.4	1255	1209	156	49.23	4.164	0.180	1702	0.180	0.005	9.5
2.42	190	7.9	1259	1209	153	48.29	4.140	0.190	1679	0.190	0.005	10.0
2.42	200	8.3	1259	1209	151	47.66	4.116	0.200	1667	0.200	0.005	10.5
2.42	210	8.7	1266	1209	150	47.34	4.092	0.210	1666	0.210	0.006	11.0
2.42	220	9.1	1269	1209		47.34	4.068	0.220	1676	0.220	0.006	11.6
2.42	230	9.5	1269	1209	149	47.02	4.044	0.230	1675	0.230	0.006	12.1
2.42	2 .	9.9		1209		47.02	4.020	0.240	1685	0.240	0.006	12.6
2.42		10.3				46.71	3.996	0.250	1683			_
2.42	260	10.7	1274	1209	147	46.39	3.972	0.260				13.7
2.42	4 /	11.2			146	46.08	3.948	0.270	1681			14.2
2.42	280	11.6		1209			3.924		1691			14.7
2.42	290	12.0	1274	1209	145	45.76		0.290				15.2
2.42	300	12.4	1274	1209	145	45.76	3.875	0.300	1700			15.7
2.42	A 14 1 1 1	12.8	1274	1209		45.45	3.851	0.310	1699		_	16.3
2.42	320	13.2	1274	1209	143	45.13	3.827	0.320	1698			16.8
2.42	330	13.6		1209		45.13		0.330	1709			17.3
2.42	340	14.0		1209	144	45.45	3.780	0.340	1732		 	17.8
2.42	350	14.5		1209	145	45.76	3.756	0.350	1755			18.4
2.42	360	14.9		1209	145	45.76	3.732	0.360	1766	0.360	_	18.9
2,42	370	15.3	1275	1209	144	45.45	3.708	0.370				19.4
2.42	380	15.7	1275	1209	141	44.50	3.684	0.380	1739		0.007	19.9
$\overline{}$	390	16.1	1275	1209	140	44.18		0.390				20.4
2.42		16.5									_	20.9
2.42	400	10.5	A. M. 1273	1209	·	43.07	3.030	0.400	1101		0.007	20.9

						011557						
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1271	1209	139	43.87	3.612	0.410	1749	0.410	0.006	21.5
2.42	420	17.4	1273	1209	137	43.24	3.588	0.420	1735	0.420	0.006	22.0
2.42	430	17.8	1263	1209	138	43.55	3.565	0.430	1759	0.430	0.005	22.5
2.42	440	18.2	1257	1209	138	43.55	3.541	0.440	1771	0.440	0.005	23.0
2.42	450	18.6	1252	1209	138	43.55	3.517	0.450	1783	0.450	0.004	23.5
2.42	460	19.0	1246	1209	139	43.87	3.493	0.460	1808	0.460	0.004	24.1
2.42	470	19.4	1244	1209	138	43.55	3.469	0.470	1808	0.470	0.004	24.6
2.42	480	19.8	1240	1209	137	43.24	3.446	0.480	1807	0.480	0.003	25.1
2.42	490	20.2	1237	1209	137	43.24	3.422	0.490	1819	0.490	0.003	25.6
2.42	500	20.7	1234	1209	136	42.92	3.398	0.500	1819	0.500	0.003	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-4, Depth 62.5', Sample #3, Vertical Load 4190 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 ***** 200 Shear Stress (pst) 300 200 200 000 1500 1000 5000 4500 4000 3200


0.600 0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-4, Depth 62.5', Sample #3, Vertical Load 4190 psf 0.400 0.200 0.100 0.000 Vertical Deformation (In.) -0.015 0.010 0.005 -0.020 -0.010

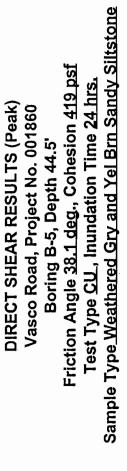

Shear Displacement (in.)

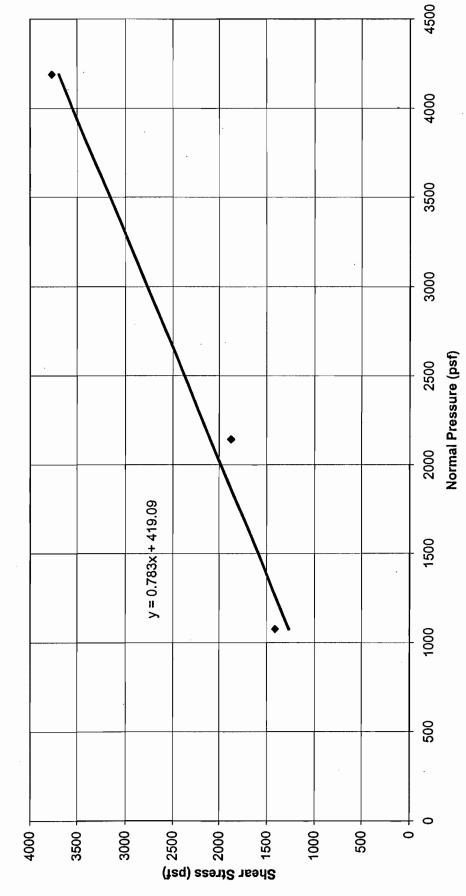
					DATA	IA SHEET						
CLIENT:	Cal Engine	ering and	Geology					Ring Co	nstant = (0.315 <u>6</u> lb	/div	
PROJECT:	Vasco Road	3 -						Sample	Diameter	(in.):	2.42	
PROJ.#:	001860		TEST DATE	<u>:</u>	12/22/2001			Init. San	nple Heig	ht (in.):	1.20	
BORING:	B-4		DEPTH:		62.5			Init.Horz	. Dial Re	ading:	0	
SAMPLE #:	3								Pressure	· ·	4190	
	Corrected	l Area t	or 2.42" [Diameter S	Sample O	nly. Refer	r to Deriva	tion for	Other	Diamet	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1215	1215	0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1214	1215	105	33.14	4.588	0.005	1040	0.005	0.000	0.3
2.42	10	0.4	1214	1215	134	42.29	4.575	0.010	1331	0.010	0.000	0.5
2.42	20	0.8	1219	1215	177	55.86	4.551	0.020	1767	0.020	0.000	1.1
2.42	30	1.2	1229	1215	214	67.54	4.527	0.030	2148	0.030	0.001	1.6
2.42	40	1.7	1239	1215	255	80.48	4.503	0.040	2574	0.040	0.002	2.1
2.42	50	2.1	1249	1215	305	96.26	4.479	0.050	3095	0.050	0.003	2.6
2.42	60	2.5	1259	1215	345	108.88	4.454	0.060	3520	0.060	0.004	3.2
2.42	70	2.9	1265	1215	372	117.40	4.430	0.070	3816	0.070	0.005	3.7
2.42	80	3.3	1267	1215	382	120.56	4.406	0.080	3940	0.080	0.005	4.2
2.42	90	3.7	1269	1215	410	129.40	4.382	0.090	4252	0.090	0.005	4.7
2.42	100	4.1	1270	1215	416	131.29	4.358	0.100	4338	0.100	0.006	5.3
2.42	110	4.5	1270	1215	408	128.76	4.333	0.110	4279	0.110	0.006	5.8
2.42	120	5.0	1270	1215	394	124.35	4.309	0.120	4155	0.120	0.006	6.3
2.42	130	5.4	1270	1215	372	117.40	4.285	0.130	3945	0.130	0.006	6.8
2.42	140	5.8	1270	1215	360	113.62	4.261	0.140	3840	0.140	0.006	7.4
2.42	150	6.2	1270	1215	346	109.20	4.237	0.150	3711	0.150	0.006	7.9
2.42	160	6.6	1270	1215	332	104.78	4.213	0.160	3582	0.160	0.006	8.4
2.42	170	7.0	1270	1215	321	101.31	4.189	0.170	3483	0.170	0.006	8.9
2.42	180	7.4	1269	1215	309	97.52	4.164	0.180	3372	0.180	0.005	9.5
2.42	190	7.9	1265	1215	296	93.42	4.140	0.190	3249	0.190	0.005	10.0
2.42	200	8.3	1260	1215	287	90.58	4.116	0.200	3169	0.200	0.005	10.5
2.42	210	8.7	1253	1215	272	85.84	4.092	0.210	3021	0.210	0.004	11.0
2.42	220	9.1	1244	1215	267	84.27	4.068	0.220	2983	0.220	0.003	11.6
2.42	230	9.5	1237	1215	262	82.69	4.044	0.230	2944	0.230	0.002	12.1
2.42	240	9.9	1230	1215	255	80.48	4.020	0.240	2883	0.240	0.002	12.6
2.42	0	10.3		1215	252	79.53	3.996	0.250	2866	0.250		
2.42	260	10.7	1211	1215	247	77.95	3.972	0.260	2826	0.260		13.7
2.42	270	11.2	1202	1215	245	77.32	3.948	0.270	2821	0.270	-0.001	14.2
2.42	280	11.6	1194	1215	243	76.69	3.924	0.280	2815	0.280	-0.002	14.7
2.42	290	12.0	1186	1215	242	76.38	3.899	0.290	2820	0.290	-0.003	15.2
2.42	300	12.4	1178	1215	240	75.74	3.875	0.300	2814	0.300	-0.004	15.7
2.42	310	12.8	1170	1215	240	75.74	3.851	0.310	2832	0.310	-0.005	16.3
2.42	320	13.2	1162	1215	240	75.74	3.827	0.320	2850	0.320	-0.005	16.8
2.42	330	13.6	1155	1215	238	75.11	3.803	0.330	2844	0.330	-0.006	17.3
2.42	340	14.0	1147	1215	237	74.80	3.780	0.340	2850	0.340	-0.007	17.8
2.42	350	14.5	1140	1215	237	74.80	3.756	0.350	2868	0.350	-0.008	18.4
2.42	360	14.9	1132	1215	234	73.85	3.732	0.360	2850	0.360	-0.008	18.9
2.42	370	15.3	1127	1215	234	73.85	3.708	0.370	2868	0.370	-0.009	19.4
2.42	380	15.7	1120	1215		73.22	3.684	0.380	2862	0.380	-0.010	19.9
2.42	390	16.1	1111	1215	231	72.90	3.660	0.390	2868	0.390	-0.010	20.4
2.42	CE 4 11. 1 11.	16.5	1105	1215		72.27	3.636	0.400	2862	0.400	-0.011	20.9
2,72	700	10.5	, 1100	1210	ELO	, 2.21	3.030	0.400	2002	0.700	-0.011	20.9

					Dittirt	<u> </u>						
Sample	Horiz. Dial	Strain	Vert, Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1100	1215	230	72.59	3.612	0.410	2894	0.410	-0.012	21.5
2.42	420	17.4	1095	1215	229	72.27	3.588	0.420	2900	0.420	-0.012	22.0
2.42	430	17.8	1090	1215	230	72.59	3.565	0.430	2932	0.430	-0.013	22.5
2.42	440	18.2	1081	1215	230	72.59	3.541	0.440	2952	0.440	-0.013	23.0
2.42	450	18.6	1074	1215	230	72.59	3.517	0.450	2972	0.450	-0.014	23.5
2.42	460	19.0	1068	1215	233	73.53	3.493	0.460	3031	0.460	-0.015	24.1
2.42	470	19.4	1064	1215	235	74.17	3.469	0.470	3078	0.470	-0.015	24.6
2.42	480	19.8	1060	1215	239	75.43	3.446	0.480	3152	0.480	-0.016	25.1
2.42	490	20.2	1054	1215	246	77.64	3.422	0.490	3267	0.490	-0.016	25.6
2.42	500	20.7	1048	1215	241	76.06	3.398	0.500	3223	0.500	-0.017	26.1

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

CLIENT: CAL Engineering and Geology

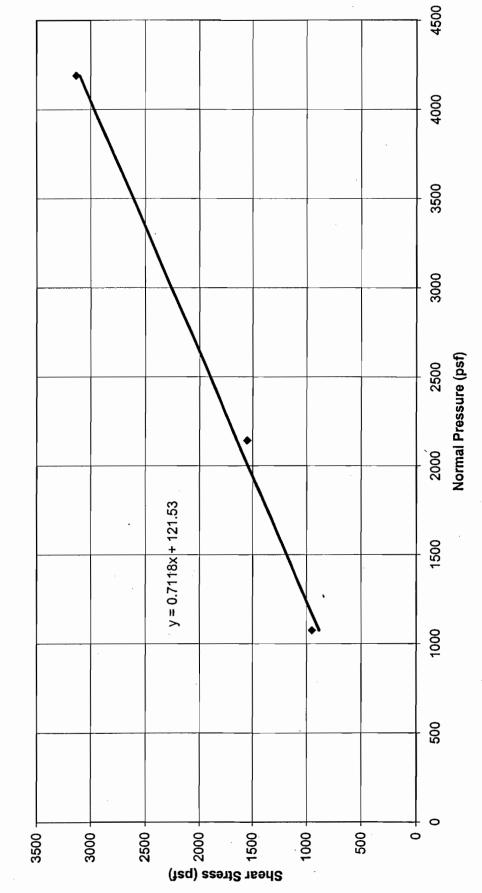

Direct Shear Envelope Plot (Peak)


Project: Vasco Rd. Project #: 1860

Boring: B-5 Depth: 62.0'

Boring: B-5 1075 1867 2142 2517 4190 3972

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY


CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Peak)
Project: Vasco Rd.
Project #: 1860
Boring: B-5 Depth:

1075 1405 2142 1877 4190 3775 oth: 44.5

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

DIRECT SHEAR RESULTS (Ultimate)
Vasco Road, Project No. 001860
Boring B-5, Depth 44.5'
Friction Angle 35.4 deg., Cohesion 122 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Gry and Yel Brn Sandy Silfstone

CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Peak)
Project: Vasco Rd.
Project #: 1860
Boring: B-5

1075 950 2142 1550 4190 3137 Depth: 44

44.5

OLIENT	DATA SHEET Cal Engineering and Geology Ring Constant = 0.3156 lb/div											
CLIENT:			Geology	_							T —	
PROJECT:	Vasco Road	1						·	Diameter	· /	2.42	
PROJ. #:	001860		TEST DATE	: :	01/07/2001				ple Heig		1.20	
BORING:	B-5		DEPTH:		44.5'				. Dial Re		0	
SAMPLE #:	1		(0 40# F	N' 1 C	21- 0-	 			Pressure		1075	
			for 2.42" [_		ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading.	fn(dia.)	Reading		Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1434	1434	. 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1427	1434	32	10.10	4.588	0.005	317	0.005	-0.001	0.3
2.42	10	0.4	1425	1434	39	12.31	4.575	0.010	387	0.010	-0.001	0.5
2.42	20	0.8	1425	1434	56	17.67	4.551	0.020	559	0.020	-0.001	1.1
2.42	30	1.2	1428	1434	68	21.46	4.527	0.030	683	0.030	-0.001	1.6
2.42	. 40	1.7	1439	1434	80	25.25	4.503	0.040	807	0.040	0.001	2.1
2.42	50	2.1	1449	1434	96	30.30	4.479	0.050	974	0.050	0.002	2.6
2.42	, 60	2.5	1459	1434		35.03	4.454	0.060	1132	0.060	0.003	3.2
2.42	70	2.9	1468	1434	.122	38.50	4.430	0.070	1252	0.070	0.003	3.7
2.42		3.3	1479	1434	128	40.40	4.406	0.080	1320	0.080	0.005	4.2
2.42	90	3.7	1495	1434	133	41.97	4.382	0.090	1379	0.090	0.006	4.7
2.42	. 100	4.1	1509	1434	134	42.29	4.358	0.100	1397	0.100	0.008	5.3
2.42	110	4.5	1525	1434	134	42.29	4.333	0.110	1405	0.110	0.009	5.8
2.42	120	5.0	1538	1434	131	41.34	4.309	0.120	1382	0.120	0.010	6.3
2.42	130	5.4	1548	1434	128	40.40	4.285	0.130	1358	0.130	0.011	6.8
. 2.42	140	5.8	1552	1434	123	38.82	4.261	0.140	1312	0.140	0.012	7.4
2.42	150	6.2	1555	1434	118	37.24	4.237	0.150	1266	0.150	0.012	7.9
2.42	160	6.6	1556	1434	113	35.66	4.213	0.160	1219	0.160	0.012	8.4
2.42	170	7.0	1559	1434	108	34.08	4.189	0.170	1172	0.170	0.013	8.9
2.42	180	7.4	1565	1434	105	33.14	4.164	0.180	1146	0.180	0.013	9.5
2.42	190	7.9	1566	1434		31.88	4.140	0.190	1109	0.190	0.013	10.0
2.42	200	8.3	1566	1434	98	30.93	4.116	0.200	1082	0.200	0.013	10.5
2.42	210	8.7	1566	1434	94	29.67	4.092	0.210	1044	0.210	0.013	11.0
2.42	220	9.1	1566	1434	92	29.04	4.068	0.220	1028	0.220	0.013	11.6
2.42	230	9.5	1566	1434	90	28.40	4.044	0.230	1011	0.230	0.013	12.1
2.42	240	9.9	1566	1434	88	27.77	4.020	0.240	995	0.240	0.013	12.6
2.42		10.3	1566	1434	7, 2 10 1	27.14	3.996	0.250	978	0.250	0.013	13.1
-	260	10.7		1434	84	26.51	3.972	0.260	961	0.260	0.013	13.7
	270	11.2		1434	83	26.19	3.948	0.270	956	0.270	0.013	14.2
2.42	gen all for particular to select the	11.6		1434	83	26.19	3.924	0.280	961	0.280	0.013	14.7
	290	12.0	. 7.7	1434	82	25.88	3.899	0.290	956	0.290	0.013	15.2
	300	12.4	4-4-1-4-47	1434		25.56	3.875	0.300	950	0.300	0.013	15.7
	310	12.8	7	1434	81	25.56	3.851	0.310	956	0.310	0.013	16.3
2.42	Contractor of the contractor	13.2		1434	80	25.25	3.827	0.320	950	0.320	0.012	16.8
2.42	7	13.6		1434	80	25.25	3.803	0.330	956	0.330	0.012	17.3
2.42		14.0		1434	79	24.93	3.780	0.340	950	0.340	0.012	17.8
2.42	350	14.5	1549	1434	79	24.93	3.756	0.350	956	0.350	0.012	18.4
2.42		14.9	1544	1434	78	24.62	3.732	0.360	950	0.360	0.012	18.9
2.42	370	15.3	1541	1434	78	24.62	3.708	0.370	956	0.370	0.011	19.4
	380		1538		78	24.62	3.684	0.380	962	0.370	0.010	19.9
	390		1535		79	24.93	3.660	0.390	981	0.390	0.010	20.4
	400		1534		79	24.93	3.636	0.400	987	0.390	0.010	20.4
2.42	400	10.3	1004	1434	\$40.00 CO. 1.0	24.53	3.030	0.400	901	0.400	0.010	20.9

					_,	OT ILL						
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001*	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1532	1434		24.93	3.612	0.410	994	0.410	0.010	21.5
2.42	420	17.4	1530	1434	79	24.93	3.588	0.420	1001	0.420	0.010	22.0
2.42	430	17.8	1528	1434	79	24.93	3.565	0.430	1007	0.430	0.009	22.5
2.42	440	18.2	1527	1434	79	24.93	3.541	0.440	1014	0.440	0.009	23.0
2.42	450	18.6	1528	1434		24.62	3.517	0.450	1008	0.450	0.009	23.5
2.42	460	19.0	1527	1434	77.	24.30	3.493	0.460	1002	0.460	0.009	24.1
2.42	470	19.4	1526	1434	77	24.30	3.469	0.470	1009	0.470	0.009	24.6
2.42	480	19.8	1525	1434	77	24.30	3.446	0.480	1016	0.480	0.009	25.1
2.42	490	20.2	1523	1434	. 77	24.30	3.422	0.490	1023	0.490	0.009	25.6
2.42	500	20.7	1522	1434	77	24.30	3.398	0.500	1030	0.500	0.009	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-5, Depth 44.5', Sample #1, Vertical Load 1075 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 ***** Shear Stress (psf) 200 1200 -009 1600 1400 400

0.600 0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-5, Depth 44.5', Sample #1, Vertical Load 1075 psf 0.400 0.300 0.200 0.100 0.000 0.012 -0.002 0.014 0.010 0.002

Shear Displacement (in.)

	DATA SHEET						_					
CLIENT:	Cal Enginee	ering and	Geology					Ring Co	nstant = (0.3156 lb	/div	
PROJECT:	Vasco Road	<u> </u>						Sample	Diameter	(in.):	2.42	
PROJ.#:	001860		TEST DATE	= :	01/07/2001			Init. Sam	nple Heig	ht (in.):	1.20	
BORING:	B-5		DEPTH:		44.5'			Init.Horz	. Dial Re	ading:	0	
SAMPLE #:	2								Pressure		2142	
	Corrected	l Area f	for 2.42" [Diameter S	Sample O	nly. Refer	to Deriva	ition for	Other	Diamete	ers.	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading		Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	√X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1426	1426	. 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1426	1425	70	22.09	4.588	0.005	693	0.005	0.000	0.3
2.42	10	0.4	1426	1425	91	28.72	4.575	0.010	904	0.010	0.000	0.5
2.42	20	0.8	1426	1424	115	36.29	4.551	0.020	1148	0.020	0.000	1.1
2.42	30	1.2	1426	1425	133	41.97	4.527	0.030	1335	0.030	0.000	1.6
2.42	. 40	1.7	1426	1429	148	46.71	4.503	0.040	1494	0.040	0.000	2.1
2.42	50	2.1	1426	1435	159	50.18	4.479	0.050	1613	0.050	-0.001	2.€
2.42	. 60	2.5	1426	1439	169	53.34	4.454	0.060	1724	0.060	-0.001	3.2
2.42	70	2.9	1426	1439	175	55.23	4.430	0.070	1795	0.070	-0.001	3.7
2.42	a./- 80	3.3	1426	1439	178	56.18	4.406	0.080	1836	0.080	-0.001	4.2
2.42	90	3.7	1426	1439	180	56.81	4.382	0.090	1867	0.090	-0.001	4.7
2.42	100	4.1	1426	1439	180	56.81	4.358	0.100	1877	0.100	-0.001	5.3
2.42	110	4.5	1426	1434	177	55.86	4.333	0.110	1856	0.110	-0.001	5.8
2.42	ાં. 120	5.0	<u>. 1426</u>	1427	174	54.91	4.309	0.120	1835	0.120	0.000	6.3
2.42		5.4	1426	1421	170	53.65	4.285	0.130	1803	0.130	0.001	6.8
2.42	140	5.8	1426	1415	166	52.39	4.261	0.140	1771	0.140	0.001	7.4
2.42	150	6.2	1426	1408	161	50.81	4.237	0.150	1727	0.150	0.002	7.9
2.42	160	6.6	1426	1402	157	49.55	4.213	0.160	1694	0.160	0.002	8.4
2.42	The table of the second	7.0	**12:120:000.04-71	1398	154	48.60	4.189	0.170	1671	0.170	0.003	8.9
2.42	180	7.4	1426	1392	151	47.66	4.164	0.180	1648	0.180	0.003	9.5
2.42	F .39 - 1-61 - 41 2-	7.9	1426	1388	147	46.39	4.140	0.190	1614	0.190	0.004	10.0
2.42	200	8.3	1426	1381	145	45.76	4.116	0.200	1601	0.200	0.005	10.5
2.42	210		1426	1375	143	45.13	4.092	0.210	1588	0.210	0.005	11.0
2.42	- ∤.‡⊹ 220	9.1	1426	1370	. 141	44.50	4.068	0.220	1575	0.220	0.006	11.6
2.42	230		1426	1366	139	43.87	4.044	0.230	1562	0.230	0.006	12.1
2.42	240	9.9	1426	1360	138	43.55	4.020	0.240	1560	0.240	0.007	12.6
	250		1426		137	43.24	3.996	0.250	1558	0.250	0.007	13.1
2.42	260	10.7	1426	1351	136	42.92	3.972	0.260	1556	0.260	0.008	13.7
2.42	270	11.2	1426	1346	135	42.61	3.948	0.270	1554	0.270	0.008	14.2
2.42	- 1	11.6		1340	134	42.29	3.924	0.280	1552	0.280	0.009	14.7
2.42		12.0		1335	133	41.97	3.899	0.290	1550	0.290	0.009	15.2
2.42	at at law of a the	12.4	W. 4-10-740-	1327	133	41.97	3.875	0.300	1560	0.300	0.010	15.7
2.42			1426	1323	132	41.66	3.851	0.310	1558	0.310	0.010	16.3
2.42	esti i i i	13.2		1318		41.66	3.827	0.320	1567	0.320	0.011	16.8
2.42		13.6		1313		41.34	3.803	0.330	1565	0.330	0.011	17.3
2.42			1426	1308	130	41.03	3.780	0.340	1563	0.340	0.012	17.8
2.42	350	14.5		1303	129	40.71	3.756	0.350	1561	0.350	0.012	18.4
2.42	360	14.9		1300	129	40.71	3.732	0.360	1571	0.360	0.013	18.9
2.42	370	15.3	1426	1295	128	40.40	3.708	0.370	1569	0.370	0.013	19.4
2.42	380	15.7		1292	128	40.40	3.684	0.380	1579	0.380	0.013	1 9 .9
	390		1426	1285	2 2 2 2 2 2 2 2 2 2 2 2	40.40	3.660	0.390	1589	0.390	0.014	20.4
2.42	400	1 6. 5	1426	1280	127	40.08	3.636	0.400	1587	0.400	0.015	20.9

Sample	Horiz. Dial	Strain	Vert, Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" опіу	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1426	1277	127	40.08	3.612	0.410	1598	0.410	0.015	21.5
2.42	420	17.4	1426	1275	127	40.08	3.588	0.420	1608	0.420	0.015	22.0
2.42	430	17.8	1426	1267	125	39.45	3.565	0.430	1594	0.430	0.016	22.5
2.42	440	18.2	1426	1261	124	39.13	3.541	0.440	1592	0.440	0.017	23.0
2.42	450	18.6	1426	1256	123	38.82	3.517	0.450	1589	0.450	0.017	23.5
2.42	460	19.0	1426	1249	126	39.77	3.493	0.460	1639	0.460	0.018	24.1
2.42	470	19.4	1426	1245	124	39.13	3.469	0.470	1624	0.470	0.018	24.6
2.42	480	19.8	1426	1243	122	38.50	3.446	0.480	1609	0.480	0.018	25.1
2.42	490	20.2	1426	1240	121	38.19	3.422	0.490	1607	0.490	0.019	25.6
2.42	500	20.7	1426	1240	121	38.19	3.398	0.500	1618	0.500	0.019	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-5, Depth 44.5', Sample #2, Vertical Load 2142 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 200 -2000 1400 009 904 1800 1600

0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-5, Depth 44.5', Sample #2, Vertical Load 2142 psf 0.400 0.200 0.010 0.005 0.015 0.020 -0.005 Vertical Deformation (in.)

Shear Displacement (in.)

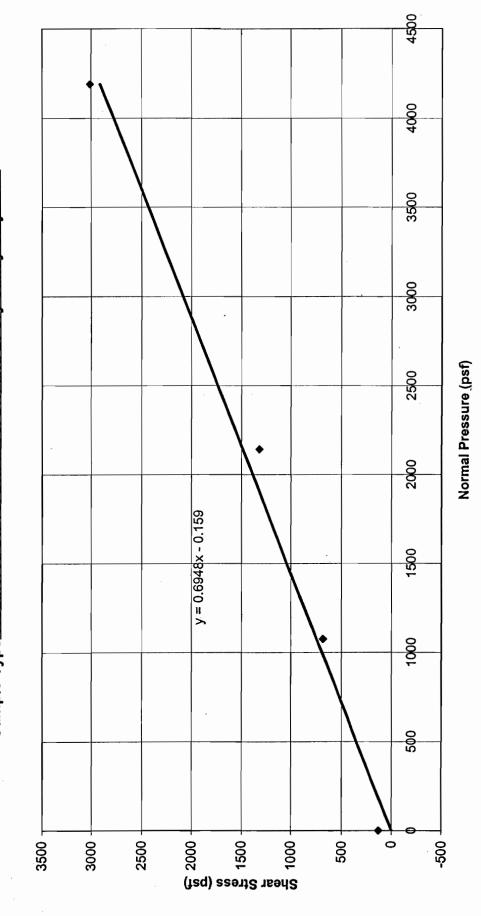
OLIENT.	0.15		0 1		DATA	SHEET		5. 0				т
CLIENT:	Cal Engine		Geology					Ring Constant = 0.3156 lt			T	
PROJECT:	Vasco Road				0.110777			Sample Diameter (in.):			1.20	
PROJ.#:	001860				01/07/2001				nit. Sample Height (in.):			
	B-5		DEPTH:		44.5'				. Dial Rea		0	
SAMPLE #:	3	1 0	0.40".5		<u> </u>				Pressure		4190	
			Area for 2.42" Diameter Sample Only. Refer to Derivation for Other Diameters.									
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	į 0	0.0	1482	1482	. 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1482	1482	76	23.99	4.588	0.005	753	0.005	0.000	0.3
2.42	10	0.4	1482	1481	103	32.51	4.575	0.010	1023	0.010	0.000	0.5
2.42	20	0.8	1482	1477	134	42.29	4.551	0.020	1338	0.020	0.001	1.1
2.42	30	1.2	1482	1471	163	51.44	4.527	0.030	1636	0.030	0.001	1.6
2.42	40	1.7	1482	1468	196	61.86	4.503	0.040	1978	0.040	0.001	2.1
2.42	50	2.1	1482	1465	229	72.27	4.479	0.050	2324	0.050	0.002	2.6
2.42	60	2.5	1482	1463	267	84.27	4.454	0.060	2724	0.060	0.002	3.2
2.42	* 70	2.9	1482	1462	299	94.36	4.430	0.070	3067	0.070	0.002	3.7
2.42	80	3.3	1482	1462	322	101.62	4.406	0.080	3321	0.080	0.002	4.2
2,42	90	3.7	1482	1462	341	107.62	4.382	0.090	3537	0.090	0.002	4.7
2.42	100	4.1	1482	1464	352	111.09	4.358	0.100	3671	0.100	0.002	5.3
2.42	110	4.5	1482	1468	358	112.98	4.333	0.110	3754	0.110	0.001	5.8
2.42	120	5.0	1482	1469	358	112.98	4.309	0.120	3775	0.120	0.001	6.3
2.42	130	5.4	1482	1475	355	112.04	4.285	0.130	3765	0.130	0.001	6.8
2.42	140	5.8	1482	1478	351	110.78	4.261	0.140	3744	0.140	0.000	7.4
2.42	150	6.2	1482	1479	341	107.62	4.237	0.150	3658	0.150	0.000	7.9
2.42	160	6.6	1482	1479	333	105.09	4.213	0.160	3592	0.160	0.000	8.4
2.42	170	7.0	1482	1479	322	101.62	4.189	0.170	3494	0.170	0.000	8.9
2.42	180	7.4	1482	1479	312	98.47	4.164	0.180	3405	0.180	0.000	9.5
2.42	190	7.9	1482	1479	302	95.31	4.140	0.190	3315	0.190	0.000	10.0
2.42	200	8.3	1482	1475	296	93.42	4.116	0.200	3268	0.200	0.001	10.5
2.42	210	8.7	1482	1469	290	91.52	4.092	0.210	3221	0.210	0.001	11.0
2.42	220	9.1	1482	1460	285	89.95	4.068	0.210	3184	0.220	0.001	11.6
2.42	230	9.5	1482	1453	282	89.00	4.044	0.220	3169	0.230	0.002	
2.42	230 240	9.9		1447	279	88.05	4.044	0.230	3154	0.230		12.1
2.42	- W-1144		MC9151 215 1 11	1447		87.42					0.004	12.6
			482 1482				3.996	0.250	3151	0.250	0.004	13.1
2.42	260	10.7		1436	274	86.47	3.972	0.260	3135	0.260	0.005	13.7
2.42	Sale Control Visit Control		1482	1431	273	86.16	3.948	0.270	3143	0.270	0.005	14.2
2.42		11.6		1425	271	85.53	3.924	0.280	3139	0.280	0.006	14.7
	290		1482	1421		84.90	3.899	0.290	3135	0.290	0.006	15.2
2.42	300	_	1482	1416	268	84.58	3.875	0.300	3143	0.300	0.007	15.7
2.42		12.8	444.1184	1409	267	84.27	3.851	0.310	3151	0.310	0.007	16.3
2.42		13.2	1482	1406	265	83.63	3.827	0.320	3147	0.320	0.008	16.8
2.42	6	13.6	1482	1401	264	83.32	3.803	0.330	3154	0.330	0.008	17.3
2.42	340	. 14.0	1482	1396	262	82.69	3.780	0.340	3150	0.340	0.009	17.8
2.42	350	14.5		1391	259	81.74	3.756	0.350	3134	0.350	0.009	18.4
2.42		14.9	1482	1388	257	81.11	3.732	0.360	3130	0.360	0.009	18.9
2.42		15.3	7-5,05 1 10 1	1385	256	80.79	3.708	0.370	3138	0.370	0.010	19.4
2.42	380	15.7	1482	1380	253	79.85	3.684	0.380	3121	0.380	0.010	19.9
2.42	390	16.1	1482	1375	252	79.53	3.660	0.390	3129	0.390	0.011	20.4
2.42	400	16.5	1482	1371	251	79.22	3.636	0.400	3137	0.400	0.011	20.9

Sample	Horiz. Dial	Strain	Vert. Dial.	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1482	1365	249	78.58	3.612	0.410	3133	0.410	0.012	21.5
2.42	420	17.4	1482	1360	247	77.95	3.588	0.420	3128	0.420	0.012	22.0
2.42	430	17.8	1482	1355	247	77.95	3.565	0.430	3149	0.430	0.013	22.5
2.42	440	18.2	1482	1350	245	77.32	3.541	0.440	3145	0.440	0.013	23.0
2.42	450	18.6	1482	1343	243	76.69	3.517	0.450	3140	0.450	0.014	23.
2.42	460	19.0	1482	1338	243	76.69	3.493	0.460	3161	0.460	0.014	24.1
2.42	470	19.4	1482	1332	241	76.06	3.469	0.470	3157	0.470	0.015	24.6
2.42	480	19.8	1482	1326	240	75.74	3.446	0.480	3165	0.480	0.016	25.1
2.42	490	20.2	1482		240	75.74	3.422	0.490	3187	0.490	0.016	25.6
2.42	500	20.7	1482	1316	240	75.74	3.398	0.500	3210	0.500	0.017	26.1

0.600 0.500 Boring B-5, Depth 44.5', Sample #3, Vertical Load 4190 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 **+** Shear Stress (psf) - 009 3000 1500 1000 4000 3500

Shear Stress vs. Shear Displacement, Project 001860

0.600 0.500 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 0.000 Vertical Deformation (in.)


Vertical Deformation (in.)

0.00

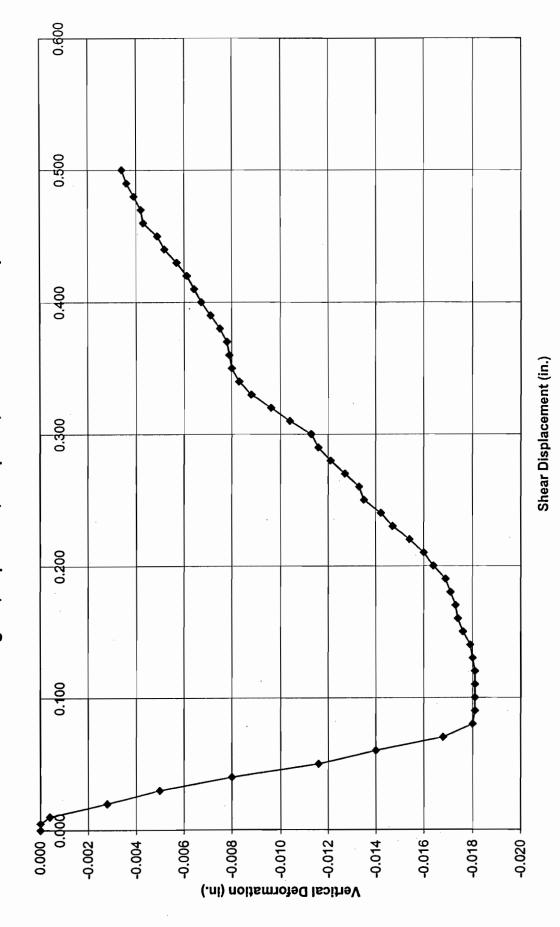
0.000

0.000 900.0 0.004 0.002 0.018 0.016 0.014

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-5, Depth 44.5', Sample #3, Vertical Load 4190 psf

CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Ultimate) Project: Vasco Rd. Project #: Boring: 1860 Depth: B-5 62.0' 0 127 1075 685 2142 1322 3012 4190


					DATA	SHEET						
	Cal Enginee		Geology							0.3156 lb/		
	Vasco Road	1							Diameter		2.42	
PROJ. #:	001860		TEST DATE	<u>:</u>	01/07/2001				ple Heig		1.20	
BORING:	B-5		DEPTH:		62.0'		·		. Dial Rea		0	
SAMPLE #:	1					. 5 (Pressure		1075	
			or 2.42" E					tion for			ers.	
Sample	Horiz. Dial	Strain	Vert. Dial:			Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading:	Dial. Read.		Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	. 0	0.0	2319	2319	6 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	2319	2319	59	18.62	4.588	0.005	584	0.005	0.000	0.3
2.42	. 10	0.4	2319	2323	82	25.88	4.575	0.010	814	0.010	0.000	0.5
2.42	20	0.8	2319	2347	120	37.87	4.551	0.020	1198	0.020	-0.003	1.1
2.42	30	1.2	2319	2369	154	48.60	4.527	0.030	1546	0.030	-0.005	1.6
2.42	40	1.7	2319	2399	179	56.49	4.503	0.040	1807	0.040	-0.008	2.1
2.42	50	2.1	2319	2435	184	58.07	4.479	0.050	1867	0.050	-0.012	2.6
2.42		2.5	2319	2459	176	55.55	4.454	0.060	1796	0.060	-0.014	3.2
2.42	70	2.9	2319	2487	148	46.71	4.430	0.070	1518	0.070	-0.017	3.7
2.42		3.3	2319	2499	: 122	38.50	4.406	0.080	1258	0.080	-0.018	4.2
2.42	90	3.7	2319	2500	95	29.98	4.382	0.090	985	0.090	-0.018	4.7
2.42	100	4.1	2319	2500	85	26.83	4.358	0.100	886	0.100	-0.018	5.3
2.42	110	4.5	2319	2500	- 79	24.93	4.333	0.110	828	0.110	-0.018	5.8
2.42	120	5.0	2319	2500	76	23.99	4.309	0.120	802	0.120	-0.018	6.3
2.42	130	5.4	2319	2499	72	22.72	4.285	0.130	764	0.130	-0.018	6.8
2.42	140	5.8	2319	2498	70	22.09	4.261	0.140	747	0.140	-0.018	7.4
2.42	150	6.2	2319	2495	€ 4 68	21.46	4.237	0.150	729	0.150	-0.018	7.9
2.42	160	6.6	2319	2493	66	20.83	4.213	0.160	712	0.160	-0.017	8.4
2.42	170	7.0	2319	2492	65	20.51	4.189	0.170	705	0.170	-0.017	8.9
2.42	180	7.4	; 🛶 2319	2490	63	19.88	4.164	0.180	688	0.180	-0.017	9.5
2.42	190	7.9	2319	2488	2 63	19.88	4.140	0.190	692	0.190	-0.017	10.0
2.42	200	8.3	2319	2483	62	19.57	4.116	0.200	685	0.200	-0.016	10.5
2.42	210	8.7	2319	2479	62	19.57	4.092	0.210	689	0.210	-0.016	11.0
2.42	220	9.1	2319	2473	62	19.57	4.068	0.220	693	0.220	-0.015	11.6
2.42	230	9.5	2319	2466	62	19.57	4.044	0.230	697	0.230	-0.015	12.1
2.42	240	9.9	2319 🚉	2461	62	19.57	4.020	0.240	701	0.240	-0.014	12.6
2.42	250	10.3	2319	2454	62	19.57	3.996	0.250	705	0.250	-0.014	13.1
	260	10.7	2319		.62	19.57	3.972	0.260	709	0.260	-0.013	13.7
	270	11.2	2319	2446	- 62	19.57	3.948	0.270	714	0.270	-0.013	14.2
	280	11.6	2319	2440	. 62	19.57	3.924	0.280	718	0.280	-0.012	14.7
	290	12.0	2319		63	19.88	3.899	0.290	734	0.290	-0.012	15.2
	≨⊹∜∜ 300	12.4	2319		63	19.88	3.875	0.300	739	0.300	-0.011	15.7
$\overline{}$	310	12.8	4	2423		19.88	3.851	0.310	743	0.310	-0.010	16.3
	320	13.2	2319	2415	. 62	19.57	3.827	0.320	736	0.320	-0.010	16.8
2.42	a	13.6	2319	2407	¥ 63	19.88	3.803	0.330	753	0.330	-0.009	17.3
2.42	p ()	14.0		2402	63	19.88	3.780	0.340	758	0.340	-0.008	17.8
	350	14.5		2399	63	19.88	3.756	0.350	762	0.350	-0.008	18.4
		14.9			62 🚅 د	19.57	3.732	0.360	755	0.360	-0.008	18.9
	370		2319		62	19.57	3.708	0.370	760	0.370	-0.008	19.4
	380	15.7	2319		≨.⊈ 8 . 61	19.25	3.684	0.380	753	0.380	-0.008	19.9
	⋌ 4₁ 390	16.1	2319		62	19.57	3.660	0.390	770	0.390	-0.007	20.4
	400	16.5			62	19.57	3.636	0.400	775		-0.007	20.9
4.44	田田 西北地 子びり	10.5	B-62555 TO 10	2000	TOROLOGICAL VA	10.01	3.000	0.100		5.400	0.007	

_					D/ (1/ (OI ILL I						
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001,"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	2319	2383	62	19.57	3.612	0.410	780	0.410	-0.006	21.5
2.42	420	17.4	2319	2380	62	19.57	3.588	0.420	785	0.420	-0.006	22.0
2.42	430	17.8	2319	2376	62	19.57	3.565	0.430	790	0.430	-0.006	22.5
2.42	440	18.2	2319	2371	63	19.88	3.541	0.440	809	0.440	-0.005	23.0
2.42	450	18.6	2319	2368	62	19.57	3.517	0.450	801	0.450	-0.005	23.5
2.42	460	19.0	2319	2362	63	19.88	3.493	0.460	820	0.460	-0.004	24.1
2.42	470	19.4	2319	2361	64	20.20	3.469	0.470	838	0.470	-0.004	24.6
2.42	480	19.8	2319	2358	65	20.51	3.446	0.480	857	0.480	-0.004	25.1
2.42	490	20.2	2319	2355	. 64	20.20	3.422	0.490	850	0.490	-0.004	25.6
2.42	500	20.7	2319	2353	63	19.88	3.398	0.500	843	0.500	-0.003	26.1

0.600 0.500 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 ***** Shear Stress (psf)
800 - 009 200 1600 1400 -400 1800 -2000

Shear Stress vs. Shear Displacement, Project 001860 Boring B-5, Depth 62.0', Sample #1, Vertical Load 1075 psf

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-5, Depth 62.0', Sample #1, Vertical Load 1075 psf

	0.15		0		DAIA	SHEET		D: C	tt (2456 15	ldi.	
	Cal Enginee		Geology						nstant = (
PROJECT:	Vasco Road			_	04/07/0004				Diameter	· · · ·	2.42	
	001860		TEST DATE	:	01/07/2001				ple Heigl		1.20	
	B-5		DEPTH:		62.0'				. Dial Rea		0	
SAMPLE #:	2	1 1 200	for 2.42" D	liamatar C	Sample Or	alv. Dofor	to Dorivo		Othor I		2142	
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading		Ring Read.	Ring Load		Deform.		Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"		(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	. 0	0.0		1759	0	0.00	4.600	0.000	_	0.000	0.000	0.0
2.42	. 5	0.2	1759	1755	44	13.89	4.588	0.005	436	0.005	0.000	0.3
2.42	10	0.4	1759	1755	50	15.78	4.575	0.010		0.010	0.000	0.5
2.42	20	0.8	1759	1757	53	16.73	4.551	0.020		0.020	0.000	1,1
2.42	30	1.2	1759	1759	82	25.88	4.527	0.030	823	0.030	0.000	1.6
2.42	40	1.7	1759	1766	108	34.08	4.503	0.040	1090	0.040	-0.001	2.1
2.42	50	2.1	100 110 110 110 110	1770	.,	43.55	4.479	0.050	1400	0.050	-0.001	2.6
2.42	60	2.5	with find a large and	1779	169	53.34	4.454	0.060	1724	0.060	-0.002	3.2
2.42	.70	2.9	Board of the San Street St.	1789	196	61.86	4.430	0.070	2011	0.070	-0.003	3.7
2.42		3.3	Editor deliberation	1798	216	68.17	4.406	0.080	2228	0.080	-0.004	4.2
2.42	;;; -5,;90	3.7	1759	1798	228	71.96	4.382	0.090		0.090	-0.004	4.7
2.42	s in 100	4.1	1759	1795	7-29-rag (3-20) 1 1 V	74.80	4.358	0.100	2472	0.100	-0.004	5.3
2.42	110	4.5	1759	1802	240	75.74	4.333	0.110		0.110	-0.004	5.8
2.42	ակ 120	5.0	DATE OF THE PARTY	1816	233	73.53	4.309	0.120		0.120	-0.006	6.3
2.42	130	5.4	1759	1829	220	69.43	4.285	0.130		0.130	-0.007	6.8
2.42	140	5.8	2307 TO 07 TO 18	1840	204	64.38	4.261	0.140	_	0.140	-0.008	7.4
	150	6.2	1759	1848	188	59.33	4.237	0.150	2017	0.150	-0.009	7.9
2.42	160		1759	1847	5 x 1 173	54.60	4.213	0.160	1866	0.160	-0.009	8.4
2.42	170		1759	1841	159	50.18	4.189	0.170	1725	0.170	-0.008	8.9
2.42	180		man the change and a transfer	1834	148	46.71	4.164	0.180	1615	0.180	-0.008	9.5
2.42	# # 190		Applies 2002 - 1277-2757-1	1825	#17-34-1-2-216 to late. 4-	44.18	4.140	0.190	1537	0.190	-0.007	10.0
2.42	∰. 200		New York of the Control of the Contr	1817	192 (101) \$ \$500 A	42.29	4.116	0.200		0.200	-0.006	10.5
2.42	210	8.7	1759 in 1759	1808	130	41.03	4.092	0.210	_	0.210	-0.005	11.0
2.42	<u>.</u> 220	9.1	1759	1800	125	39.45	4.068	0.220	1396	0.220	-0.004	11.6
2.42	230		1759	. 1791	121	38.19	4.044	0.230	1360	0.230	-0.003	12.1
2.42	240	9.9	1759	1782	119	37.56	4.020	0.240	1345	0.240	-0.002	12.6
2.42	250		1759		117	36.93	3.996	0.250	1331	0.250	-0.002	13.1
2.42	260		1759		≱ ∂ 115	36.29	3.972	0.260		0.260	0.000	13.7
2.42	270		1759		115		3.948	0.270	1324	0.270	0.000	14.2
2.42	280	11.6	1759		113		3.924	0.280	1309	0.280	0.001	14.7
2.42	290	12.0	1759	1737	113	35.66	3.899	0.290	1317	0.290	0.002	15.2
2.42	300		1759	1725	113	35.66		0.300	1325	0.300	0.003	15.7
2.42	310	12.8	1759	1717	. 112	35.35	3.851	0.310	1322	0.310	0.004	16.3
2.42	320	13.2	1759	1710	114	35.98	3.827	0.320	1354	0.320	0.005	16.8
2.42	330	13.6	1759	1702	113	35.66	3.803	0.330	1350	0.330	0.006	17.3
2.42	340	14.0	1759	1695	114	35.98	3.780	0.340	1371	0.340	0.006	17.8
2.42	350	14.5	1759	1687	. 113	35.66	3.756	0.350	1367	0.350	0.007	18.4
2.42	A 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.9	1759	1680	113	35.66	3.732	0.360	1376	0.360	0.008	18.9
2.42	Brook and and the	15.3	1759	1674	113	35.66	3.708	0.370	1385	0.370	0.009	19.4
	380	15.7	1759		113	35.66	3.684	0.380	1394	0.380	0.009	19.9
	390		1759		112	35.35	3.660	0.390	1391	0.390	0.010	20.4
	400		1759		112	35.35	3.636	0.400	1400	0.400	0.011	20.9
	ROLL STATE	10.0	A Philipping of the Company	,,,,,,	regulation of the state of							

					D/ 11/1							
Sample	Horiz. Dial	Strain	Vert. Diaf	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0,0001	X 0.0001*	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1759	1646	113	35.66	3.612	0.410	1422	0.410	0.011	21.5
2.42	420	17.4	1759	1640	113	35.66	3.588	0.420	1431	0.420	0.012	22.0
2.42	430	17.8	1759	1635	113	35.66	3.565	0.430	1441	0.430	0.012	22.5
2.42	440	18.2	1759	1629	113	35.66	3.541	0.440	1450	0.440	0.013	23.0
2.42	450	18.6	1759	1622	114	35.98	3.517	0.450	1473	0.450	0.014	23.5
2.42	460	19.0	1759	1615	112	35.35	3.493	0.460	1457	0.460	0.014	24.1
2.42	470	19.4	1759	1609	ົ 112	35.35	3.469	0.470	1467	0.470	0.015	24.6
2.42	480	19.8	1759	1602	110	34.72	3.446	0.480	1451	0.480	0.016	25.1
2.42	490	20.2	1759	1594	107	33.77	3.422	0.490	1421	0.490	0.017	25.6
2.42	500	20.7	1759	1589	3.111	35.03	3.398	0.500	1484	0.500	0.017	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-5, Depth 62.0', Sample #2, Vertical Load 2142 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 • 1000 200 Shear Stress (pst) 3000 2500 2000

0.600 0.500 0.400 0.200 0.100 0.000 0.005 -0.005 -0.010 -0.015 0.020 0.015 0.010 Vertical Deformation (in.)

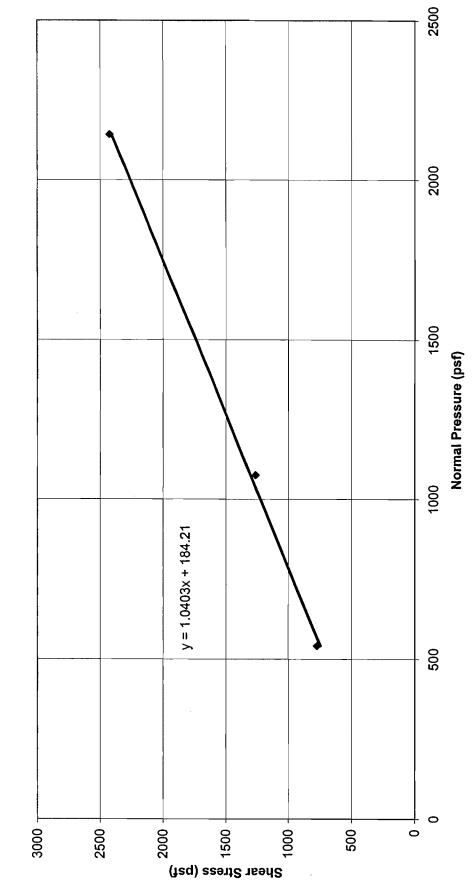
Shear Displacement (in.)

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-5, Depth 62.0', Sample #2, Vertical Load 2142 psf

0.600 0.500 Boring B-5, Depth 62.0', Sample #3, Vertical Load 4190 psf Shear Stress vs. Shear Displacement, Project 001860 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 200 Shear Stress (psf) 4500 4000 3200 3000 1500 1000

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-5, Depth 62.0', Sample #3, Vertical Load 4190 psf 0.400 0.300 0.000 0.015 0.010 -0.005 0.005 Vertical Deformation (in.)

Shear Displacement (in.)


					DATA	SHEET						T
CLIENT:	Cal Enginee	ering and	Geology							0.3 <u>156</u> lb/		<u> </u>
PROJECT:	Vasco Road	1						<u> </u>	Diameter	`	2.42	
PROJ.#:	001860		TEST DATE	E:	01/07/2001				ple Heigl	<u> </u>	1.20	<u> </u>
BORING:	B-5		DEPTH:		62.0'			Init:Horz	. Dial Rea	ading:	0	
SAMPLE #:	3		<u> </u>						Pressure		4190	
	Corrected	Area t	for 2.42" E	Diameter S	Sample Or	nly. Refer	to Deriva	tion for	Other I	Diamete	ers.	
Sample	Horiz, Dial	Strain	Vert. Dial.	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001*	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	0	0.0	1546	1546	. 0	0.00	4.600	0.000	0	0.000	0.000	0.0
2.42	5	0.2	1546	1544	95	29.98	4.588	0.005	941	0.005	0.000	0.3
2.42	10	0.4	1546	1543	130	41.03	4.575	0.010	1291	0.010	0.000	0.5
2.42	20	0.8	1546	1543	173	54.60	4.551	0.020	1728	0.020	0.000	1.1
2.42	30	1.2	1546	1546	210	66.28	4.527	0.030	2108	0.030	0.000	1.6
2.42	40	1.7	1546	1553	253	79.85	4.503	0.040	2554	0.040	-0.001	2.1
2.42	50	2.1	1546	1559	300	94.68	4.479	0.050	3044	0.050	-0.001	2.6
2.42	60	2.5	1546	1565	345	108.88	4.454	0.060	3520	0.060	-0.002	3.2
2.42	70	2.9	1546	1569	370	116.77	4.430	0.070	3796	0.070	-0.002	3.7
2.42	80	3.3	1546	1575	381	120.24	4.406	0.080	3930	0.080	-0.003	4.2
2.42	90	3.7	1546	1578	383	120.87	4.382	0.090		0.090		4.7
2.42	100	4.1	1546	1579	379	119.61	4.358	0.100		0.100	-0.003	5.3
2,42	110	4.5	1546	1583	372	117.40	4.333	0.110		0.110		5.8
2.42	120	5.0	1546		365	115.19	4.309	0.120	3849	0.120	-0.004	6.3
2.42	130	5.4	1546	1586	manifesta la mella continuida.	111.72	4.285	0.130		0.130	-0.004	6.8
2.42	3 140	5.8	We per have being to make a	1586	and an entity of the figure . He	107.30	4.261	0.140		0.140	-0.004	7.4
2.42	150	6.2	Chi. Ch. 1987 . Waren		324	102.25	4.237	0.150	3475	0.150	-0.004	7.9
	160	6.6	Late while of the part		Activities when the his	98.15	4.213	0.160		0.160		8.4
	170	7.0	Mac Hill Shings of the Art	1574	302	95.31	4.189	0.170		0.170	-0.003	
2,42	180	7.4	1546	1568	294	92.79	4.164	0.180	3208	0.180	-0.002	9.5
2.42	190	7.9	1546	1563	288	90.89	4.140	0.190	3161	0.190	-0.002	10.0
2.42	BOSE THE CONTRACTOR	8.3	material state of the land	1558	283	89.31	4.116	0.200	3125	0.200	-0.001	10.5
	200 210	8.7	1546	1552	279	88.05	4.092	0.210	3099	0.210	-0.001	11.0
2.42	Security of the second section		1546	1532	276	87.11	4.068	0.220	3083	0.210	0.000	
2,42	220	9.1			ZCZ 1, 202 at 10 (4 to 10 Val)			0.230	3057	0.230	0.000	12.1
2.42	230	9.5	1546 1546	1540	272 270	85.84 85.34	4.044	0.230		0.230		
2.42	200000000000000000000000000000000000000		West Tropped .		77.2	85.21	4.020			_		
	250		1546		268			0.250				
	260		1546		266					0.260		
	270		1546		263							
2.42	W. 177		1546			82.69						_
2.42			1546			82.06		0.290		0.290	_	
	300		1546		257	81.11	3.875		_	0.300	0.005	
	310		1546			80.48	3.851	0.310		0.310		
_	320		1546			79.53	3.827	0.320		0.320	0.006	
	330		1546			79.22	3.803			0.330		
2.42			1546			78.58		0.340		0.340		17.8
	350		1546			78.27	3.756	0.350		0.350		18.4
2.42			1546		246		3.732	0.360		0.360		
2.42	er 1771 - 1 1 av 2		2. 1546		4.0.1		3.708	0.370		0.370		
2.42	william?		1546			-	3.684	0.380	-	0.380		
	390		-4-100-4-100-00		War or and the last in the					0.390		
2.42	400	16.5	1546	1447	241	76.06	3.636	0.400	3012	0.400	0.010	20.9

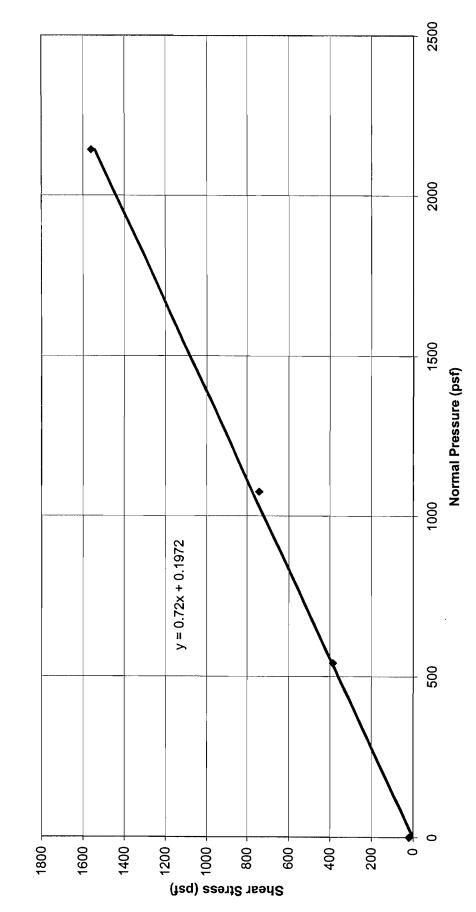
water war

						<u> </u>						
Sample	Horiz. Dial	Strain	Vert Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	-X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.42	410	16.9	1546	1442	238	75.11	3.612	0.410	2994	0.410	0.010	21.5
2.42	420	17.4	1546	1437	237	74.80	3.588	0.420	3002	0.420	0.011	22.0
2.42	430	17.8	1546	1431	236	74.48	3.565	0.430	3009	0.430	0.012	22.5
2.42	440	18.2	1546	1426	235	74.17	3.541	0.440	3016	0.440	0.012	23.0
2.42	450	18.6	1546	1421	233	73.53	3.517	0.450	3011	0.450	0.013	23.5
2.42	460	19.0	1546	1416	233	73.53	3.493	0.460	3031	0.460	0.013	24.1
2.42	470	19.4	1546	1412	232	73.22	3.469	0.470	3039	0.470	0.013	24.6
2.42	480	19.8	1546	1406	231	72.90	3.446	0.480	3047	0.480	0.014	25.1
2.42	490	20.2	1546	1401	232	73.22	3.422	0.490	3081	0.490	0.015	25.6
2.42	500	20.7	1546	1397	229	72.27	3.398	0.500	3063	0.500	0.015	26.1

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

DIRECT SHEAR RESULTS (Peak)
Vasco Road, Project No. 001860
Boring B-10, Depth 14.5'
Friction Angle 46.1 deg., Cohesion 184 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Yel Brn Sandstone (VFG-FG)

CLIENT: CAL Engineering and Geology

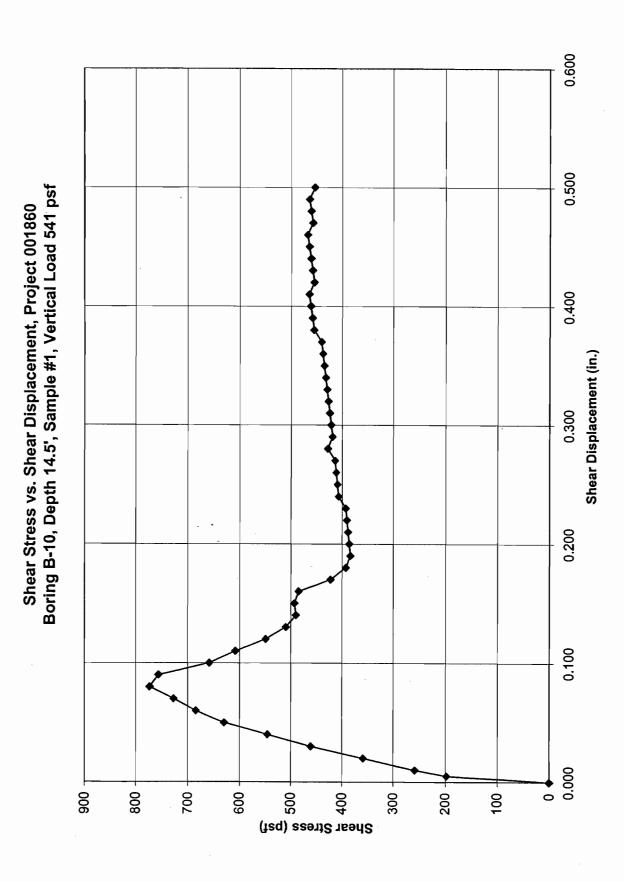

(Peak) Direct Shear Envelope Plot

Project: Vasco Rd. Project #:
Boring: B-10
541 1860

774 1075 1262 2142 2426 Depth: 14.5'

RAYMOND L. FISHER, P.E. SOIL TESTING LABORATORY

DIRECT SHEAR RESULTS (Ultimate)
Vasco Road, Project No. 001860
Boring B-10, Depth 14.5'
Friction Angle 35.8 deg., Cohesion 0 psf
Test Type CU, Inundation Time 24 hrs.
Sample Type Weathered Yel Brn Sandstone (VFG-FG)


CLIENT: CAL Engineering and Geology

Direct Shear Envelope Plot (Ultimate)
Project: Vasco Rd.
Project #: 1860
Boring: B-10 Depth: 14.5'

0 19.5
541 386
1075 741
2142 1560

CLIENT:	Cal Enginee	ring and	Geology		DATA	ONECI		Ping Co	nstant = (2156 lb	/div	
	Vasco Road		Geology	_					Diameter		2.41	-
	001860		TEST DATE		03/02/2001			<u> </u>	ple Heigl			
	B-10		DEPTH:		14.5'				. Dial Rea	 	1.20	
SAMPLE #:	1		DEP III.		14.5				Pressure	<u>-</u>	541	
	Corrected	i Δrea f	or 2 42" F	Diameter S	Sample O	alv Refer	to Deriva					
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)		Dial. Read.			2.42" only	-	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"		(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.41	0	0.0	1692	1692	0	0.00	4.600	0.000			· · · · · · · · · · · · · · · · · · ·	
2.41	5	0.0	1692	1688	20	6.31	4.588	0.005		_		
2.41	10	0.4	1692	1686	26	8.21	4.575	0.003				0.5
2.41	20	0.4	1692	1685	36	11.36	4.575	0.010				
2.41	30	1.2	1692	1689	46	14.52	4.531	0.020		0.020	-	1.1
2.41	40	1.7	1692	1700	54	17.04	4.503	0.030		0.030		1.6 2.1
2.41	50	2.1	1692	1718	62	19.57	4.479	0.040				
2.41	60	2.5	1692	1713	67	21.15	4.479	0.050				2.6 3.2
2.41	70	2.9	1692	1759	71	22.41	4.430	0.000				3.7
2.41	80	3.3	1692	1789	75	23.67	4.406	0.070				
2.41	90	3.7	1692	1819	73	23.04	4.382	0.000		0.000		
2.41	100	4.1	1692	1834	63	19.88	4.358	0.100		0.100	_	
2.41	110	4.6	1692	1836	58	18.30	4.333	0.100				
2.41	120	5.0	1692	1835	52	16.41	4.309	0.110				
2.41	130	5.4	1692	1825	48	15.15	4.285	0.120				
2.41	140	5.8	1692	1814	46		4.261	0.130		0.130		
2.41	150	6.2	1692	1808	46	14.52	4.237	0.150				
2.41	160	6.6	1692	1803	45	14.20	4.213	0.160				8.4
2.41	170	7.1	1692	1788	39	12.31	4.189	0.170				
2.41	180	7.5	1692	1791	36	11.36	4.164	0.180				
2.41	190	7.9	1692	1785	35	11.05	4.140	0.190	 			
2.41	200	8.3	1692	1783	35	11.05	4.116					
2.41	210	8.7	1692	1781	35	11.05	4.092	0.210				
2.41	220	9.1	1692	1776	35	11.05	4.068	0.220		0.220		
2.41	230	9.5	1692	1771	35	11.05	4.044	0.230				
2.41	240	10.0	1692	1766	36	11.36	4.020	0.240		0.240		12.6
2.41					36							
2.41	260	10.8	1692		36			0.260				
2.41	51	11.2	1692		36			0.270	 			
2.41	280	11.6	1692		37	11.68	3.924	0.280				
2.41	290	12.0	1692	1745	36			0.290				
2.41	300	12.4	1692	1739	36				-			
2.41	310	12.9	1692	1732	36			0.310	 			
2.41	320	13.3	1692		36			0.320				
2.41	330	13.7	1692		36					_		
2.41	340	14.1	1692									
2.41	350	14.5		1713							-	
2.41	360	14.9										
2.41	370	15.4										
2.41	380	15.8			37			0.380				
2.41	390	16.2			37							
2.41	400	16.6										+
2,71	1 1 JOO	.0.0	1002					0.400	102	0.700	0.001	

Sample	Horiz, Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001*	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.41	410	17.0	1692	1697	37	11.68	3.612	0.410	466	0.410	-0.001	21.5
2.41	420	17.4	1692	1693	36	11.36	3.588	0.420	456	0.420	0.000	22.0
2.41	430	17.8	1692	1689	36	11.36	3.565	0.430	459	0.430	0.000	22.5
2.41	440	18.3	1692	1685	36	11.36	3.541	0.440	462	0.440	0.001	23.0
2.41	450	18.7	1692	1680	36	11.36	3.517	0.450	465	0.450	0.001	23.5
2.41	460	19.1	1692	1676	36	11.36	3.493	0.460	468	0.460	0.002	24.1
2.41	470	19.5	1692	1673	35	11.05	3.469	0.470	458	0.470	0.002	24.6
2.41	480	19.9	1692	1668	35	11.05	3.446	0.480	462	0.480	0.002	25.1
2.41	490	20.3	:1692	1663	[*] 35	11.05	3.422	0.490	465	0.490	0.003	25.6
2.41	500	20.7	1692	1659	34	10.73	3.398	0.500	455	0.500	0.003	26.1

0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-10, Depth 14.5', Sample #1, Vertical Load 541 psf 0.300 0.200 0.100 0.000 0.000 900.0 0.002 -0.010 -0.012 -0.016 0.004 -0.014

Shear Displacement (in.)

OLIENT	0-15		01	-	DATA	SHEET		Din - Co		2450154	-	
	Cal Enginee		Geology						nstant = 0		2.41	-
	Vasco Road 001860	l 	TEST DATE	٠.	03/02/2001	_			Diameter ple Heigl	`	1.20	
	B-10		DEPTH:		14.5'				. Dial Rea		1.20	
BORING: SAMPLE #:	2		DEPIN:		14.5				Pressure	-	1075	
SAIVIFLE #.		l Area t	for 2.42" D)iameter S	Sample Or	nlv Refer	to Deriva			,,		
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.		Horiz.		Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.		Ring Load		Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"		(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.41	0	0.0		1392	0	0.00	4.600	0.000		-	0.000	
2.41	5	0.2	1392	1388	28	8.84	4.588	0.005		0.005	0.000	0.3
2.41	10	0.4	1392	1387	33	10.41	4.575	0.010	328	0.010	0.001	0.5
2.41	20	0.8	1392	1385	41	12.94	4.551	0.020	409	0.020	0.001	1.1
2.41	30	1.2	1392	1380	50	15.78	4.527	0.030	502	0.030	0.001	1.6
2.41	40	1.7	1392	1376	58	18.30	4.503	0.040	585	0.040	0.002	2.1
2.41	50	2.1	1392	1373	70	22.09	4.479	0.050	710		0.002	2.6
2.41	60	2.5		1373	80	25.25	4.454	0.060			0.002	3.2
2.41	70	2.9		1373	87	27.46		0.070	892		0.002	3.7
2.41	80	3.3		1373	95	29.98		0.080	980	0.080	0.002	4.2
2.41	90	3.7	1392	1373	103	32.51	4.382	0.090	1068		0.002	4.7
2.41	100	4.1	1392	1375	109	34.40	4.358	0.100		0.100		5.3
2.41	110	4.6		1379	114			0.110				5.8
2.41	120	5.0	1392	1387	118	37.24	4.309	0.120	1244	0.120	0.001	6.3
2.41	130	5.4	1392	1396	119	37.56	4.285	0.130	1262	0.130	0.000	6.8
2.41	140	5.8	1392	1406	118	37.24	4.261	0.140	1259	0.140	-0.001	7.4
2.41	150	6.2	1392	1416	. 115	36.29	4.237	0.150	1234	0.150	-0.002	7.9
2.41	160	6.6	1392	1423	107	33.77	4.213	0.160	1154	0.160	-0.003	8.4
2.41	170	7.1	1392	1429	. 98	30.93	4.189	0.170	1063	0.170	-0.004	8.9
2.41	. 180	7.5	1392	1432	89	28.09	4.164	0.180	971	0.180	-0.004	9.5
2.41	190	7.9	1392	1433	86	27.14	4.140	0.190	944	0.190	-0.004	10.0
2.41	200	8.3	1392	1428	77	24.30	4.116	0.200	850	0.200	-0.004	10.5
2.41	210	8.7	1392	1424	74	23.35	4.092	0.210	822	0.210	-0.003	11.0
2.41	220	9.1	1392	1423	71	22.41	4.068	0.220	793	0.220	-0.003	11.6
2.41	230	9.5	1392	1421	70	22.09	4.044	0.230	787	0.230	-0.003	12.1
2.41	240	10.0	. 1392	1414	69	21.78	4.020	0.240	780	0.240	-0.002	12.6
2.41	250	10.4	1392	1409	67	21.15	3.996	0.250	762	0.250	-0.002	13.1
2.41	260	10.8	1392	1405	66	20.83	3.972	0.260	755	0.260	-0.001	13.7
2.41	270	11.2	1392	1402	65	20.51	3.948	0.270	748	0.270	-0.001	14.2
2.41	280	11.6	1392	1399	64	20.20	3.924	0.280	741	0.280	-0.001	14.7
2.41	290	12.0	1392	1395	64	20.20	3.899	0.290	746	0.290	0.000	15.2
2.41			1392	1392	64	20.20	3.875	0.300	751	0.300	0.000	
2.41					64	+						
2.41								_			_	
2.41	330	13.7	1392	1377	64					0.330	0.002	17.3
2.41				1372			3.780	0.340	770	0.340	0.002	17.8
2.41	350	14.5	1392	1371	65	20.51	3.756	0.350	787	0.350	0.002	18.4
2.41					13 30 4						_	
2.41								+		_		
2.41			-						_			_
2.41		 								+		
2.41	400	16.6	1392	1361	65	20.51	3.636	0.400	812	0.400	0.003	20.9

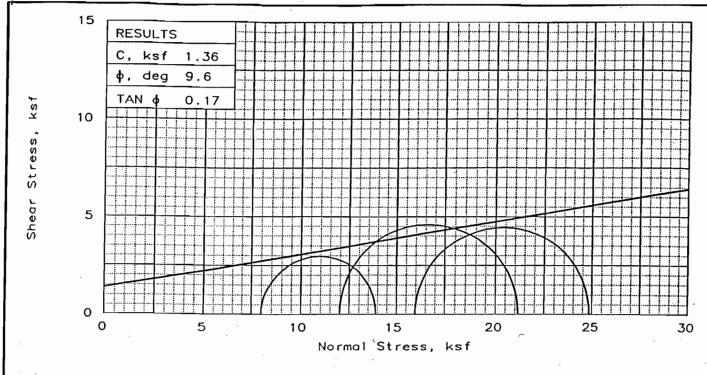
Sample	Horiz. Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.41	410	17.0	1392	1359	66	20.83	3.612	0.410	830	0.410	0.003	21.5
2.41	420	17.4	1392	1356	66	20.83	3.588	0.420	836	0.420	0.004	22.0
2.41	430	17.8	1392	1354	65	20.51	3.565	0.430	829	0.430	0.004	22.5
2.41	440	18.3	1392	1351	65	20.51	3.541	0.440	834	0.440	0.004	23.0
2.41	450	18.7	1392	1350	65	20.51	3.517	0.450	840	0.450	0.004	23.5
2.41	460	19.1	1392	1347	65	20.51	3.493	0.460	846	0.460	0.005	24.1
2.41	470	19.5	1392	1345	64	20.20	3.469	0.470	838	0.470	0.005	24.6
2.41	480	19.9	.,. 1392	1343	64	20.20	3.446	0.480	844	0.480	0.005	25.1
2.41	490	20.3	1392	1340	65	20.51	3.422	0.490	863	0.490	0.005	25.6
2.41	500	20.7	1392	1340	65	20.51	3.398	0.500	869	0.500	0.005	26.1

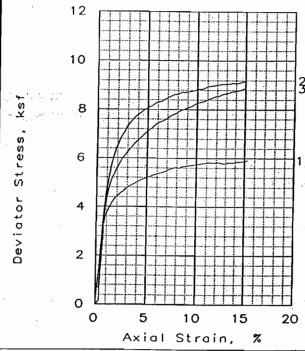
0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-10, Depth 14.5', Sample #2, Vertical Load 1075 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 • 1000 800 400 200 1400 1200 009 Shear Stress (psf)

0.600 0.500 0.400 0.200 0.100 900.0 0.002 0.000 -0.006 0.004 -0.002 -0.004 Vertical Deformation (in.)

Shear Displacement (in.)

Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-10, Depth 14.5', Sample #2, Vertical Load 1075 psf


CLIENT:	Cal Enginee	ring and	Caalagu		DATA	SHEET		Dina Car		2456 15	/dis.	
	Vasco Road		Geology						Diameter).3156 lb/	2.41	
	001860		TEST DATE		03/02/2001				ple Heigi	<u>`</u> —′——	1.20	
	B-10	_	DEPTH:		14.5'				. Dial Rea		0	
SAMPLE #:	3		DEFIN.		14.5				Pressure		2142	
	_	l Area f	or 2 42" F	Diameter S	Sample O	alv Refer	to Deriva					
Sample	Horiz, Dial	Strain	Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.		Ring Load		Deform.		Deform.	Vert.	Reduct.
(in.)	X 0.001*	(%)	X 0,0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.41	0	0.0	1965	1965	0	0.00		0.000	0	-		
2.41	5	0.2	1955	1965	56	17.67	4.588	0.005		0.005		0.3
2.41	. 10	0.4	1952	1965	72	22.72	4.575	0.010	715	0.010		0.5
2.41	20	0.8	1942	1965	95	29.98	4.551	0.020	949		-0.002	1.1
2.41	. 30	1.2	1929	1965	109	34.40	4.527	0.030	1094	0.030		1.6
2.41	40	1.7	1925	1965	120	37.87	4.503	0.040	_	0.040	-0.004	2.1
2.41	50	2.1	1921	1965	137	43.24	4.479	0.050	_	0.050		
2.41	60	2.5	1916	1965	150	47.34	4.454	0.060	-	0.060	-0.005	
2.41	70	2.9	1915	1965	161	50.81	4.430	0.070	1652	0.070	-0.005	_
2.41	80	3.3	1912	1965	177	55.86	4.406	0.080	1826	0.080	-0.005	4.2
2.41	90	3.7	1913	1965	200	63.12	4.382	0.090	2074	0.090	-0.005	4.7
2.41	100	4.1	1920	1965	218	68.80	4.358	0.100	2274	0.100	-0.005	5.3
2.41	110	4.6	1935	1965	228	71.96	4.333	0.110	2391	0.110	-0.003	5.8
2.41	120	5.0	1949	1965	230	72.59	4.309	0.120	2426	0.120	-0.002	6.3
2.41	130	5.4	1965	1965	227	71.64	4.285	0.130	2407	0.130	0.000	6.8
2.41	140	5.8	1977	1965	221	69.75	4.261	0.140	2357	0.140	0.001	7.4
2.41	150	6.2	1989	1965	210	66.28	4.237	0.150	2253	0.150	0.002	7.9
2.41	160	6.6	. 1999	1965	196	61.86	4.213	0.160	2114			8.4
2.41	170	7.1	2008	1965	180	56.81	4.189	0.170	1953	0.170	0.004	8.9
2.41	180	7.5	2008	1965	168	53.02	4.164	0.180	1833	0.180	0.004	9.5
2.41	190	7.9		1965	. 156							10.0
2.41	200	8.3			150			-				
2.41	210	8.7	2001	1965	145			-				
2.41	220	9.1	1996					_				
2.41	230	9.5	_	1965		44.50		+				
2.41	240	10.0										
2.41										-		
2.41	260	10.8						0.260			_	-
2.41	270	11.2										
2.41		11.6						_		+		
2.41		12.0									+	+
2.41	17.75.11	12.4									-	_
2.41	- In	612.9				-						
2.41		13.3								+		+
2.41		13.7							_	-		
2.41	340	14.1	·								_	
2.41	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							_			+	
2.41	1 1 1 1 1 1 1 1	_	-						+	-	_	+
2.41	370	15.4							_			
2.41	were a second	15.8									+	
2.41	Carlo Carlo Carlo											
2.41	400	16.6	1937	1965	139	43.87	3.636	0.400	1737	0.400	-0.003	20.9


					D, (1,) (
Sample	Horiz. Dial	Strain	√Vert. Dial	Orig. Vert.	Proving	Proving	Corr. Area	Horiz.	Shear	Horiz.	Deform.	Area
Diameter	Reading	fn(dia.)	Reading	Dial. Read.	Ring Read.	Ring Load	2.42" only	Deform.	Stress	Deform.	Vert.	Reduct.
(in.)	X 0.001"	(%)	X 0.0001"	X 0.0001"	(Div.)	(lbs.)	(sq. in.)	(in.)	(psf)	(in.)	(in.)	(%)
2.41	410	17.0	1935	1965	136	42.92	3.612	0.410	1711	0.410	-0.003	21.5
2.41	420	17.4	1933	1965	134	42.29	3.588	0.420	1697	0.420	-0.003	22.0
2.41	430	17.8	1931	1965	131	41.34	3.565	0.430	1670	0.430	-0.003	22.5
2.41	440	18.3	1927	1965	130	41.03	3.541	0.440	1669	0.440	-0.004	23.0
2.41	450	18.7	1922	1965	130	41.03	3.517	0.450	1680	0.450	-0.004	23.5
2.41	460	19.1	1918	1965	129	40.71	3.493	0.460	1678	0.460	-0.005	24.1
2.41	470	19.5	1912	1965	130	41.03	3.469	0.470	1703	0.470	-0.005	24.6
2.41	480	19.9	1911	1965	132	41.66	3.446	0.480	1741	0.480	-0.005	25.1
2.41	490	20.3	1907	1965	130	41.03	3.422	0.490	1727	0.490	-0.006	25.6
2.41	500	20.7	1903	1965	129	40.71	3.398	0.500	1725	0.500	-0.006	26.1

0.600 0.500 Shear Stress vs. Shear Displacement, Project 001860 Boring B-10, Depth 14.5', Sample #3, Vertical Load 2142 psf 0.400 Shear Displacement (in.) 0.300 0.200 0.100 0.000 0 Shear Stress (psf) 3000 2000 2500 1000 200

0.600 0.500 Vertical Deformation vs. Shear Displacement, Project 001860 Boring B-10, Depth 14.5', Sample #3, Vertical Load 2142 psf 0.400 0.200 0.100 Vertical Deformation (in.) 900.0 0.002 0.004 -0.004 -0.006 -0.008

Shear Displacement (in.)

TYPE OF TEST:

Unconsolidated Undrained

SAMPLE TYPE: undisturbed

DESCRIPTION: gray CLAY w/sand

ASSUMED SPECIFIC GRAVITY= 2.7

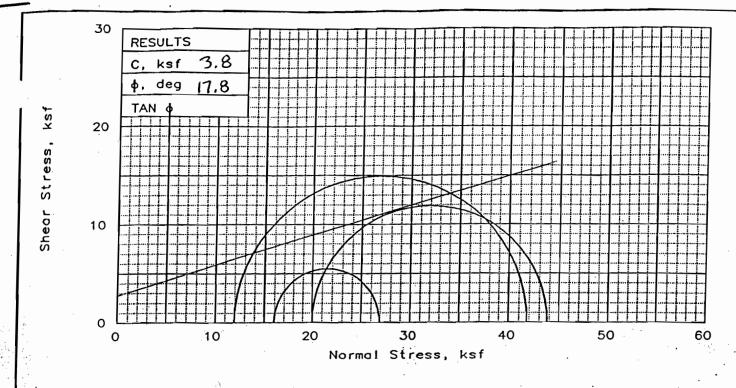
REMARKS:

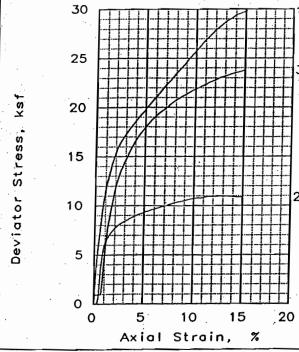
	:				
	SAMPLE NO.:	1 .	2	3	
3	DRY DENSITY, pcf H SATURATION, % VOID RATIO Z DIAMETER, in		103.2 97.1 0.634 2.40	110.7 99.4 0.522 2.40	
1.	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	20.6 106.8 96.0 0.578 2.40 5.00	103.2 97.1 0.634 2.40	110.7 99.4 0.522 2.40	
l	Strain rate, %/min BACK PRESSURE, ksf CELL PRESSURE, ksf DEVIATOR STRESS, ksf STRAIN, % ULT. STRESS, ksf STRAIN, %	1.00 0.0 8.0 5.9 15.3	1.00 0.0 12.0 9.2 15.1	1.00 0.0 16.0 8.9 15.0	-
- 1	O₁ FAILURE, ksf O₃ FAILURE, ksf	13.9 8.0	12.0		

CLIENT: Fisher

PROJECT: 001860

SAMPLE LOCATION: 1)B4 @ 37' 2)B4 @ 37.5'


3)B4 @ 38'


PROJ. NO.: 331-014b DATE: 3/22/01

TRIAXIAL SHEAR TEST REPORT

COOPER TESTING LABORATORY

Fig. No.:

TYPE OF TEST:

Unconsolidated Undrained SAMPLE TYPE: undisturbed

DESCRIPTION: gray Claystone

ASSUMED SPECIFIC GRAVITY= 2.7

REMARKS:

ľ	SA	MPLE NO.:	1	_ 2 _	3	
3	INITIAL	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	127.6 78.8 0.321 2.40	122.2 95.9 0.405 2.40	122.9 98.8 0.371	
2	AT TEST	WATER CONTENT, % DRY DENSITY, pcf SATURATION, % VOID RATIO DIAMETER, in HEIGHT, in	78.8 0.321 2.40	122.2 95.9 0.405	122.9 98.8 0.371 2.39	
,	BAC CEL DEV S' ULT	rain rate, %/min CK PRESSURE, ksf LL PRESSURE, ksf (IATOR STRESS, ksf TRAIN, % . STRESS, ksf TRAIN, %	1.00 0.0 12.0 29.8 15.1	0.0 16.0 11.0	0.0	
┨	σ 1 F	FAILURE, ksf FAILURE, ksf	41.8 12.0	26.9 16.0		

CLIENT: Fisher

PROJECT: 001860

SAMPLE LOCATION: 1)B2 @ 47' 2)B2 @ 47.5'

3)B2 @ 48'

PROJ. NO.: 331-014c

DATE: 3/22/01

TRIAXIAL SHEAR TEST REPORT

COOPER TESTING LABORATORY

Fig. No.:

L

MOISTURE CON UT AND DRY DENSITY

Client Name: CAL ENGANIEZZIXIXIG & GZOZCKI

Project Name: VASCO RIV

Client Project No: 00 1860

Date Sampled: Date Received Date Tested: 3/3/0 | 12:52 Pm Tested by: $R \sim \mathbb{R}$

Material Description	(Soil type is based on visual/manual examination; classification test results may modify soil type.)	GRNGRY + GRY SANDY CLAYSTONE	OX GRY CLANSTONE	VER BRNAGEY CLAYSTONES	YET BRN + GRY BRN CLAYSTONG	DIK GALY CLAYSTONIE	13,2 CHAYEN SANDY CLAYSTONES/							
Moisture	(%)	18.6	17,0	24.8	22.5	17.2	13,2					,		
Sample	Density (pcf)	1	١	l	(((.,				
Dry Weight	+ Cup (g)	,,,	761,4	190.0	232.(241.9	228.6		280	30.0	28,3	50,2	47.6	33,4
Wet	+ Cup (g)	260,3	303.4	233.8	281.3	286,7 241.9	257.0 228.6							
Cup Weight	(g)	0'9)	14,4	13,7	13.5	_	13.6		16,0	1 sand, dead	13.7	135	16.1	13.6
Cup	30.	6-308	F-26	F-324 13,	F.320		F-104	2	6-308	6.26	F.304	F-300	F314	F-104 13.
Sample	(in)							TESTS						
Sample	(in)							AKE						
Depth (#)	(11)	5'62	45,5	17.0	27,0	14,5	64.5	JER 54	29.5	45,5	17.0	27.0	44.5	64.5
Boring		B3		84				AMA	8-3		B-4			

moisden3.xls

RAYMOND L. FISHER, P.E.

Civil and Geotechnical Engineering, Geotechnical Testing

COMBINED SLAKE TEST AND JAR SLAKE TEST Reference: Landslides Investigation and Mitigation, 1996

Transportation Research Board Special Publication 247, p 559-561

CLIENT:	Cal Engineering and Geology	Boring or Sample No.:	B^{-3}
	Vasco Rd	Denth: 29.51	

Wet Wt. + Pan= 260, 3 g (should be about 150g) Project No 001860 Date: 3/21/01 Initial Dry Wt. +Pan= 222.0 (photograph with mm scale)

TAP WATER PH=8.3 FINAL PH=5.2 Pan No.: F-308 725 om Pan Wt.:

C PI	1660 1101.0 1. 312
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min. DISINGRATING + CLOUDY	0-1 min.
	,,
1-3 min. RAPID DISINTI	1-3 min.
3-6 min. #(/ / /	3-6 min.
6-10 min. NR. Complete "	6-10 min.
10-30 min. COMPLETE @ ITMIN ±	10-30 min.
	. 4
2 hrs.	2 hrs.
4 68 hrs. FLAKES AND FINE PARTICLES/MUD	4 or 8 hrs.
24 1115.	24 hrs.
Final Dry Wt. of +#10 Material + Pan= 28.0	Final Dry Wt. of +#10 Material + Pan=
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min.	0-1 min.
1-3 min.	1-3 min.
3-6 min.	3-6 min.
6-10 min.	6-10 min.
	·
10-30 min.	10-30 min.
2 hrs	2 hrs.
4 or 8 hrs.	4 or 8 hrs.
24 hrs.	24 hrs.
Final Dry Wt. of +#10 Material + Pan=	Final Dry Wt. of +#10 Material + Pan=

Slake Index S _I =(Orig.	WtFinal W	/t.) X 100/Orig. \	∕ \t.=	87.4
Jar Slake Index I _J =			•	

- 1 Degrades to a pile of flakes or mud
- 2 Breaks rapidly, forms many chips, or both
- 3 Breaks slowly, forms few chips, or both
- 4 Breaks rapidly, develops several fractures, or both
- 5 Breaks slowly, develops few fractures, or both
- 6 No change

COMBINED SLAKE TEST AND JAR SLAKE TEST

Reference: Landslides Investigationand Mitigation, 1996

Transportation Research Board Special Publication 247, p 559-561

CLIENT:	Cal Engineering and Geology
Project:	Vasco Rd.

Boring or Sample No.: B-3

Project No 001860

Date: 3/21/01

Depth: 45.5

Wet Wt. + Pan= 303.4 a (should be about 150g)

Initial Dry Wt. +Pan= 361.4 (photograph with mm scale)

Pan No.: F-36

Pan Ware PH=83

25 pm	Pan Wt.: 14.4 FINAL OH = 7.6
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min. FLAKING	0-1 min.
1-3 min. DISINTEMATING	1-3 min.
3-6 min. RAPID DISINTETAGETI	oん 3-6 min.
6-10 min. COMPLETE "	6-10 min.
<u> </u>	<u> </u>
10-30 min.	10-30 min.
2 hrs	2 hrs.
4 9 hrs. FLAKES & FINE PARTICLES	1 MUD 4 or 8 hrs.
	,
Final Dry Wt. of +#10 Material + Pan= 30	
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min.	0-1 min.
1-3 min.	1-3 min.
3-6 min.	3-6 min.
6-10 min.	6-10 min.
10-30 min.	10-30 min.
2 hrs.	2 hrs.
4 or 8 hrs.	4 or 8 hrs.
24 hrs.	24 hrs.
Final Dry Wt. of +#10 Material + Pan=	Final Dry Wt. of +#10 Material + Pan=

Slake Index S_I=(Orig. Wt.-Final Wt.) X 100/Orig. Wt.=

88.5

Jar Slake Index I_J=

- 1 Degrades to a pile of flakes or mud
- 2 Breaks rapidly, forms many chips, or both
- 3 Breaks slowly, forms few chips, or both
- 4 Breaks rapidly, develops several fractures, or both
- 5 Breaks slowly, develops few fractures, or both
- 6 No change

Reference: Landslides Investigation and Mitigation, 1996

Transportation Research Board Special Publication 247, p 559-561

CLIENT: Cal Engineering and Geology

Boring or Sample No.: B-H

Project: Vasco Rd.

Project No 001860 Date: 3/21/01

Depth: 17,0

Wet Wt. + Pan= 233 & (should be about 150g)

Initial Dry Wt. +Pan= 105,0

Pan No.: F-304

TAP WATER PH

(photograph with mm scale)

25pm	Pan Wt.: 13,7 FINAL PH = 8.1
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min. DISINTIGRATING + CL	оору 0-1 min.
1-3 min. VIDRY RAPID DISINT	T : 1-3 min.
3-6 min. COMPLETE DISINTE	EG12 A-10x 3-6 min.
6-10 min.	6-10 min.
10-30 min.	10-30 min.
10-30 IIIII.	10-30 mm.
2 hrs.	2 hrs.
4 pre hrs. FINE PARTICLES / MUD	4 or 8 hrs.
24 hrs. "	24 hrs.
Final Dry Wt. of +#10 Material + Pan= 28.	
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min.	0-1 min.
1-3 min.	1-3 min.
3-6 min.	3-6 min.
0.40	0.40
6-10 min.	6-10 min.
10-30 min.	10-30 min.
2 hrs.	2 hrs.
4 or 8 hrs.	4 or 8 hrs.
24 hrs.	24 hrs.
Final Dry Wt. of +#10 Material + Pan=	Final Dry Wt. of +#10 Material + Pan=

Slake Index S _I =(Orig.	WtFinal	Wt.) X	100/Orig.	Wt.≃
1 Ol-1 t t 1		_		

85.1

Jar Slake Index I_J=

- 1 Degrades to a pile of flakes or mud
- 2 Breaks rapidly, forms many chips, or both
- 3 Breaks slowly, forms few chips, or both
- 4 Breaks rapidly, develops several fractures, or both
- 5 Breaks slowly, develops few fractures, or both
- 6 No change

Reference: Landslides Investigationand Mitigation, 1996

Transportation Research Board Special Publication 247, p 559-561

Cal Engineering and Geology CLIENT:

Boring or Sample No.: B-4
Depth: 27,0

Vasco Rd. Project:

Project No 001860 Date: 3/21/01 Wet Wt. + Pan= 281.39 (should be about 150g) Initial Dry Wt. +Pan= 232.1 (photograph with mm scale)
TAPWATER PH=8.3

Pan No.: F -300

2 Dpm	Pan Wt.: 13,5" FINAL PI = 8,72
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min. DISINTEGRATING +	CLOUDY 0-1 min.
1-3 min. RAPID DISINT.	1-3 min.
3-6 min. \(\tau\) \(\tau\)	3-6 min.
6-10 min. COMPLETE DISIN	6-10 min.
10-30 min.	10-30 min.
·	g
2 hrs.	2 hrs.
4 of hrs. FINE PARTICLES/MUD 24 hrs. U u	W/FLAKES 4 or 8 hrs.
Final Dry Wt. of +#10 Material + Pan= 50	
Cycle No.:	Cycle No.:
Observations:	Observations:
0-1 min	0-1 min.
1-3 min.	1-3 min.
-	
3-6 min.	3-6 min.
	6-10 min.
6-10 min.	o-10 min.
10.20	10-30 min.
10-30 min.	10-30 11111.
0 h	2 hrs.
2 hrs. 4 or 8 hrs.	4 or 8 hrs.
	24 hrs.
24 hrs. Final Dry Wt. of +#10 Material + Pan=	Final Dry Wt. of +#10 Material + Pan=
Final Diy W. Of THIO Material T Fall-	i hai biy w. or im to material i i di

Slake Index S _i =(C	rig. WtFinal W	t.) X 100/O	rig. Wt.=

Jar Slake Index I_J=

- 1 Degrades to a pile of flakes or mud
- 2 Breaks rapidly, forms many chips, or both
- 3 Breaks slowly, forms few chips, or both
- 4 Breaks rapidly, develops several fractures, or both
- 5 Breaks slowly, develops few fractures, or both
- 6 No change

Reference: Landslides Investigation and Mitigation, 1996

Transportation Research Board Special Publication 247, p 559-561

CLIENT: (Cal Engine	ering and	Geology
-----------	------------	-----------	---------

Boring or Sample No.: B-4 Depth: 44,5

Proiect:

Vasco Rd.

Project No 001860

Wet Wt. + Pan= 280,-1a,

(should be about 150g) (photograph with mm scale)

Date: 3/21/01

Initial Dry Wt. +Pan= 34177 Pan No.: F-314

TAP WATER PH=8,3 FINAL PH=7.4

Pan Wt.: 16-1

Cycle No.: Cycle No.: Observations: Observations: 0-1 min. 0-1 min. DISINTIGRATING

1-3 min. 1-3 min. RABID DISINTEGRATION 3-6 min. 11 3-6 min. 6-10 min. COMPLETE 6-10 min.

10-30 min. 10-30 min.

2 hrs. 2 hrs.

4 0008 hrs. FLAKES 4 or 8 hrs. 24 hrs. 24 hrs.

Final Dry Wt. of +#10 Material + Pan= 47.69 Final Dry Wt. of +#10 Material + Pan= Cycle No.:

Cycle No.: Observations: Observations: 0-1 min. 0-1 min.

1-3 min. 1-3 min.

3-6 min. 3-6 min.

6-10 min. 6-10 min.

10-30 min. 10-30 min.

2 hrs. 2 hrs. 4 or 8 hrs. 4 or 8 hrs. 24 hrs. 24 hrs. Final Dry Wt. of +#10 Material + Pan= Final Dry Wt. of +#10 Material + Pan=

Slake Index S_i=(Orig. Wt.-Final Wt.) X 100/Orig. Wt.=

20.3

Jar Slake Index I,=

- 1 Degrades to a pile of flakes or mud
- 2 Breaks rapidly, forms many chips, or both
- 3 Breaks slowly, forms few chips, or both
- 4 Breaks rapidly, develops several fractures, or both
- 5 Breaks slowly, develops few fractures, or both
- 6 No change

Reference: Landslides Investigationand Mitigation, 1996

Transportation Research Board Special Publication 247, p 559-561

CLIENT: Cal Engineering and Geology

Project: Vasco Rd. Project No 001860

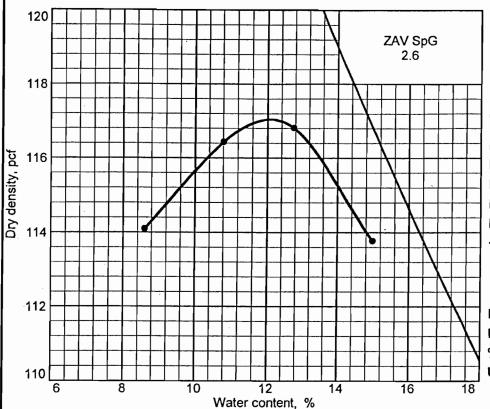
Boring or Sample No.: 13-4 Depth: 64.5 Wet Wt. + Pan= 25 7.0 g (should be about 150g)

Date: 3/21/01

(photograph with mm scale)

Initial Dry Wt. +Pan= 228.6 Pan No.: F-104

13.6 PINAL AT -015
Cycle No.:
Observations:
0-1 min.
1-3 min.
3-6 min.
6-10 min.
10.00
10-30 min.
7
2 hrs. •
4 or 8 hrs. 24 hrs.
Final Dry Wt. of +#10 Material + Pan=
Cycle No.:
Observations:
0-1 min.
0-1 111111.
1-3 min.
1-0 min.
3-6 min.
6-10 min.
10-30 min.
2 hrs.
4 or 8 hrs.
24 hrs.
Final Dry Wt. of +#10 Material + Pan=


Slake Index S_i=(Orig. Wt.-Final Wt.) X 100/Orig. Wt.=

85,4

Jar Slake Index I_J=

- 1 Degrades to a pile of flakes or mud
- 2 Breaks rapidly, forms many chips, or both
- 3 Breaks slowly, forms few chips, or both
- 4 Breaks rapidly, develops several fractures, or both
- 5 Breaks slowly, develops few fractures, or both
- 6 No change

COMPACTION TEST REPORT

Curve No.

Test Specification:

ASTM D 1557-91 Procedure B Modified Oversize correction applied to each point

Hammer Wt.: 10 lb. Hammer Drop: 18 in. Number of Layers: five Blows per Layer: _____ Mold Size: .03333 cu.ft.

Test Performed on Material

Passing _____3/8 in. Sieve

Soil Data NM _____ Sp.G. ____ LL PI %>3/8 in. %<#200 ____ USCS _____ AASHTO ____

TESTING DATA

_			0	10 5,11,,		
	1	2	3	4	5	6
WM + WS	8.83	8.80	8.74	8.57		
WM	4.44	4.44	4.44	4.44		
WW + T #1	769.80	743.10	666.90	723.10		
WD + T #1	694.00	658.80	609.10	673.50		
TARE #1	99.60	96.00	74.20	97.00		
WW + T #2	_					
WD + T #2		_				
TARE #2						
MOISTURE	12.8	15.0	10.8	8.6		
DRY DENSITY	116.8	113.8	116.4	114.1		

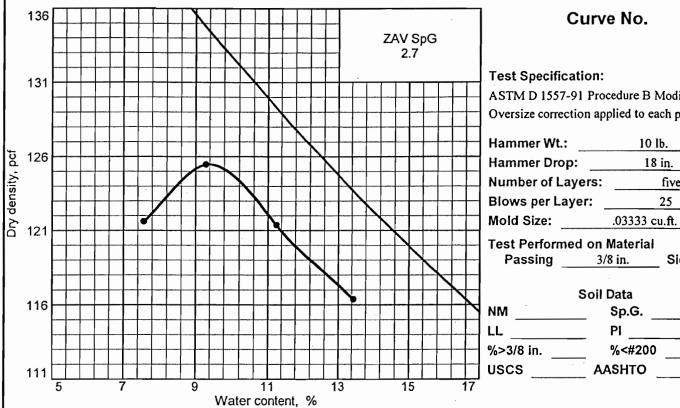
ROCK CORRECTED TEST RESULTS	UNCORRECTED	Material Description
Maximum dry density = 117 pcf	117 pcf	light brown clayey SAND
Optimum moisture = 12 %	12 %	

Project No. 331-014 Client: Fisher

Project: 001860 / Vasco Road

• Source: TP-2

Elev./Depth: 0-2'


COMPACTION TEST REPORT

COOPER TESTING LABORATORY

Remarks:

Plate

COMPACTION TEST REPORT

Curve No.

Test Specification:

ASTM D 1557-91 Procedure B Modified Oversize correction applied to each point

Hammer Wt.: 10 lb. Hammer Drop: _____ 18 in. Number of Layers: five Blows per Layer: 25

Test Performed on Material

Passing _____3/8 in. ____ Sieve

Soil Data NM _____ Sp.G. ____ %>3/8 in. ____ %<#200 USCS AASHTO

TESTING DATA

	1	2	3	4	5	6
WM + WS	8.94	8.84	9.01	8.80		
WM	4.44	4.44	4.44	4.44		
WW + T #1	807.50	824.10	821.00	576.60		
WD + T #1	741.60	745.00	764.70	544.10		
TARE #1	156.00	156.90	158.70	114.60		٠.
WW + T #2						
W D + T #2						
TARE #2						•
MOISTURE	11.3	13.5	9.3	7.6		
DRY DENSITY	121.4	116.4	125.5	121.6		

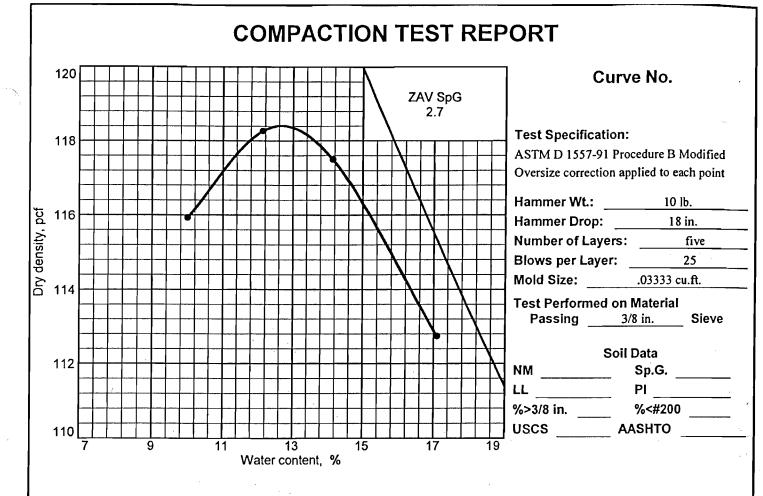
ROCK CORRECTED TEST RESULTS	UNCORRECTED	Material Description
Maximum dry density = 125 pcf	125 pcf	light brown silty SAND
Optimum moisture = 9 %	9 %	

Project No. 331-014

Client: Fisher

Project: 001860 / Vasco Road

• Source: TP-5


Elev./Depth: 0-2'

COMPACTION TEST REPORT

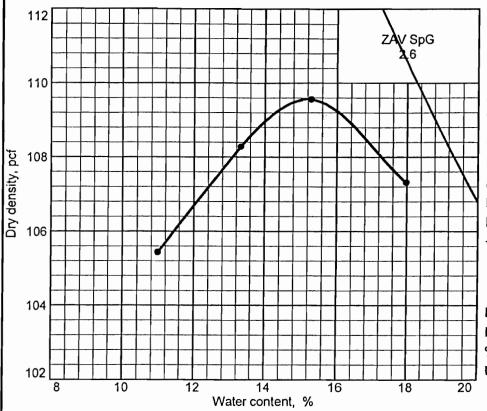
COOPER TESTING LABORATORY

Plate

Remarks:

TESTING DATA

	1	2	3	4	5	6
WM + WS	8.86	8.91	8.84	8.69		·
WM	4.44	4.44	4.44	4.44		
WW + T #1	722.40	780.40	626.40	634.00		
WD + T #1	652.30	695.60	549.50	585.40		
TARE #1	74.30	96.30	99.70	99.00		
WW + T #2						
WD + T #2			-			
TARE #2						
MOISTURE	12.1	14.1	17.1	10.0		
DRY DENSITY	118.3	117.5	112.7	115.9		


ROCK CORRECTED TEST RESULTS	UNCORRECTED	Material Description
Maximum dry density = 118 pcf	118 pcf	brown sandy CLAY
Optimum moisture = 13 %	13 %	
Project No. 331-014 Client: Fisher Project: 001860 / Vasco Road		Remarks:
• Source: B-5	Elev./Depth: 30-66	

COMPACTION TEST REPORT

COOPER TESTING LABORATORY

Plate

COMPACTION TEST REPORT

Curve No.

Test Specification:

ASTM D 1557-91 Procedure B Modified Oversize correction applied to each point

Hammer Wt.: 10 lb. Hammer Drop: 18 in. Number of Layers: _____ five Blows per Layer: 25 Mold Size: ______.03333 cu.ft.

Test Performed on Material

Passing 3/8 in. Sieve

Soil Data NM _____ Sp.G. ____ LL PI %>3/8 in. %<#200 USCS ____ AASHTO ___

TESTING DATA

	1	2	3	4	5	6
WM + WS	8.34	8.53	8.65	8.66		
WM	4.44	4.44	4.44	4.44		
WW + T#1	673.60	732.60	678.00	696.90		
WD + T#1	622.50	664.70	597.90	602.00		
TARE #1	157.20	155.30	74.20	74.30		
WW + T #2		:				
WD + T #2						
TARE #2				_		
MOISTURE	11.0	13.3	15.3	18.0		
DRY DENSITY	105.4	108.3	109.6	107.3		

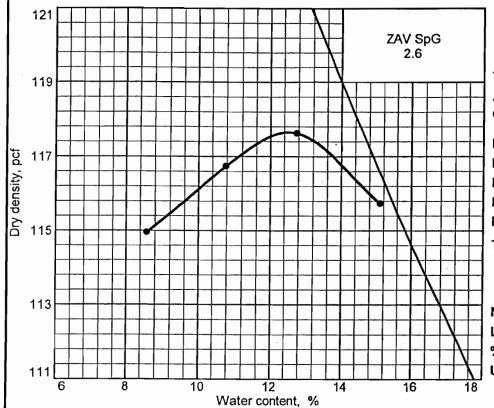
ROCK CORRECTED TEST RESULTS	UNCORRECTED	Material Description
Maximum dry density = 110 pcf	110 pcf	white gray clayey SAND
Optimum moisture = 15 %	15 %	

Project No. 331-014 Client: Fisher

Project: 001860 / Vasco Road

Source: TP-4

Elev./Depth: 0-2


COMPACTION TEST REPORT

COOPER TESTING LABORATORY

Remarks:

Plate

Curve No.

Test Specification:

ASTM D 1557-91 Procedure B Modified Oversize correction applied to each point

Hammer Wt.: 10 lb. Hammer Drop: _____ 18 in. Number of Layers: _____five 25 Blows per Layer: ____ Mold Size: .03333 cu.ft.

Test Performed on Material

Passing _____ 3/8 in. ____ Sieve

Soil Data Sp.G. _____ NM _____ LL PI %>3/8 in. %<#200 USCS AASHTO

TESTING DATA

	1	2	3	4 ·	5	6
WM + WS	8.75	8.86	8.88	8.60		
WM	4.44	4.44	4.44	4.44		
WW + T #1	590.60	696.80	718.80	664.80		
WD + T #1	542.60	635.40	645.00	624.90		
TARE #1	96.90	153.70	156.20	159.50		-
WW + T #2						
WD + T #2						
TARE #2						
MOISTURE	10.8	12.7	15.1	8.6		
DRY DENSITY	116.7	117.6	115.7	115.0		

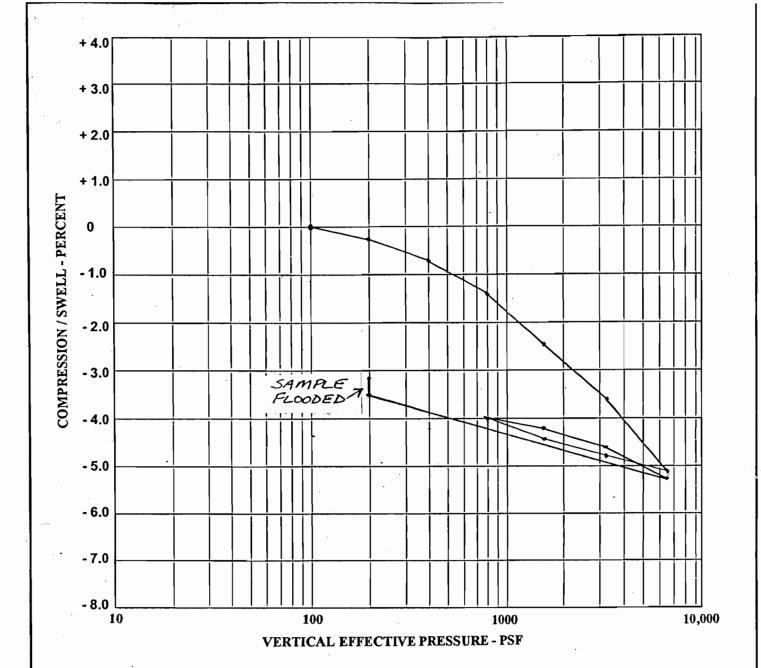
ROCK CORRECTED TEST RESULTS	UNCORRECTED	Material Description
Maximum dry density = 118 pcf	118 pcf	gray clayey SAND
Optimum moisture = 13 %	13 %	

Project No. 331-014

Client: Fisher

Project: 001860 / Vasco Road

• Source: B3 + B4


Elev./Depth: 30-40'

COMPACTION TEST REPORT

COOPER TESTING LABORATORY

Plate

Remarks:

CANCAL (III)
EVATION (III):

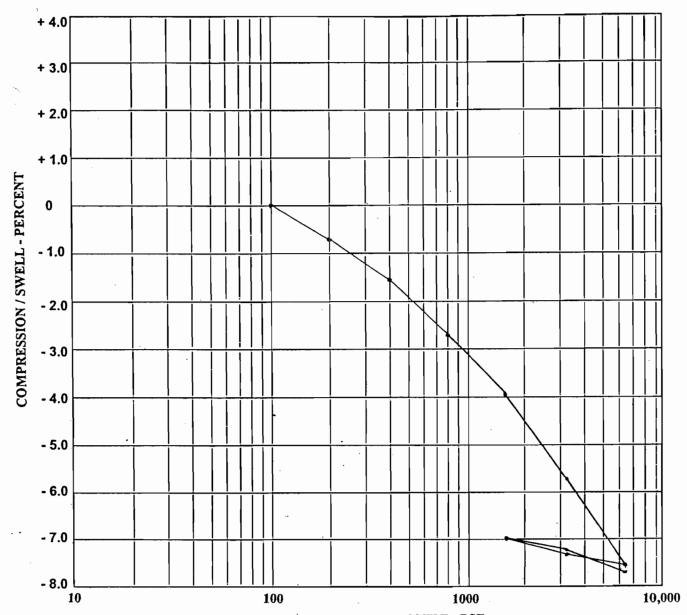
8

DEPTH (Nt 35,5' DESCRIPTION OLV AND GRY WYELBAN CLAYSTONE

809thG NO: B-4

SMPLE DIMETER GIL 2,42	SPECIFIC GRAVITY ICUL Z,70(8	}
LIGHTO CHART TWO	PLASTICITY MOSY (%)	7

SMACE DIMETER THE 2,42	SPECIFIC GRAVITY IGE 2,10
UGUID UMIT (%)	PLASTICITY INDEX (%):


			,
Cc =	0.60	C1 =	0.01

	INTTAL	FINAL
DRY DENSITY (oct)	1/2.8	116.5
MOISTURE CONTENT (N)	17.0	18.9
YORO RATIO	0,494	0.446
DEGREE OF SATURATION (N)	93	100
HEIGHT (IN)	0.9836	0.9525

COMPRESSION / SWELL TEST DATA

VASCO RD.

DN TJJLDR9	DATE	
001860	3/16/01	FIGURE:

VERTICAL	EFFECTIVE	PRESSURE -	PSF

BORING NO: B-B		
0697TH (Mt. 8.5"	ELEVATION (IT):	
DK YEL BRN CLAYEY SAND (SC) (43.96 FINES)		
SMPLE DIMETER GIL 2.42 SPECIFIC GRAVITY IGLE 2,70(6		
LIQUID LIMIT (NE	PLASTICITY NOEX (%):	

	INITIAL	FINAL
DRY DENSITY (pcd)	113,4	122.9
MOISTURE CONTENT (%)	15H	16.6
YOXO RATIO	0.446	0.371
DEGREE OF SATURATION (%)	93	100
HEIGHT (N)	0,9988	0.9219

Ce=0.082 Cr=0.014

COMPRE	SSION / SWELL TES	T DATA	
VASC	O RD.		
PROJECT NO.	DATE		.•
00 1860	3/13/01	FIGURE:	

SUBJECT VASCO RD B-8@8.5 SHEET NO.____OF__ BY____ DATE ____ COMPRESSION TEST DATA __ DEFLECTION VS ATTIME ROT JOB NO. 00/860 CHKD. BY_ _ _ DATE _ _ _ _ 1900 LOAD = 6400 PSF DIAL READING 0.188 BEGIN END 0,1700 AVE, DIAL READING 0.1884 +0.1700 - 0.179: DIFF FROM TEST START 0,2454-0.1793 = 0.0661 AVE SAMPLE THICK, DURING 6400 PSF 7EST 1.0000 - 0.0661 = 0.9339 ACTUAL DRAINAGE PATH IN TEST H= 0.9339 = 0.4670 CV = 0.848 H £90 Cv = 0.848(0.4670 0.6 Cv = 0.308 11/2 ATIME tg= 0.6 min

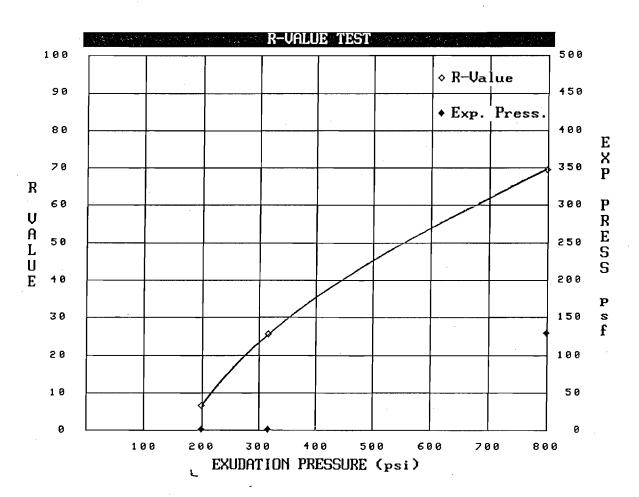
COOPER TESTING LABORATORIES

R-VALUE TEST

)B #: 331-014B 3/09/2001 DATE:

CLIENT: Fisher Engineers / 001860 SAMPLE #: TP-5 @ 0-2'

SOIL TYPE: brown clayey SAND with


gravel

DISH WEIGHT: 36.2

149.1 WET: DRY: 141.5

INITIAL MOSITURE: 0.0722

SPECIMEN	A	В	С	D	VALUES AT 300 EXUDATION
EXUDATION PRESSURE (psi)	800	317	201	0	
PREPARED WEIGHT (gm)	1200	1200	1200	1200	R-VALUE: 23
FINAL WATER ADDED (gm)	30	60	90	0	EXP. PRESSURE: 0
WEIGHT, SOIL & MOLD (gm)	3185	3251	3246	0	
WEIGHT, MOLD (gm)	2107	2110	2104) o	REMARKS
HEIGHT (in)	2.41	2.63	2.66	0.00	
MOISTURE CONTENT (%)	9.9	12.6	15.3	.0.0	• •
DRY DENSITY (pcf)	123.2	116.7	112.8	0.0	
EXPANSION DIAL	30	0	0	0	
EXPANSION PRESSURE (psf)	129	0	0	0	
STABILOMETER @ 2000 lb	34	106	144	0	
TURNS DISPLACEMENT	3.65	3.93	4.14	0.00	·.
R-VALUE	72	24	6	0	. + (
R-VALUE (corrected)	6.9	25	6	0	

COOPER TESTING LABORATORIES

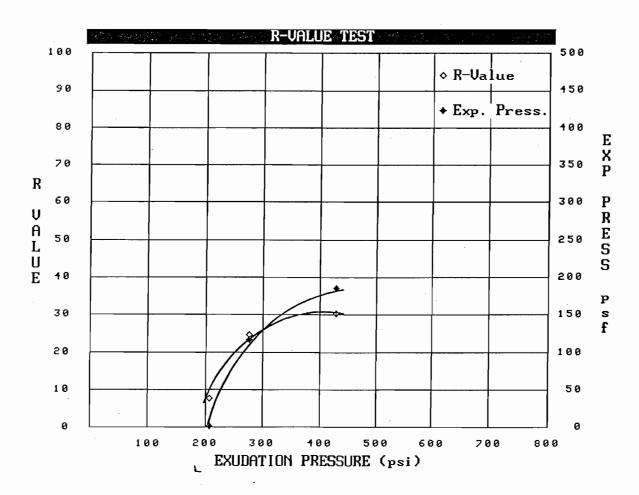
R-VALUE TEST

)B #: 331-014

∠ATE: 3/09/2001

CLIENT: Fisher Engineers / 001860

SAMPLE #: TP-2 @ 0-2'


SOIL TYPE: brown clayey SAND

DISH WEIGHT: 42.3

WET: 171.3 DRY: 153.4

INITIAL MOSITURE: 0.1611

SPECIMEN	A	В	С	D	VALUES AT 300 EXUDATION
EXUDATION PRESSURE (psi)	209	279	432	0	
PREPARED WEIGHT (gm)	1200	1200	1200	1200	R-VALUE: 25
FINAL WATER ADDED (gm)	60	30	15	0	EXP. PRESSURE: 125
WEIGHT, SOIL & MOLD (gm)		3187	3208	0	
WEIGHT, MOLD (gm)	2075	2101	2095	0	REMARKS
HEIGHT (in)	2.65	2.55	2.60	0.00	
MOISTURE CONTENT (%)	21.9	19.0	17.6	0.0	
DRY DENSITY (pcf)	101.5	108.4	110.3	0.0	
EXPANSION DIAL	0	27	43	0	
EXPANSION PRESSURE (psf)	0	116	185	0	
STABILOMETER @ 2000 lb	142	110	102	0	
TURNS DISPLACEMENT	3.94	3.56	3.36	0.00	· .
R-VALUE	7	24	30	0	
R-VALUE (corrected)	8	24	30	0	•
		-:			

COOPER TESTING LABORATORIES

R-VALUE TEST

B #: 331-014A LATE: 3/09/2001

CLIENT: Fisher Engineers / 001860

SAMPLE #: TP-4 @ 0-2'

SOIL TYPE: brn. silty SAND slighty

clayey(weather sandstone)

DISH WEIGHT: 42.9

WET: 163.0 DRY: 145.7

INITIAL MOSITURE: 0.1683

		•			
SPECIMEN	A	В	С	D	VALUES AT 300 EXUDATION
EXUDATION PRESSURE (psi) PREPARED WEIGHT (qm)	131 1200	197 1200	504 1200	0 1200	R-VALUE: 55
FINAL WATER ADDED (gm)	60	30	15	0	EXP. PRESSURE: 20
WEIGHT, SOIL & MOLD (gm)		3115	3103	0	·
WEIGHT, MOLD (gm)	2117	2090	2081	0	REMARKS
HEIGHT (in)	2.61	2.51	2.47	0.00	
MOISTURE CONTENT (%) DRY DENSITY (pcf)	22.7 98.5	19.7	18.3 105.9	0.0]
EXPANSION DIAL	90.5	2	16	0.0	
EXPANSION PRESSURE (psf)	Ö	9	69	ő	
STABILOMETER @ 2000 lb	122	66	49	0	
TURNS DISPLACEMENT	4.35	4.22	4.00	0.00	
R-VALUE	15	46	59	0	ĺ
R-VALUE (corrected)	16	46	57	0	

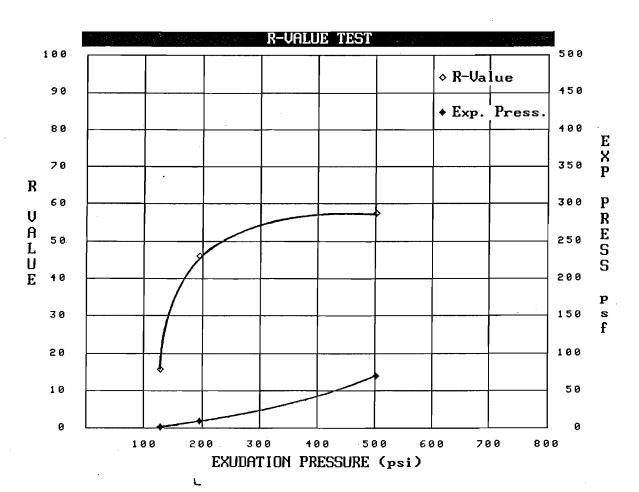


TABLE F-1 SUMMARY OF LABORATORY TEST RESULTS

		Chloride CL (ppm)																							T						Ī		T				T		2	,	,	80		ဖ					9	6	-	24		₽	4			
	-	Suffate SO4 (ppm)														1		+							+	-			1	+	ŀ						+		75		=	312		55		-	+		840	1800	90	105		5	7.0	*,		
v Testino			++			+	+		+	-				+				-		+		1			+	+					-			-			-				-			+			-		+	\prod	+	+		-	+	+		
Comsivity Testing		y Elec Conductivity (micro-mhos/cm)																																					[880]	10901	000	[782]		[658]				1000	[382]	[1100]	140601	[494]		[591]	tangt	3000		
		Min Resistivity (ohm-cm)																																					1140	4500	1320	1280		1520					1020	606	643	2020		1690	3250	0070		
		Soil pH						+					+			-	+	+		1		-			+	+			+	+	-		+	-			+		6.58	1	0.0	6.87		6.67			+		6.41	5.71	98	5.69		7.05	8.34	0.0		
R- Value																																										Ì										+				<u> </u>		
		Recompression Index (Cr)																								0.018																																
		Compression Re Index (Cc)			-		+	+			 					-				-		+			1	0900				-			+	-		+								+			-		+							-		
Consolidation Test	- בפו					+		+	_					_				-		+		+				0			4	_	_		+				$\frac{1}{1}$				-			-				Ц	+		+	<u> </u>		<u> </u>	1			-
2000	2000	(Cv) cm2/min							}				.																																								\ \ 					
		Coeff of Consol (Cv) in2/min																											1	T			1								T								†		+					+		
	+							_							_	-		+				-			+	_			_	+	_		+				-				 -						_		_									
TM D1557.0		den * % 3) optimum						_					+	_		<u> </u>		_		+		-	_		-				_	+	-			+		_	-				 -			-		-			+		+	_	5	+	+	+		L
Compaction Test (ASTM D1557.91)	20 100	en max dry den (kg/m3)				1		+							_	-		-								_			+	-			-											_		_	_		_		_		1890					
	+	max dry den (psf)				_																																															118					
Slake Test	-	<u>-</u> ح						-					87.4	88.5	+	-				-		85.1		78.4	+	<u> </u>			+	80.3			+	85.4		_	+			_		+		_		+			+		+		-		+			
rial Teet	100 100	a) phi				-	1,10	+-					T			-		+							1	T	9.6		7			_	+				-												‡		†							
till L. Triavial Test		C (ksf) C (kPa)					1 00	+					+		+	-	-	+		+					1	-	1.36 65.1	-	+	+		_	+	-										_		1			+		+				1	+		
	\vdash	SP SE	++												- ;	+		+		+					0.0				25.8				9.5	+										28		c	0.0											
Test	\vdash	phi-ult (pst)	-	-		+		-							-	+		+				+		Н	29 104			-	26 538	+		1	32 199	-			-							35 122	╁	35	+		 		<u> </u>				1			
Direct Shear Test		Cpeak (kPa)				+						 	-		-	3								Н	727	-		+	25.8	+	-	4	73.9	\dagger		+	+		+	+		+		20.1	H	500	+		+		+	-			+	-		
	-	C-peak (pst)						+					+		1	+				_		-		Н	4/4				238			\forall	1543				-				_			419		1405	3		<u> </u>		_				1			
.5		strain phi-peak	12 16		1.3	2.2	1.6	17	3.9		1.8	2	- 1		2.1	1.8	2.2	9. 1-		1.3	2	6	3.5	H	17 25			1.7	26	0	9		35	p.	2	7.7	5.4	6		2.3	4.2		2.5	189	2.3	6	+	2.8	1.9		6					2		
Unconfined Compression	Sadino Pa	-	79.9	+-+	85.4	+	++	+	89.3	1	4	253.3	4	╀	63.1	_	Ц.	162.2	1	111.3	Н	+	113.5	H	50.4	+		241.4	4	6./0	298.5	4	+	4	Ш	4	565.2 5.	Н	+	158.4 2.	194.5 4.	4	552.6 2.	-	400.8	4	-	700.0	576.6	+	489.0 1.9		-			118.7 2.2	L	0000
1 Incompany		\dashv	1572	╁	1783	1805	1825	2063	1865	+		5290	+	╁	1317	┿	┰	3387	₩	2324	╫	+	2371	H	1240	+-	1	5042	+	\$C77	+	3227	-+-	_			11804	-	+	3309	4062	-	11541 5	+	8370 4	-	_	14620 7	12042 5	┿	10213 4				+	2479 1	1	24 04540
	#																								1				+					+							+						+		+		1					1		
Hydrom	eie	-:005m m												_	2	+	40			+		42			53	70			+	8			_	1		40										+												
Atterberg	FILLIES	LL PI		Н	47 74	+		+			Н	42 26	24	H	99	╁	Н	8 8	\vdash	65 47	╁	35	+-		45 27	+	+	47 27	3	77 76	+	41 25	. 36	+	31	+	39 26	-						+			+		+									
2	out)	Dry Den (kg/m3)	1668	1676	1783	1805	1825	2063	1865		1868	1845	2101	2	1442	1595	1514	1833	9	1603	1935	1520	1615		1710	2		1797	4052	1833	1802	1841	1023	200	1789	1849	1889	1836		1568	1815	2054	1772	+	1829	1799	1853	1857	1882		1853		\parallel		1845	1688		
Moissura-Density	incompany in	Dry Den (pgf)	104.1	4046	111.3	112.7	113.9	128.8	116.4	2	116.6	115.2	443.4		8	966	94.5	114.4		100.1	120.8	676	100.8		107.3	5.70		112.2	1167)	112.5	114.9	1001	120.7	111.7	115.4	117.9	114.6		676	113.3	128.2	110.6		114.2	112.3	115.7	115.9	117.5		115.7				115.2	105.4		
		moisture	21.5	2	17.8	- 1		- 1	17.2		14.6	15.9	18.6	17.0	33.2	25.3	30.2	17.3	ı		1 1	- 1	24.6	1 1		1		18.6	- 1	- [18.3						15.5			25.5	18.7	110	19.9		17.9	19.0	16.9	17.1	15.2		14.6				15.0	18.5		
£ 6	- Cepai	E	7.7		5.8	107	12.0	14.8	55.0 16.8	2.13	2.6	6.6	9.0	13.9	14.2	17.7	18.9	25.0		3.7	4.3	5.2	8.2	8.2	8.5	10.8	911.3 to 11.	11.9	12.2	13.6	14.9	17.1	19.1	19.7	20.3	21.5	24.2	25.4		Н		Н	11		11			ш	21.2	11			9.1 to 20.1	2.0	5.3	8.7		
			13.5	П		26.5	39.5	4/ 104	55.0	Т	Н	21.5	29.5	45.5	46.5	58.0	62.0	82.0		12.0	14.0	17.0	27.0	27.0	28.0	35.5	37 to 38	39.0	40.0	44.0	49.0	26.0	62.5	5.50	66.5	70.5	79.5	83.4	_	8.0	27.0	31.5	41.0	44.0	47.5	25.0	62.5	66.5	75.0	79.0	80.5	84.5	30 to 66	6.5	17.5	28.5		
		Boring	표	0	P.7						83									4																			B-5															Be				1

TABLE F-1 SUMMARY OF LABORATORY TEST RESULTS

	8 2	Т	Τ	Τ		1			Γ	Γ	П	7	7	7	T	7	Т	Т	Т	Ţ	Ţ	Τ	_	Γ	Γ	П	\neg	ſ	Т	Т	Τ		_		— [7		Т	Т	T	Т	Т	
	Chloride CL (pom)	_					_	_											\downarrow	1	1	1			42																	33	
	Sulfate SO4 (ppm)																								69											!	45					81	
Corrosivity Testing									-			_	1		1				l	+			ļ .		22]			\dagger		†			_				2]	+	\dagger	+	T	5	
Corrosivi				ļ					_				_												[3022]												[415]					[205]	
	Min Resistivity (ohm-cm)																								3310												2410					4880	
	Soil pH	+	-	<u> </u>	_		_		 	 								+	<u> </u>	-					3.05			+	+	_	_	_				-	6.46		+	+	_	3.8	
R- Value Test			-				 	-		\				!	_	_	T	T	-		1.		_						+	\dagger		 						30	8	55	+	23	
	\vdash			14					<u> </u>		-	_				1	1			 -			<u></u>					-	1	-				_			1	_	+	+	_		-
	Recompression Index (Cr)	_	ļ	0.014						_					_					-								_			L		_			_			1	_	L		
Test	Compression Index (Cc)			0.082													ļ																										
Consolidation Test	(Cv) cm2/min			1.99 (@306kPa)	-				-					-			_		-						_			1	+						1		-	1		-			
පී 	<u> </u>	_		┿	₩																		_																		_		
	Coeff of Consol (Cv) in2/min			0.308 (@6400psf)																																							
=		+		0.308			_		_		' 				+	+	+	T	<u> </u>	+	-				-			+	+								+	+	+	_	 -		
M D1557-91)		_	-				_								_					_	_	_				4	4	+	_						_		_	\$	7	15	_	6	_
Test (ASTI	max dry den (kg/m3)									L																												1874	1,5	1762		2002	
Compaction Test (ASTM	max dry den (psf)														-																							117	=	110		125	-
Slake Test (E		_				_								1	+	1		_			-						_	-	_		-	_				_	1	+				-
	ig S	-	_	_				_					7	_	+		1	1	T	_								+	ļ	<u> </u>			_	1	_	1		+	1	_			
UU- Triaxial Test		1								L					1		+	+	_	-	-							\dagger	-							1		+	-	-	_		-
3	ပိ]																																	1	1				
	Court (KPa)	+	Ļ		_										+	2		_	<u> </u>			_				_	1	_											_				
Test	C-ut phi-ut (pst)	+	-					_			_		-		9	20.00	1	-	_	-	_				_	1	1	+	_				_		1	_	1	+	-	-			
Direct Shear Test	C-peak (kPa) P	T		<u>-</u>								1			0	+		+	_									-	-	-								+	+	 			
۵	C-peak (psf)							_								8																							+				
	phi-peak						_								9	04					_																						
mpression	8) % strain	+	-			_	_	1.9	L								1								_	_	4	_	4.9	ļ.,		-	_				_	_	_				
Unconfined Compression	(Pa (RPa)	_			_		H	3 84.4	_						_			-	_		_	_				_	+		879.3	+-				_	_	-	+	_	ļ.	_			
	and o) Qu(PSF)						_	1763	163						_	1		1			_	 -					+		18364	6415			_	_		1	+	_	<u> </u>	-			_
	#ZOO Wash im (percent passing)	_	_	43							_	_			1		_			_					_	_	-							_			_						
rg Hydrom eter		+		 				_			_		_		+			<u> </u>		<u> </u>		<u> </u>			-	-	+	_		-				+	_		+	+	-	 	_		
Atterberg Limits	1						_	L									1	L																			+	+	+				-
ity	Dry Den (ka/m3)	1632	1829	1743	1693	1981	1885	1829	1847	1756		1800		180/	1887	3	1764	1897		1831	1959	2054		1711		1629	٥//١	1833	1773	1685	1666		1631	1784	8								
Moisure-Density	Dry Den (pd)	101.9	114.2	108.8	105.7	123.7	117.7	114.2	115.3	109.6		112.4		112.8	C./L		1101	118.4		114.3	122.3	128.2		106.8		101.7	970.	1144	110.7	105.2	104		101.8	111.4	122.4			T	T				•
Μ̈́	moisture	8.9	9.6	14.4	21.6	9.1	11.0	15.9	15.9	18.0		13.0		5.4	0.0	0.0	0 8	0.8		43	5.7	4.8	_	16.8		17.5	5.0	10.2	18.6	212	16.9		4.5	8.9	67)	†		†	†	<u></u>			
Depth	E	60	1.8	2.6	3.2	3.4	4.1	4.6	5.6	6.1		1.1		2.0	3.0	4.4	80	5 40		1.1	1.7	3.2		7-1	1.5	1.7	3.2	60	2.7	4.3	5.8		0.3	1.8	3.0	1	1	T	1				•
Del	#	3.0	6.0	8.5	10.5	11.0	13.5	15.3	18.5	20.0		3.5	+	6.5	10.0	0.41	3.5	20	+	3.5	5.5	10.5		3.5	20	5.5	10.5	30	0.6	14.0	19.0		1.0	0.0	10.0	+	\dagger	1	\dagger				
	Boring	8										6		B-10	+	1	7		T	B-12		T		B-13		1	1	B-14	:	T			B-15	1		,	<u>-</u>	7P-2	1	TP-4		TP-5	-

E T S

1343 Redwood Way Petaluma, CA 94954 (707) 795-9605/FAX 795-9384 Environmental Technical Services Soil, Water, Air, Plant Tissue and Other Testing & Monitoring Analytical Labs Technical Support

Serving people and the environment so that both benefit.

+++++++++++++	*****	****	6014	MENTS	*	******	******
Method	Detection	Limits>		0.1	0.1	1	0.1
			1 1 1				
			1 1 1				
			[
			i I				
MBER	ID	SEDIMENT	mmhos/cm	ppm	ppm	mV	%
SAMPLE		SOIL and/or	ECe	SULFIDES (S=)	CYANIDES (CN=)		MOISTURE
LAB	SAMPLE	DESCRIPTION of	SALINITY	SOLUBLE	SOLUBLE	REDOX	PERCENT
Method	Detection	Limits>		1	0.1	1	1
			i i				
)1-02-0199	VR8	B-5 @ 84.5'	5.69	2020	[494]	103	24
1-02-0198	VR7	B-5 @ 81.5'	5.96	943	[1060]	1860 105	7 24
1-02-0197	VR6	B-5 @ 79.0'	5.71	909	[1100]	1800	9 7
1-02-0196	VR5	B-5 @ 69.5'	6.41	1020	[982]	840	6
1-02-0195	VR4	B-5 @ 44.0'	6.67	1520	[658]	105	6
1-02-0194	VR3	B-5 @ 31.5'	6.87	1280	[782]	312	8
01-02-0193	VR2	B- 5 @ 25.0'	6.50	1520	[660]	117	5
01-02-0192	VR1	B-5 @ 0.5'	6.58	1140	· [880]	54	5
			1				
NUMBER	ID	SEDIMENT	-log[H+]	ohm-cm	μmhos/cm	ppm	ppm
SAMPLE		SOIL and/or	1	RESISTIVITY	CONDUCTIVITY	SO4	CI
LAB	SAMPLE	DESCRIPTION of	SOIL pH	MINIMUM	ELECTRICAL	SULFATE	CHLORIDE
JOB #: 001	800			2/13/01	2/21/01		0.5. Comad
JOB #: 001	•	emore, Camomia.		2/13/01	2/21/01	3. Daliwait	G.S. Conrad
ATTN: Ray		rmore, California.		DATE RECEIVED	DATE of COMPLETION	S. Theodore S. Banwait	LAB DIRECT
MPANY: Fish		G ,	J			ANALYST(S)	D. Jacobso

Title 22, detection EPA 376.2 (=SMEWW 4500-S D); cyanides - extraction Title 22, detection ASTM D 4374 (=EPA 335.2).

ASTM G 51; Spec. Cond. - ASTM D 1125; resistivity - ASTM G 57; redox - Pt probe/ISE; sulfate - extraction Title 22, detection ASTM D 516 (=EPA 375.4); chloride - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extracti

E T S

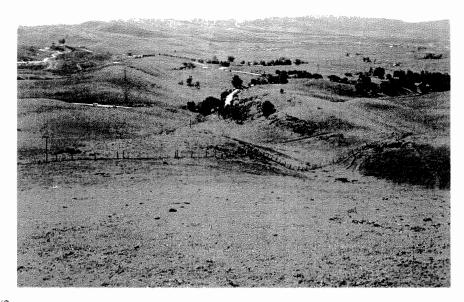
1343 Redwood Way Petaluma, CA 94954 (707) 795-9605/FAX 795-9384 Environmental Technical Services Soil, Water, Air, Plant Tissue and Other Testing & Monitoring Analytical Labs Technical Support

Serving people and the environment so that both benefit.

COMPANY: Fish	ner Civil & Geo	otech. Eng., 1746 Sa	n Miguel Drive	. Walnut Creek. C	A 94596	ANALYST(S)	SUPERVISOR
ATTN: Ray		 ,	g	DATE	DATE of	S. Theodore	D. Jacobson
	•	rmore, California.		RECEIVED	COMPLETION	S. Banwait	LAB DIRECTOR
JOB #: 001	860			3/6/01	3/12/01		G.S. Conrad PhD
LAB	SAMPLE	DESCRIPTION of	SOIL pH	MINIMUM	ELECTRICAL	SULFATE	CHLORIDE
SAMPLE		SOIL and/or	! !	RESISTIVITY	CONDUCTIVITY	SO4	CI
NUMBER	ID	SEDIMENT	-log[H+]	ohm-cm	μmhos/cm	ppm	ppm
01-02-0192	VR9	B-6 @ 6.5'	7.05	1690	[591]	<1	<1
01-02-0194	VR10	B-6 @ 18.5'	6.31	3250	[308]	24	5
01-02-0196	VR11	B-13 @ 5'	3.05	3310	[3022]	69	. 42
01-02-0198	VR12	TP-1 @ 2-65'	6.46	2410	[415]	45	8
01-02-0198	VR13	TP-5 @ 0-4'	3.80	4880	[205]	81	33
Method	Detection	Limits>		1	0.1	1	
LAB	SAMPLE	DESCRIPTION of	SALINITY	SOLUBLE	SOLUBLE	REDOX	PERCENT
SAMPLE		SOIL and/or	ECe	SULFIDES (S=)	CYANIDES (CN=)		MOISTURE
MBER	,_ID	SEDIMENT	mmhos/cm	ppm	ppm	mV	<u> </u>
					:		
				·			
				-			
Method	Detection	Limits>		0.1	0.1	1	0.1

Resistivities are all well over 1,000 ohm-cm, but pHs vary from 3 to 7; all sulfates and chlorides are low. The Cal Trans times to perforation for both 18 ga and 12 ga steel, respectively, for these soil samples are as follows: VR9 @ 21.3 & 46.9 yrs; VR10 @ 17.7 & 39.0 yrs; VR11 @ 7.5 & 16.4 yrs; VR12 @ 16.9 & 37.3 yrs; and VR13 @ 11.5 & 25.3 yrs. As you can see, most of these are mediocre times being in the 10-20 year range (for 18 ga); one sample has poor perf time of less than 10 years; and another sample has fair time of a little over 20 years. Neither sulfates or chlorides really come into play here at all. So, although the resistivities are all pretty good in these five samples, notice that two of them have extremely acidic pHs, i.e., in this case in the threes! To improve the times to perforation for these soils in terms of their activity against exposed steel, add lime to condition the soil up to a pH of 7.5 or so; or specify acid resistant steel. Make sure concrete is also acid resistant if the soil is not lime treated.

COMMENTS


\\\\NOTES: Methods are from following sources: extractions by Cal Trans protocols as per Cal Test 417 (SO4), 422 (CI), ar \$\frac{1}{3}2/643\$ (pH & resistivity); &/or by ASTM Vol. 4.08 & ASTM Vol. 11.01 (=EPA Meth Chem Anal, or Standard Methods); p. \$\sqrt{STM G 51}\$; Spec. Cond. - ASTM D 1125; resistivity - ASTM G 57; redox - Pt probe/ISE; sulfate - extraction Title 22, detection ASTM D 516 (=EPA 375.4); chloride - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction Title 22, detection EPA 376.2 (=SMEWW 4500-S D); cyanides - extraction Title 22, detection ASTM D 4374 (=EPA 335.2).

Name: Photo #1

Description: Looking southeast toward Vasco Road Landfill.

Name: Photo #2


Description: View south toward conform area. Center of photo approximates location of a trace of the Greenville fault

SITE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

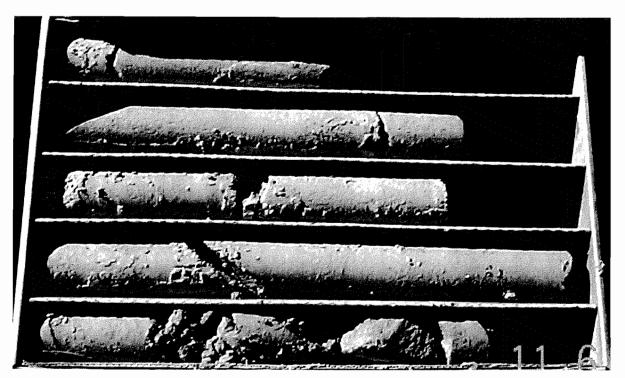
Name: Photo #3

Description: The north conform area.

SITE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

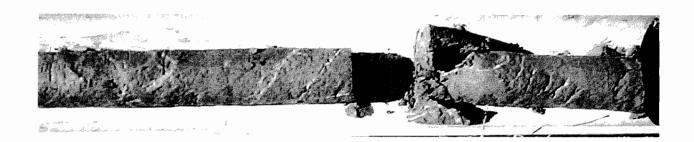

Sample from Boring B-7 collected between a depth of 30 and 40 feet.

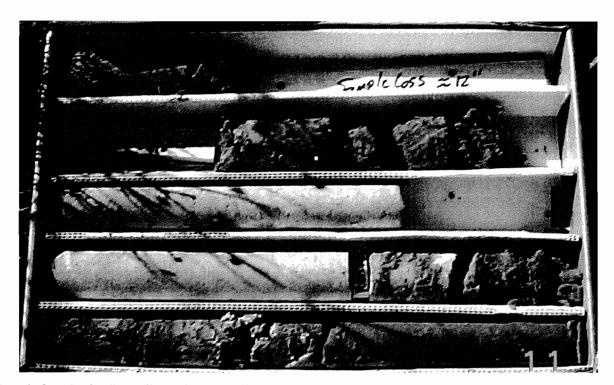
CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-7 collected between a depth of 12 and 20 feet.


Sample from Boring B-7 collected between a depth of 20 and 30 feet.


CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-5 collected between a depth of 83 and 85 feet.

Sample from Boring B-7 collected between a depth of 3 and 12 feet.

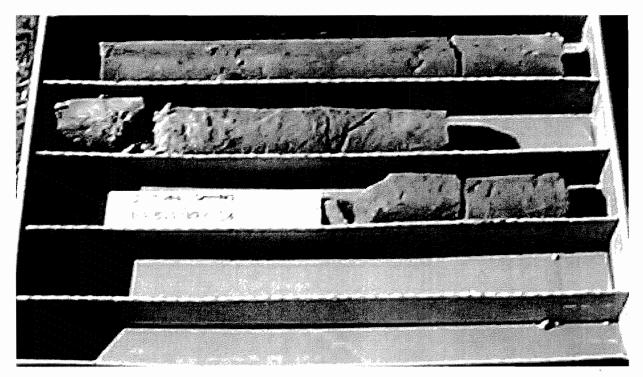
CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-5 collected between a depth of 80 and 85 feet.

Sample from Boring B-5 collected between a depth of 81 and 83 feet.


 $CORE\ SAMPLE\ PHOTOGRAPHS$

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-5 collected between a depth of 75 and 80 feet.

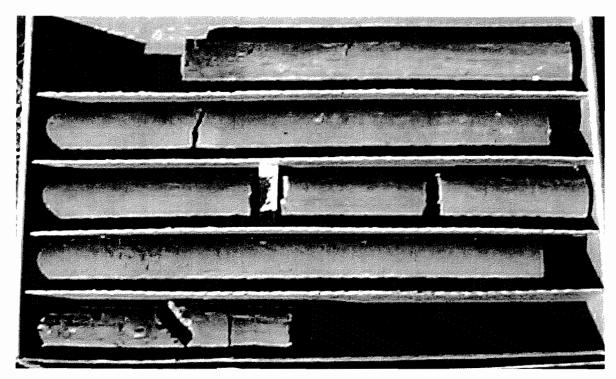
Sample from Boring B-5 collected between a depth of 80 and 85 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-5 collected between a depth of 70 and 75 feet.


Sample from Boring B-5 collected between a depth of 70 and 80 feet.

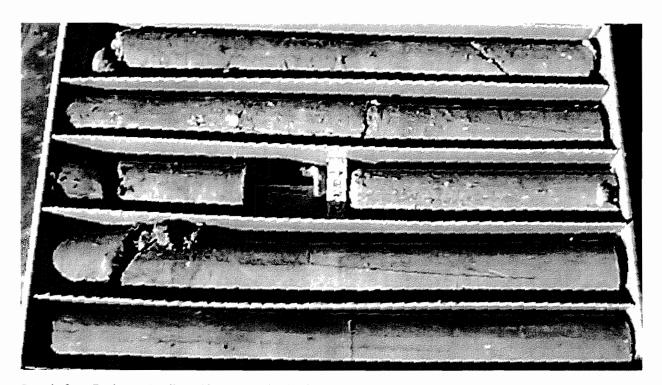
CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-5 collected between a depth of 50 and 60 feet.

Sample from Boring B-5 collected between a depth of 60 and 70 feet.


CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-5 collected between a depth of 0 and 10 feet.

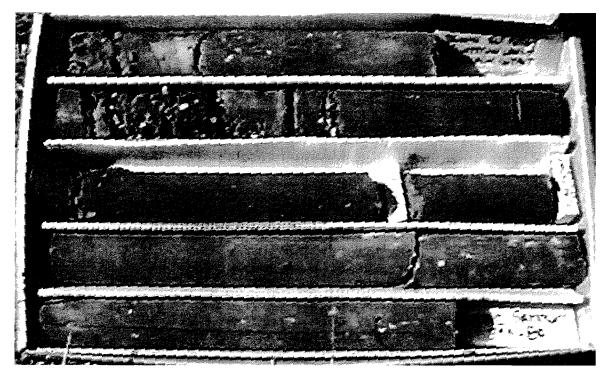
Sample from Boring B-5 collected between a depth of 40 and 50 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-4 collected between a depth of 80 and 85 feet.

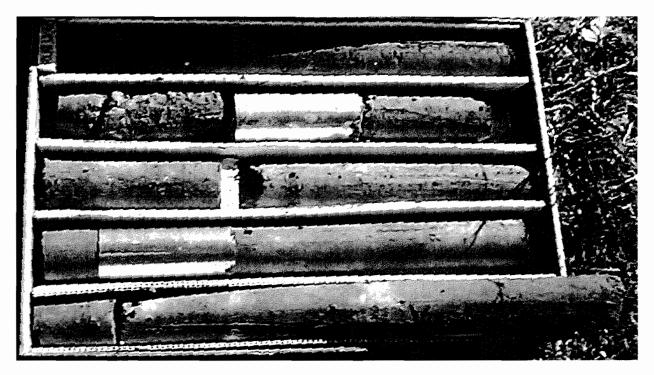

Sample from Boring B-4 collected between a depth of 80 and 85 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-4 collected between a depth of 70 and 80 feet.

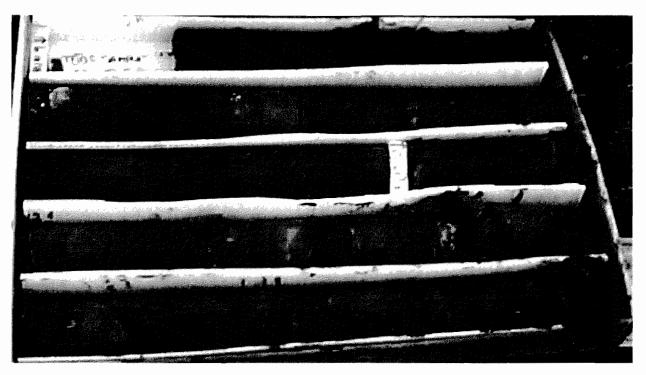

Sample from Boring B-4 collected between a depth of 75 and 80 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-4 collected between a depth of 60 and 70 feet.

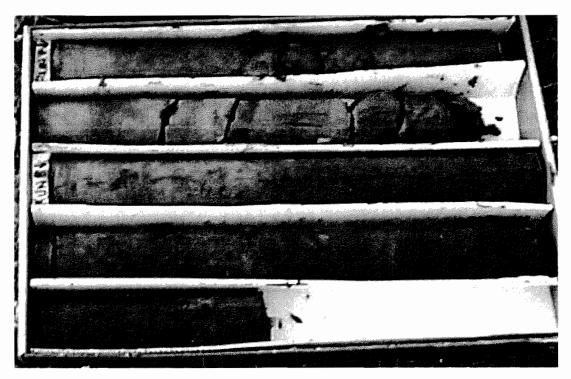

Sample from Boring B-4 collected between a depth of 70 and 75 feet.

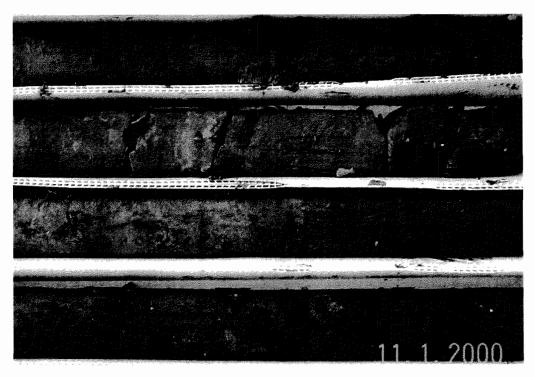
CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-4 collected between a depth of 40 and 50 feet.

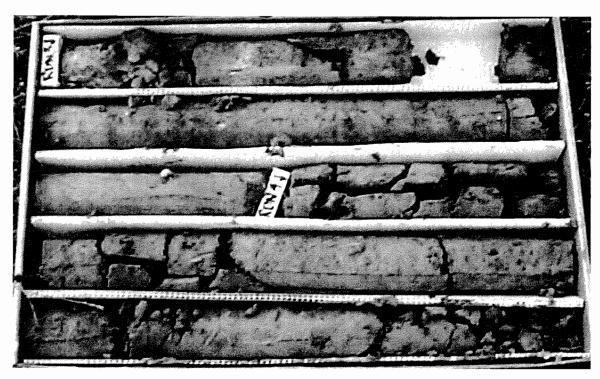

Sample from Boring B-4 collected between a depth of 50 and 60 feet.


CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-4 collected between a depth of 30 and 40 feet.


Sample from Boring B-4 collected between a depth of 31 and 40 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-4 collected between a depth of 10 and 20 feet.

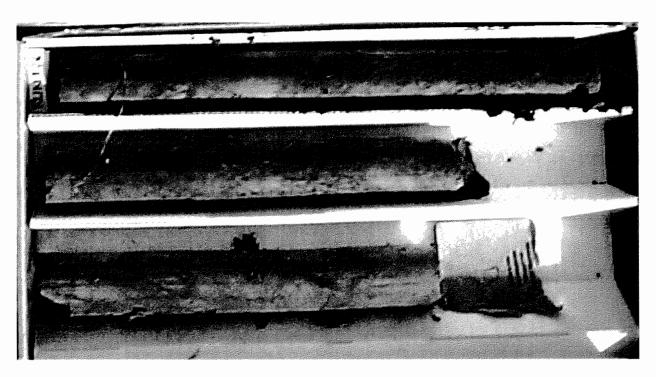
Sample from Boring B-4 collected between a depth of 20 and 30 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected at a depth of 83 feet.

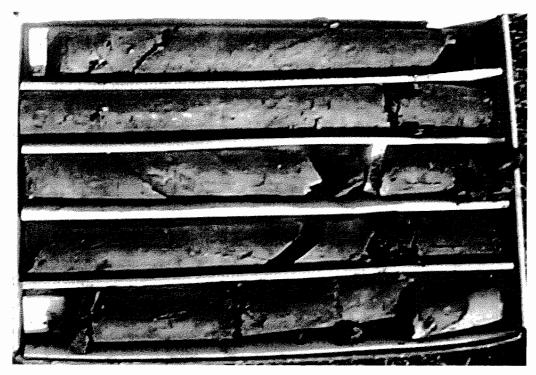
Sample from Boring B-4 collected between a depth of 0 and 10 feet.



VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected between a depth of 75 and 85 feet.


Sample from Boring B-3 collected between a depth of 80 and 85 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected between a depth of 70 and 80 feet.

Sample from Boring B-3 collected at a depth of 74 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected at a depth of 68 feet.

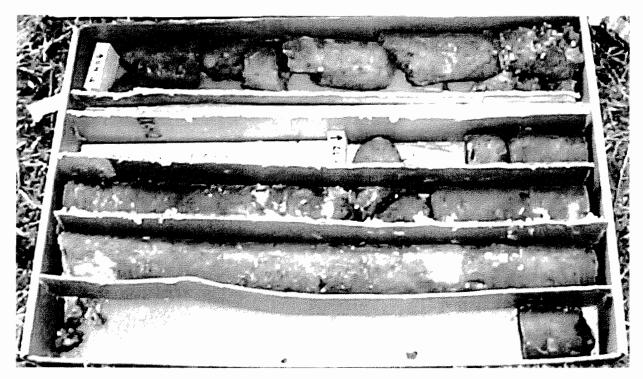
Sample from Boring B-3 collected between a depth of 70 and 75 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected at a depth of 62 feet.


Sample from Boring B-3 collected between a depth of 65 and 70 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected between a depth of 50 and 60 feet.

Sample from Boring B-3 collected between a depth of 60 and 65 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected between a depth of 35 and 40 feet.

Sample from Boring B-3 collected between a depth of 40 and 50 feet.

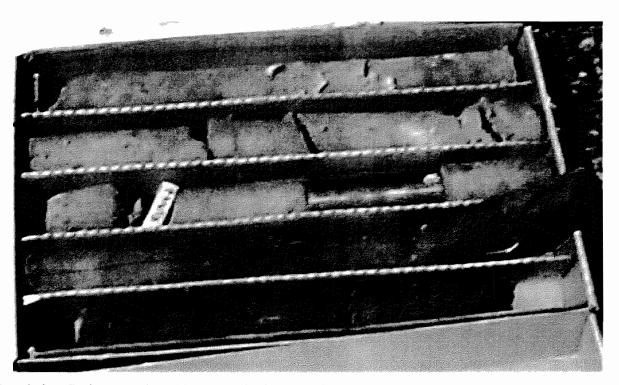
CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected between a depth of 25 and 30 feet.

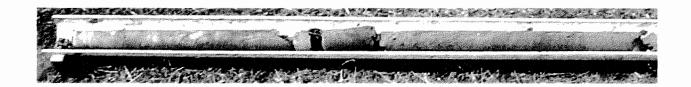
Sample from Boring B-3 collected between a depth of 30 and 40 feet.


CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-3 collected between a depth of 10 and 20 feet.



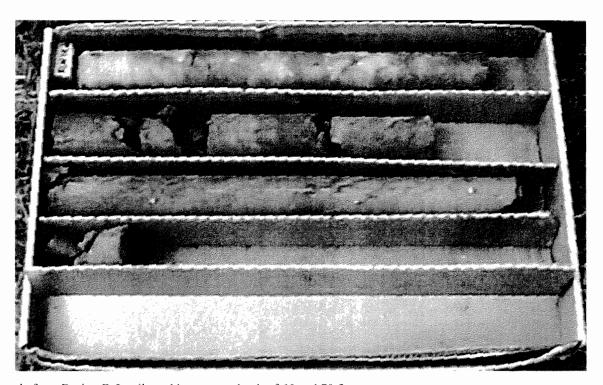
Sample from Boring B-3 collected between a depth of 20 and 30 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-2 collected between a depth of 65 and 70 feet.

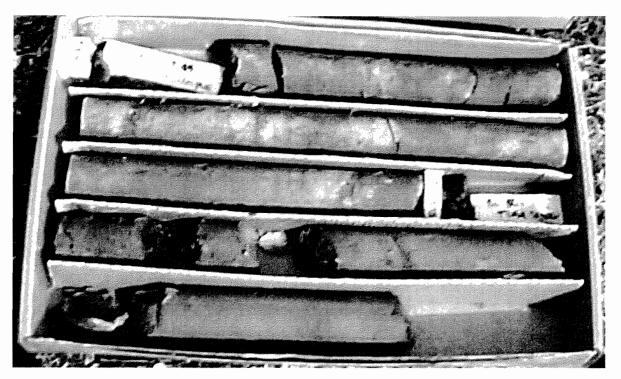
Sample from Boring B-3 collected between a depth of 0 and 10 feet.


CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-2 collected between a depth of 55 and 65 feet.



Sample from Boring B-2 collected between a depth of 65 and 70 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-2 collected between a depth of 45 and 55 feet.

Sample from Boring B-2 collected between a depth of 48 and 50 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-2 collected between a depth of 45 and 50 feet.

Sample from Boring B-2 collected between a depth of 45 and 55 feet.

CORE SAMPLE PHOTOGRAPHS

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-2 collected between a depth of 20 and 30 feet.

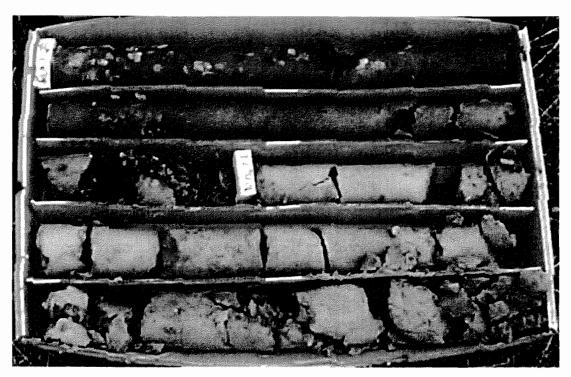
Sample from Boring B-2 collected between a depth of 30 and 35 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-2 collected between a depth of 10 and 20 feet.

Sample from Boring B-2 collected between a depth of 20 and 25 feet.



VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

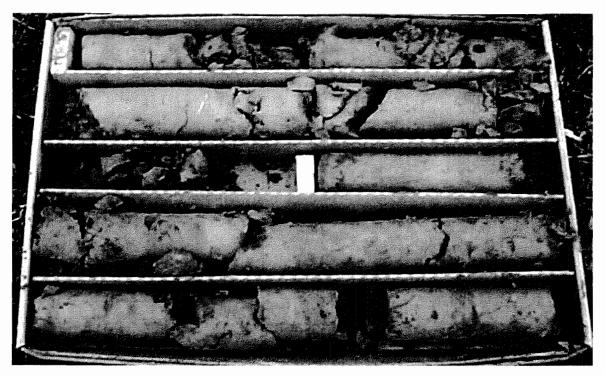
Sample from boring B-1 taken between a depth of 30 and 35 feet.

Sample from Boring B-2 collected between a depth of 0 and 10 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from boring B-1 taken between a depth of 29 and 30 feet.

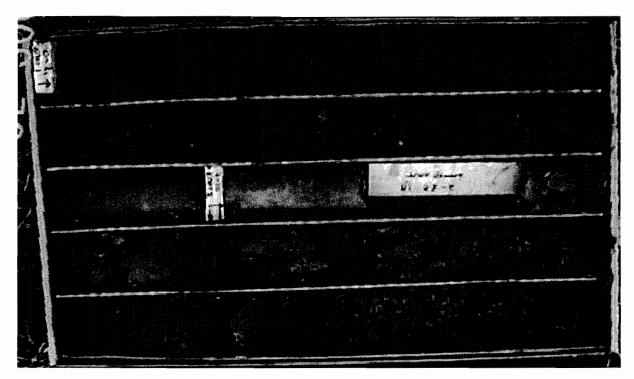


Sample from Boring B-1 collected between a depth of 30 and 35 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

Sample from Boring B-1 collected between a depth of 20 and 30 feet.

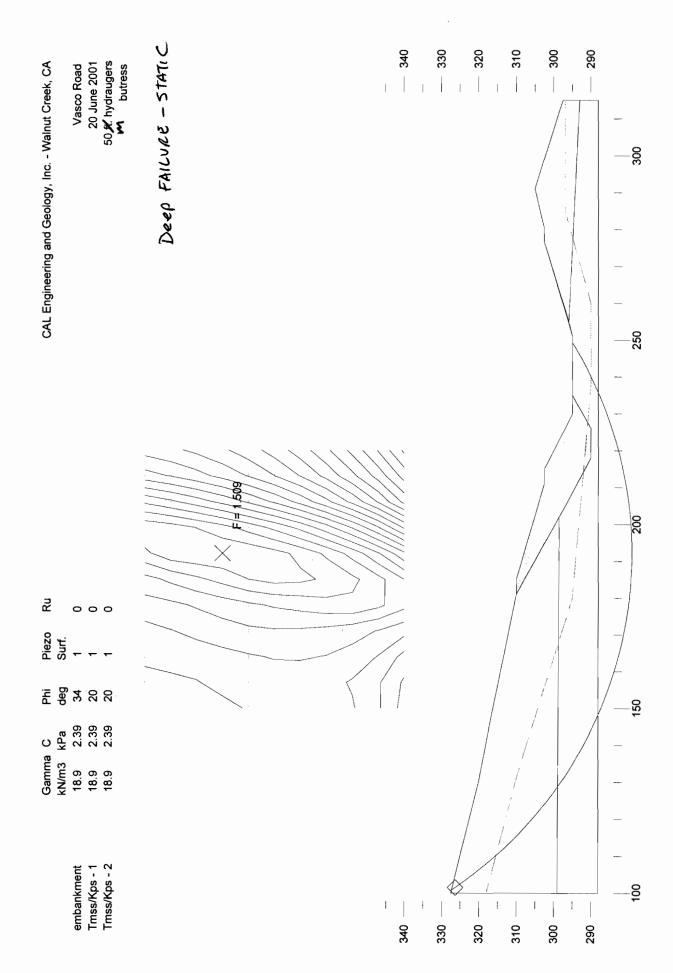


Sample from boring B-1 taken between a depth of 25 and 30 feet.

VASCO ROAD SAFETY IMPROVEMENTS

JN: 001860

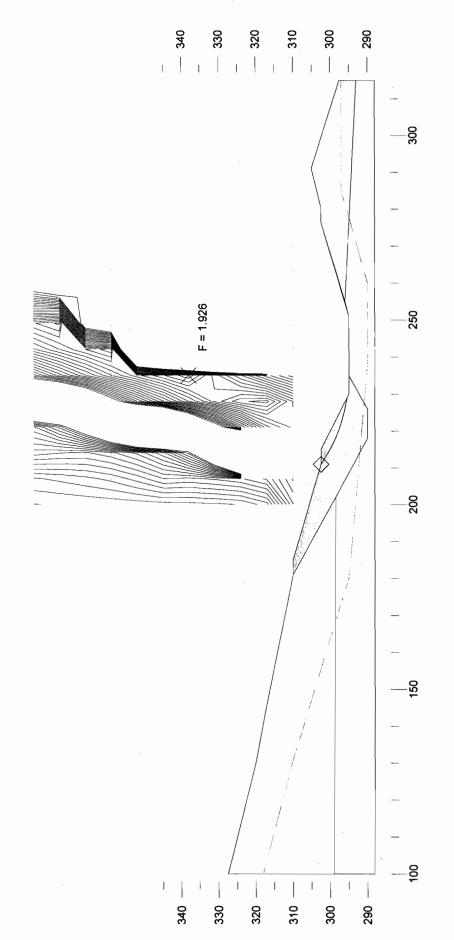
Sample from Boring B-1 collected between a depth of 0 and 10 feet.



Sample from Boring B-1 collected between a depth of 10 and 20 feet.

VASCO ROAD SAFETY IMPROVEMENTS

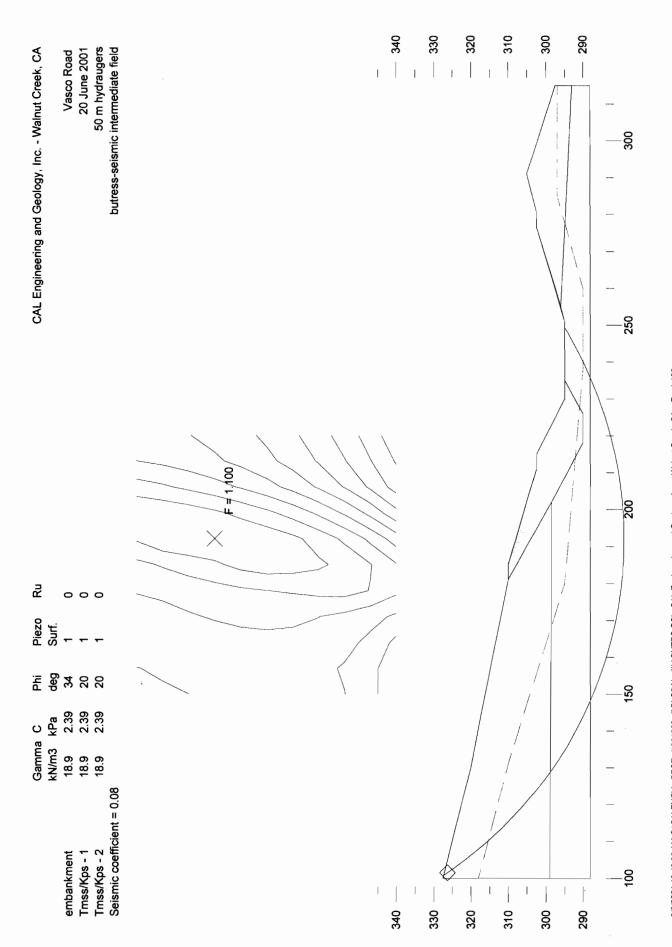
JN: 001860

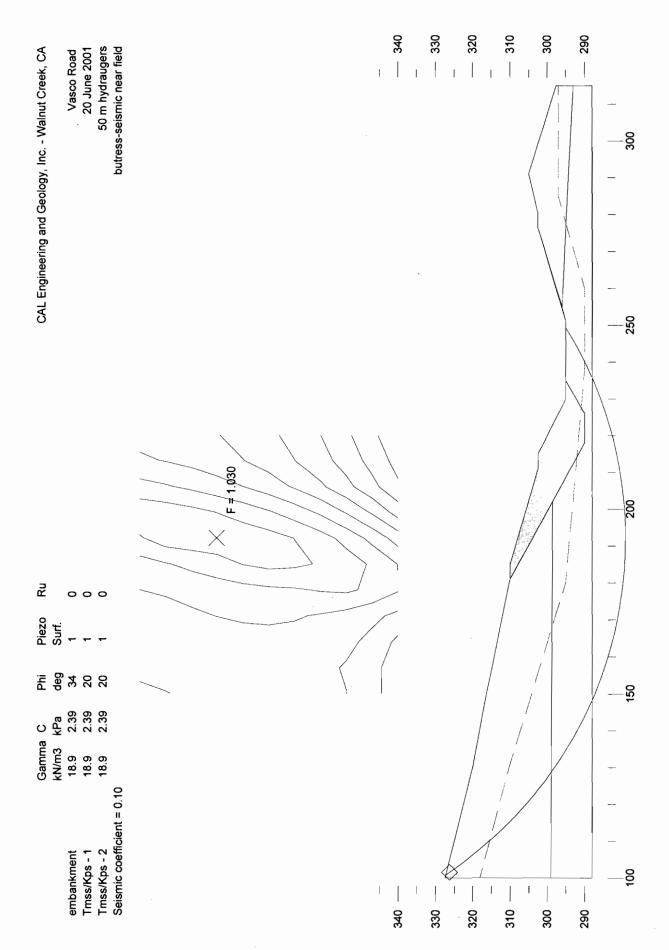

6/22/2001 1:26:04 PM C:ICALENGIA_GEOT~1/001860~11V-BUTRS.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.509

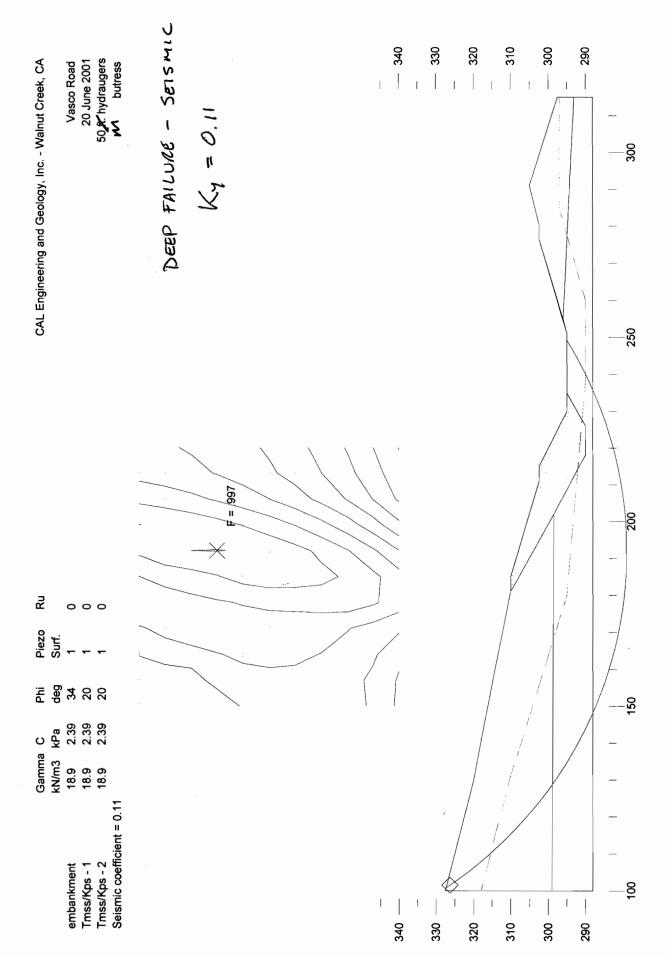
CAL Engineering and Geology, Inc Walnut Creek, CA		Vasco Road	20 June 2001	50 A: hydraugers
R.		0	0	0
Piezo	Surf.	-	-	-
			20	
ပ	kРа	2.39	2.39	2.39
Gamma	kN/m3	18.9	18.9 2.39	18.9

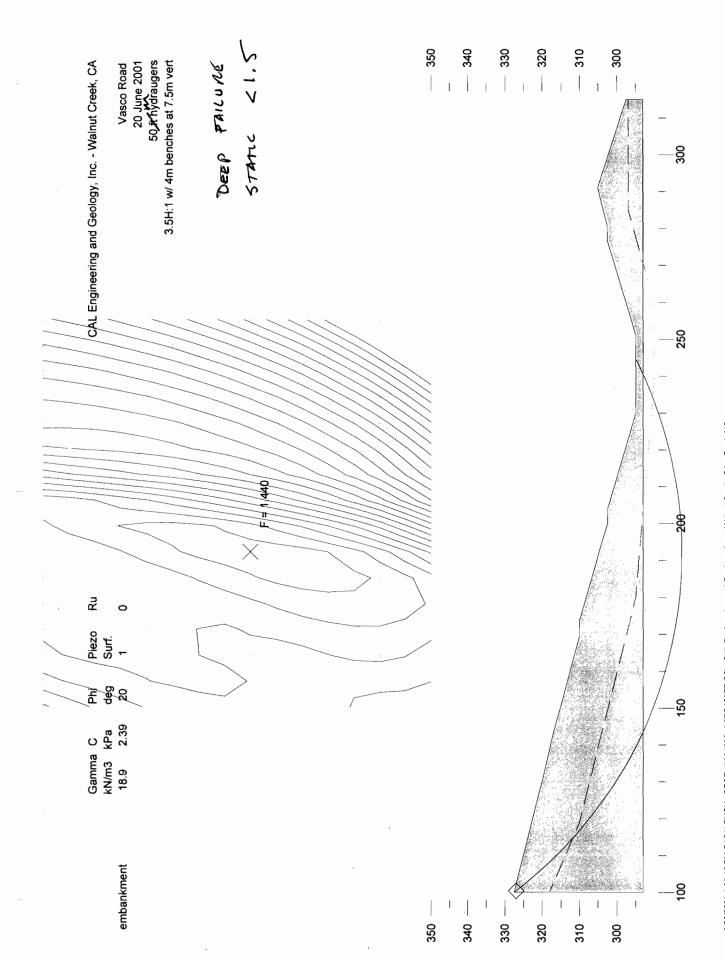
embankment Tmss/Kps - 1 Tmss/Kps - 2

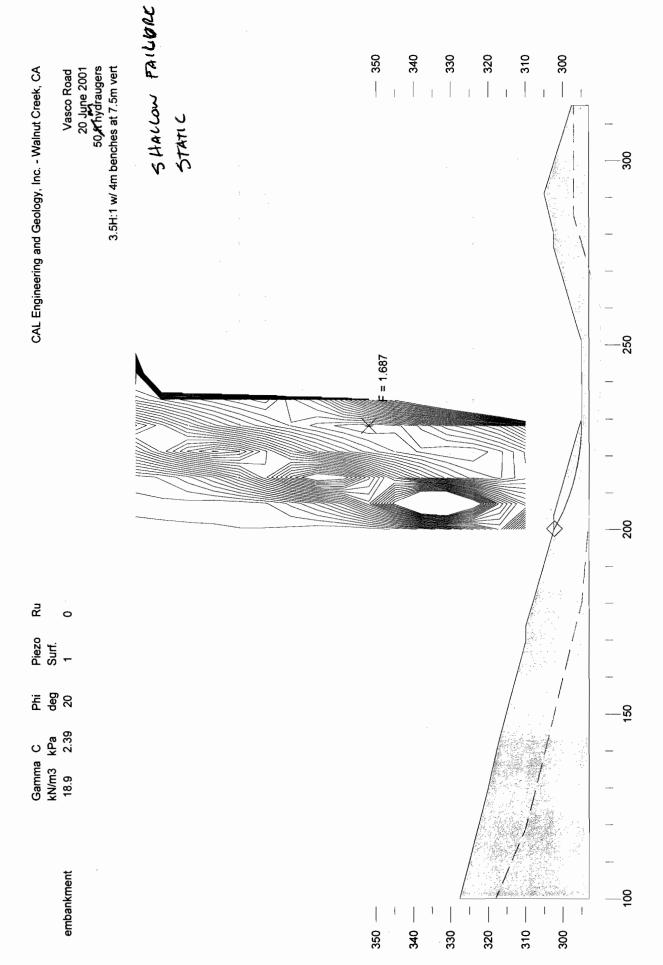
butress

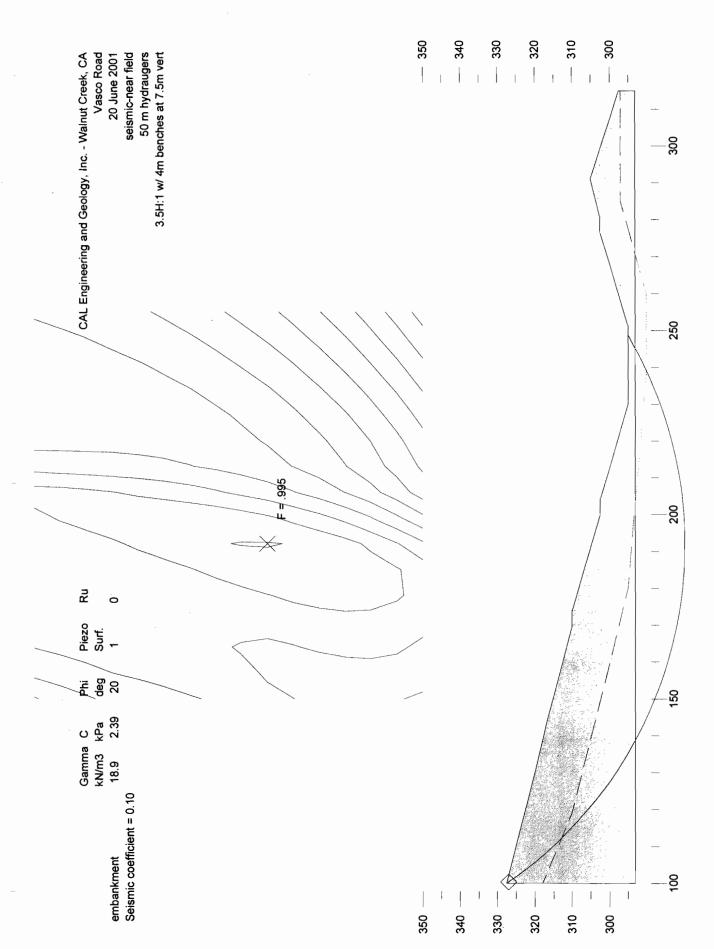

SHALLOW PAILURE - STATIC

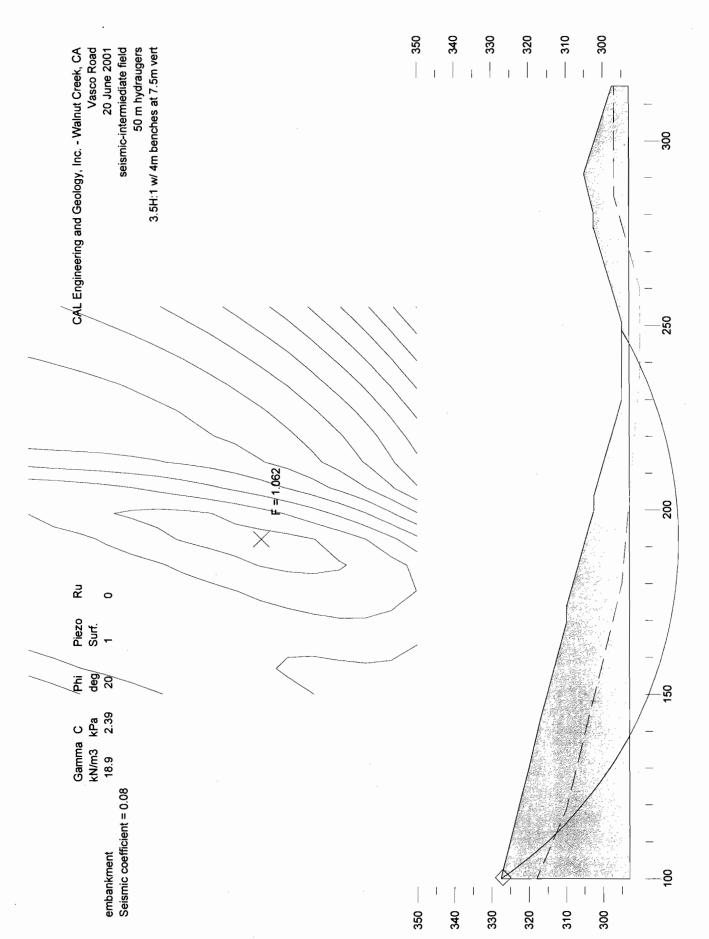

6/2-10114930 AM C:CALENGIA_GEOT~1001860~11GLOBAL~11V-BUTRS.GSL CAL Engineering and Geold 10.c. - Wahut Creek, CA F = 1,926

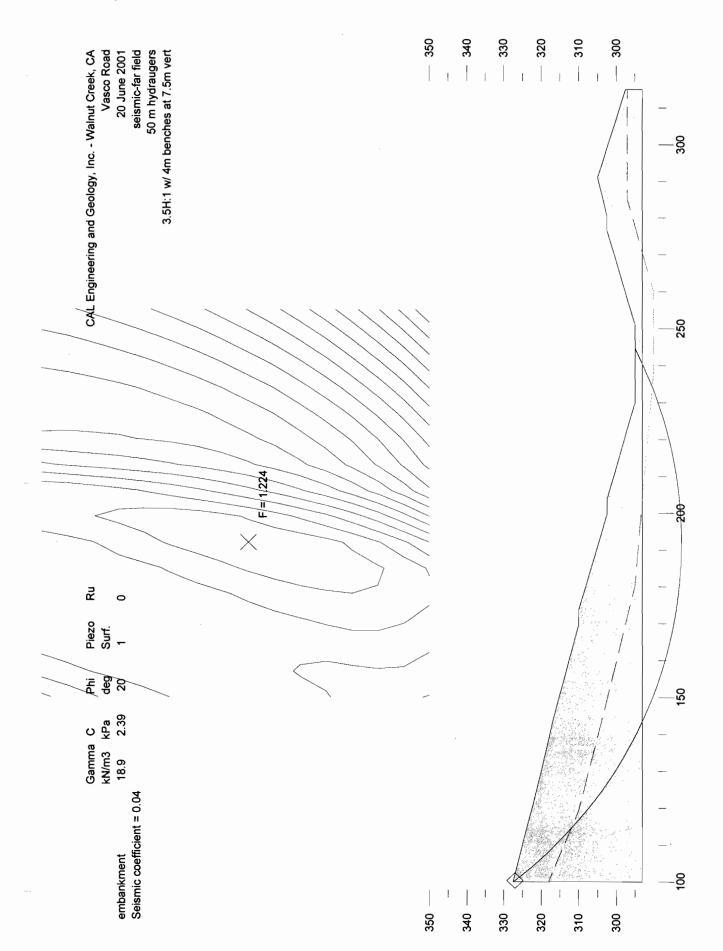

8/2/2001 10:41:55 AM C:\CALENG\A_GEOT~1\001880~1\GLOBAL~1\V-BUTRS.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.274

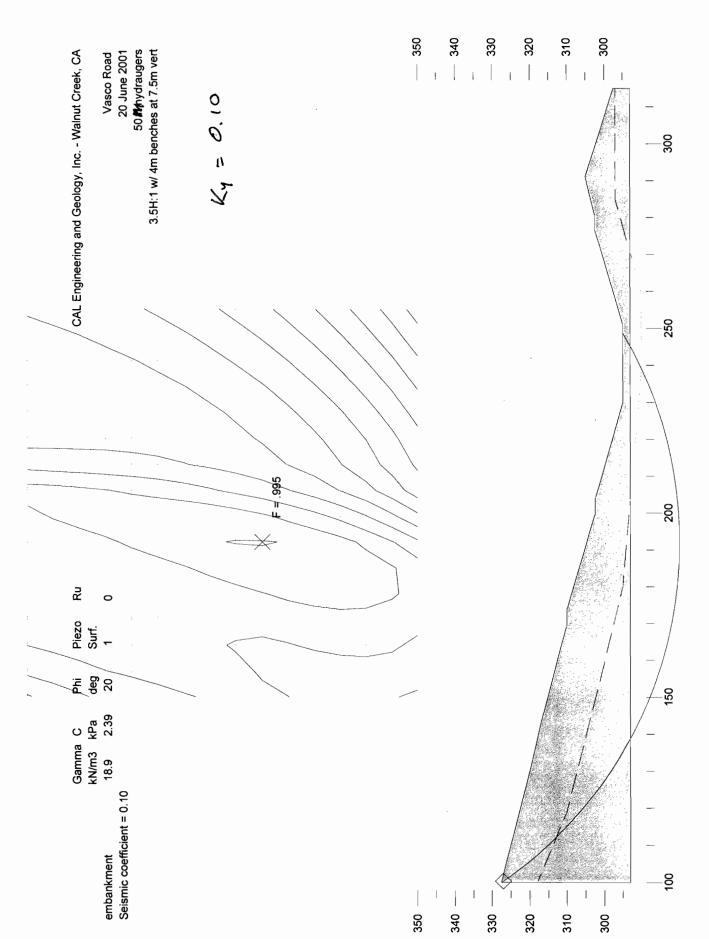

8/2/2001 10:42:36 AM C:ICALENGIA_GEOT~1/001860~1/GLOBAL~1/V-BUTRS.GSL CAL Engineering and Geology, Inc. - Wahrut Creek, CA F = 1.100

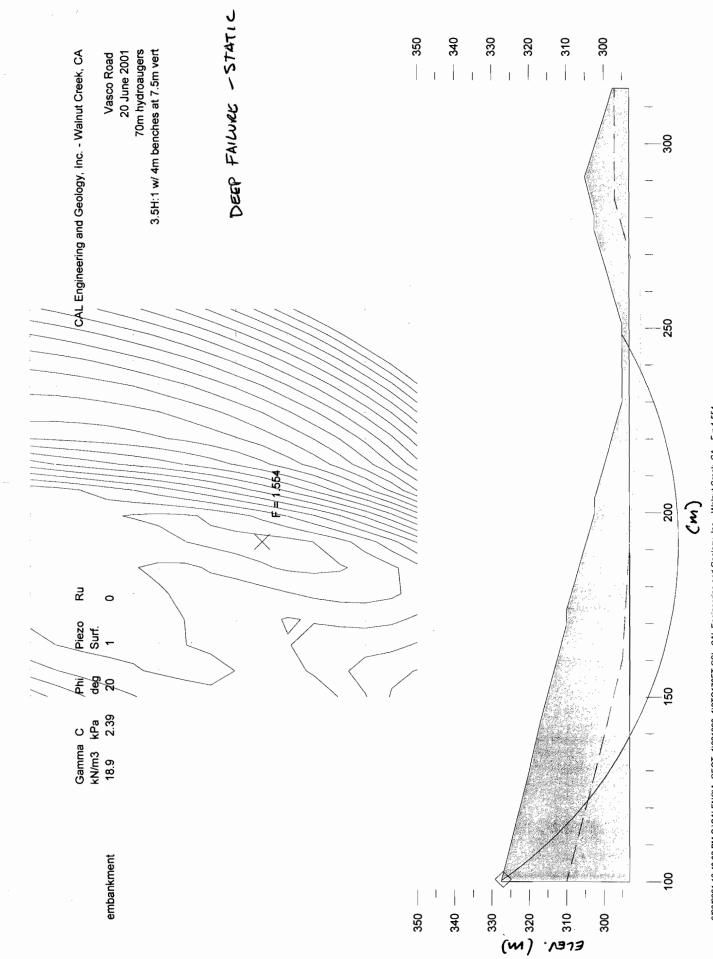

8/2/2001 10:44:32 AM C:\CALENG\alpha_EGT\u00c4\tag{EGT\u00c4\tag{1000} 10:01860\u00e4\tag{1000} 10:0108\u00e4\u00e

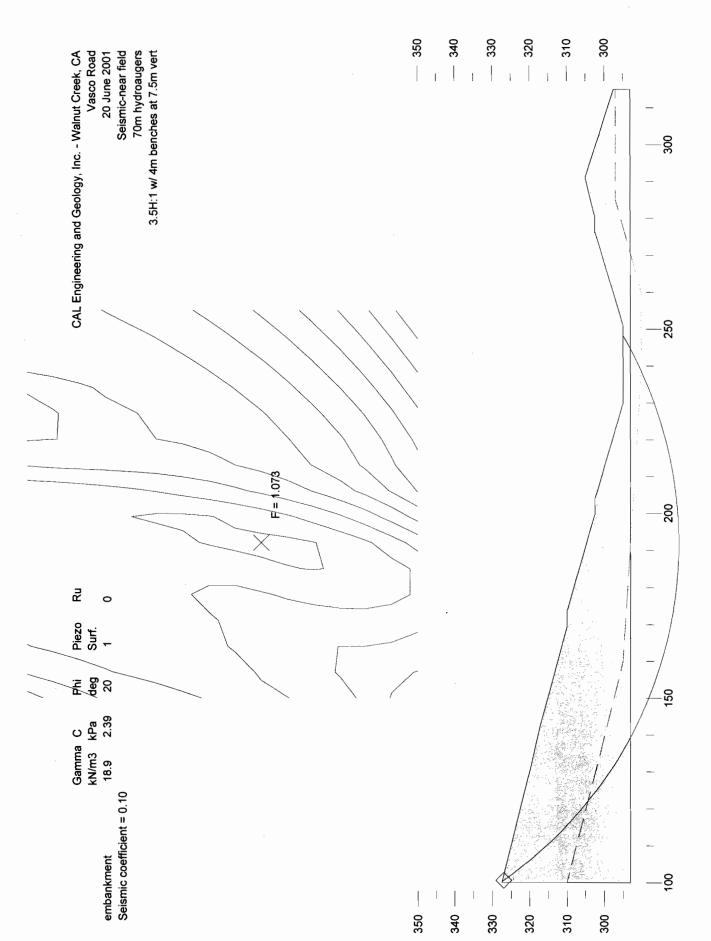

6/22/2001 1:30:04 PM C:/CALENG/A_GEOT~1/001860~1/V-BUTRS.GSL_CAL Engineering and Geology, Inc. - Walnut Creek, CA F = :997

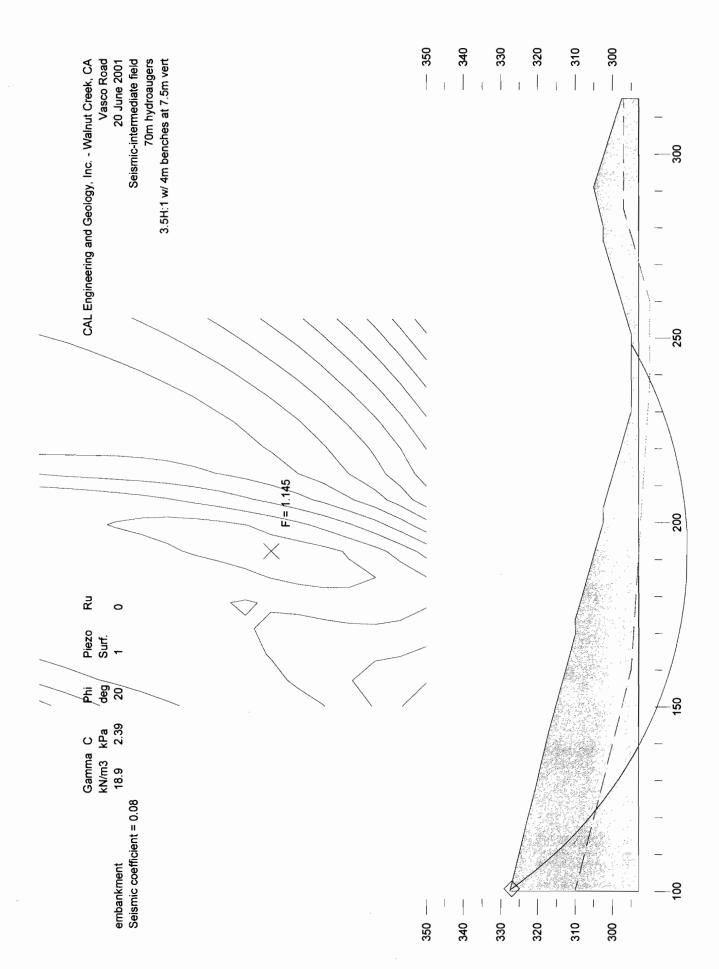

6/22/2001 1:06:46 PM C:ICALENGIA_GEOT~1/001860~1/3T0150FT.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.440

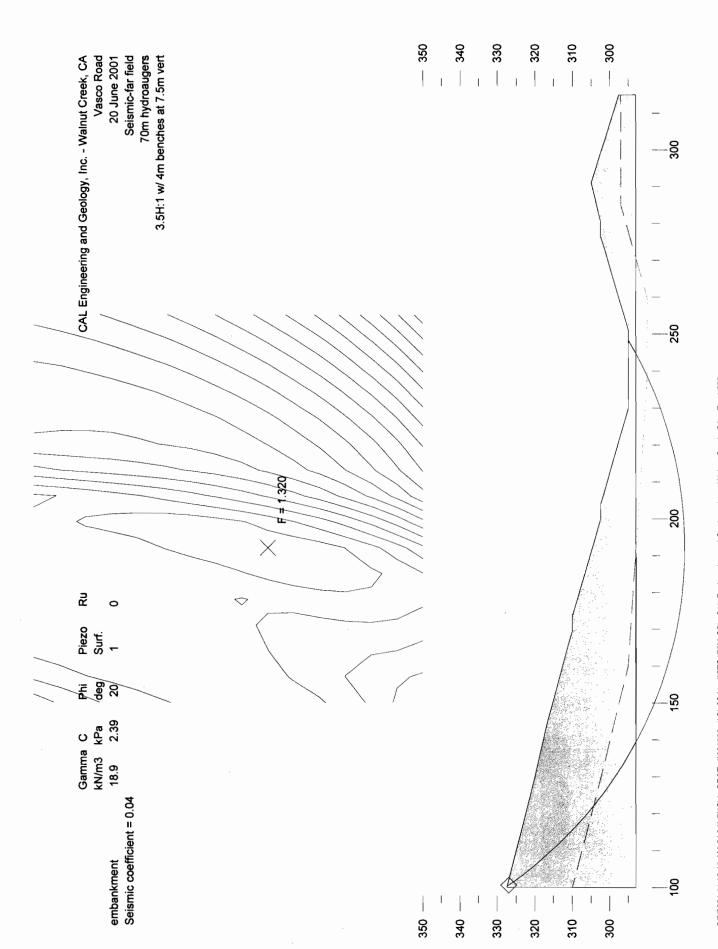

6/26/2001 11:51:17 AM C:CALENGA_GEOT~1/001860~1/GLOBAL~1/3TO150M GSL CAL Engineering and Geoloov Inc. - Walnut Creek, CA F = 1:687

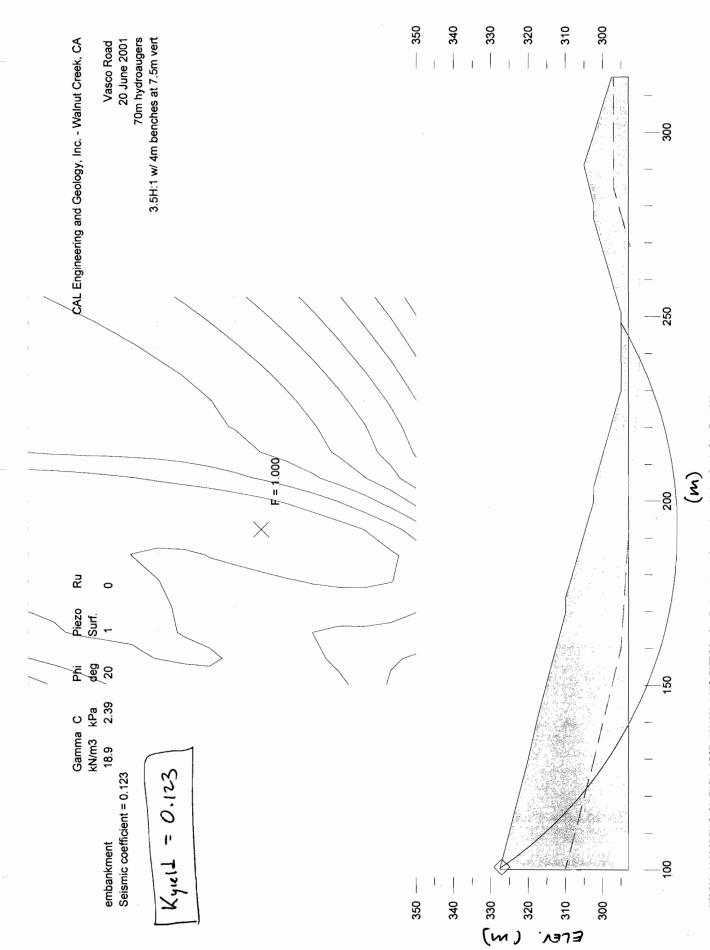

8/2/2001 11:08:21 AM C:\CALENG\(\text{CALENGIA_GEOT-1/001860-1\(\text{GLOBAL-1/3T0150M.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA | F = :995


8/2/2001 11:09:00 AM C:ICALENGIA_GEOT~1\001860~1\GLOBAL~1\3TO150M.GSL CAL Engineering and Geology. Inc. - Walnut Creek, CA F = 1.062


8/2/2001 11:09:26 AM C:\CALENG\(\overline{\text{CALENG\(\overline{\to}\circent{\text{CALENG\(\overline


f 1:08:39 PM C:\CALENG\a_GEOT~1\001860~1\3T0150FT.GSL_CAL Engineering and Geology, Inc. - W Creek, CA F = .995


6/22/2001 12:40:03 PM C:\CALENG\A_GEOT~1\001860~1\3T0170FT.GSL_CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.554

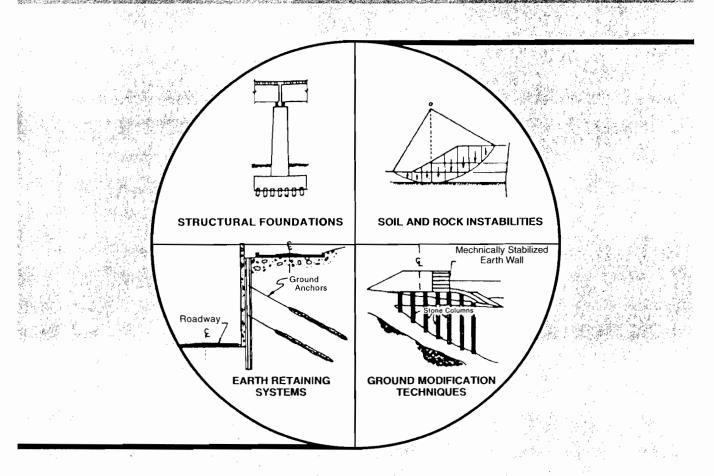

8/2)2001 11;14:14 AM C:\CALENG\u_GEOT~1\001860~1\GLOBAL~1\3T0170M.GSL CAL Engineering and Geology Inc. - Walnut Creek, CA F = 1.073

82/2001 11:13:38 AM C:\CALENG\(\tilde{G}\)E0T-1\001860-1\01\0108A\\-1\13T017\0M\\ S\)E. CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.145

8/2/2001 11:13:10 AM C:ICALENGIA_GEOT~1\001860~1\GLOBAL~1\3TO170M.GSL CAL Engineering and Geology, Inc. - Wahut Creek, CA F = 1.320

6/22/2001 12:39:22 PM C:\CALENG\A_GEOT~1\001880~1\3T0170FT.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.000

	I	DISPLACEM	ENT ANALY	'SIS		



May 1997

Office of Engineering
Office of Technology Applications
400 Seventh Street, SW
Washington, DC 20590

GEOTECHNICAL ENGINEERING CIRCULAR No. 3

DESIGN GUIDANCE: GEOTECHNICAL EARTHQUAKE ENGINEERING FOR HIGHWAYS VOLUME I - DESIGN PRINCIPLES :

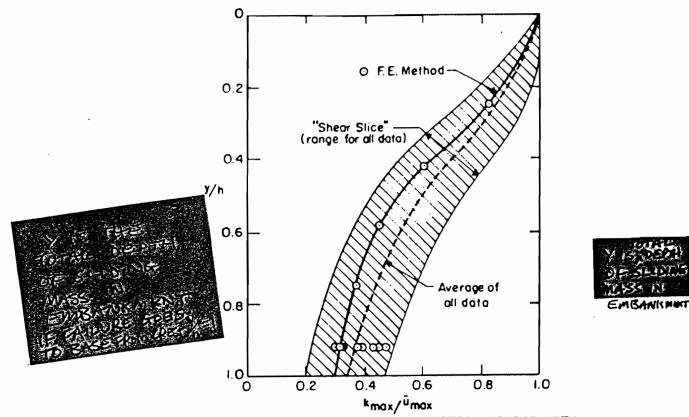


FIG. 9 VARIATION OF "MAXIMUM ACCELERATION RATIO" WITH DEPTH OF SLIDING MASS

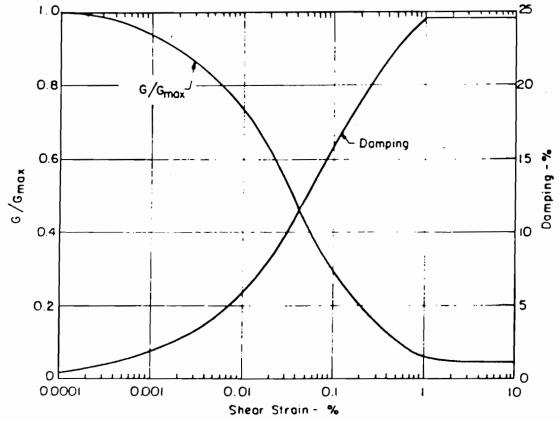


FIG. 10 SHEAR MODULUS AND DAMPING CHARACTERISTICS USED IN RESPONSE COMPUTATIONS

In using the acceleration time history from a one-dimensional site response analysis as the excitation in a Newmark sliding block analysis, the seismic response of a soil has been decoupled from its permanent seismic deformation. In other words, the influence of yielding and the accumulation of permanent seismic deformation has not been accounted for in the evaluation of the seismic response of the soil mass. Lin and Whitman (1986) have shown that this type of decoupled analysis overestimates seismic deformation by a minimum of 20 percent and by as much as a factor of 2 or 3 when the predominant period of the earthquake motion is close to the resonant period of the soil deposit. The predominant period of the earthquake motion can be determined from the acceleration response spectrum as the period at which the spectral acceleration is a maximum. The fundamental period of the soil deposit, T_0 , can be evaluated using equation 4-5 as $T_0 = 1/f_0$.

While the residual shear strength is typically employed in practice to evaluate the yield acceleration, this common practice is another source of conservatism in permanent seismic deformation analyses. Deformations should not begin to accumulate until the seismic acceleration exceeds the yield acceleration corresponding to the peak shear strength. Furthermore, several centimeters of deformation may have to accumulate before the shear strength (and yield acceleration) fall from peak to residual values. Therefore, particularly for small calculated deformations, the use of residual shear strength to evaluate the yield acceleration for a Newmark deformation analysis can introduce considerable conservatism into the analysis.

7.4 UNIFIED METHODOLOGY FOR SEISMIC STABILITY AND DEFORMATION ANALYSIS

The seismic coefficient-factor of safety and permanent seismic deformation analysis methods for seismic slope stability may be combined into a single, unified method for evaluation of slopes and embankments. First, a seismic coefficient-factor of safety analysis is performed using a suitably conservative value for the seismic coefficient. Then, if the seismic coefficient-factor of safety analysis results in an unacceptable factor of safety, a permanent seismic deformation analysis is performed.

The "unified" seismic stability and deformation analysis is carried out using the same basic model(s) of slopes used in the static analysis. Note, however, that the critical surface with the lowest yield acceleration or pseudo-static factor of safety may be very different from the surface with the lowest static factor of safety. The following steps are carried out to perform the unified seismic slope stability and deformation analysis:

Step 1: Reinterpret the cross-sections analyzed in the static stability analysis and assign appropriate dynamic residual strength parameters. In cases where it is not clear whether drained or undrained shear strength parameters are appropriate for the dynamic analysis, follow guidelines presented in Duncan (1992) or use a composite consolidated drained-consolidated undrained strength envelope proposed by the Corps of Engineers for pervious soils and the consolidated undrained strength envelope for silts and clays. For fully saturated or sensitive silts or clays, multiply the undrained peak shear strength by 0.8 for the analysis.

- Step 2: Select a seismic coefficient, k_s, for a minimum factor of safety of 1.0 based upon the work of Hynes and Franklin. If a permanent seismic deformation of 1 m is acceptable, a value of k_s equal to 0.5 · a_{max}/g, where a_{max} is peak horizontal acceleration at the ground surface, may be used for embankments If a site response analysis has been performed to evaluate the peak average acceleration of the failure mass, a value of k_s equal to 0.17 · a_{max}/g may be used. For natural and cut slopes, where amplification effects are expected to be minimal, a value of k_s equal to 0.17 · a_{max}/g may also be used (see discussion in section 7.3.2).
- Step 3: Perform the pseudo-static stability analysis. If the minimum factor of safety, FS_{min} , exceeds 1.0, the seismic stability analysis is completed.
- Step 4: If the pseudo-static factor of safety is less than 1.0, perform a Newmark deformation analysis. This is done using the following three steps:
 - 1) Calculate the yield acceleration, k_y . The yield acceleration is calculated using a trial and error procedure in which the seismic coefficient is varied until $FS_{min} = 1.0$ is obtained.
 - 2) Calculate the permanent seismic deformation. The permanent seismic deformation may be calculated using either simplified design charts (e.g., figure 51), as described below, or by performing a formal time-history analysis in which the excursions of the average acceleration time history above the yield acceleration are double integrated.
 - Compare the calculated permanent seismic deformation to the allowable maximum permanent displacement, u_{max}.

Several investigators have presented simplified charts based upon the results of Newmark deformation analyses for estimating permanent seismic deformations. The chart developed by Hynes and Franklin (1984) was presented in figure 51. The Hynes and Franklin chart does not consider either site amplification or earthquake magnitude effects. Therefore, the Hynes and Franklin charts may be expected to give reasonable values for natural and cut slopes and low, broad embankments where amplification effects are expected to be small when subject to large earthquakes. For small earthquakes, the Hynes and Franklin charts may yield conservative values for such cases.

Makdisi and Seed (1978) developed the seismic deformation chart shown in figure 53 from the results of two-dimensional finite element analyses of embankments. This chart includes the effect of amplification of seismic motions by the embankment and provides upper and lower bounds on the permanent deformation as a function of magnitude.

If a seismic response analysis has been performed, a formal Newmark seismic deformation analysis can be performed by using the acceleration or shear stress time histories from the seismic site response analysis. Jibson (1993) describes the analytical procedure for performing such an analysis. To evaluate the permanent displacement of the sliding mass, the average acceleration time history

of mass above the critical failure plane (the failure surface with the lowest yield acceleration) should be used.

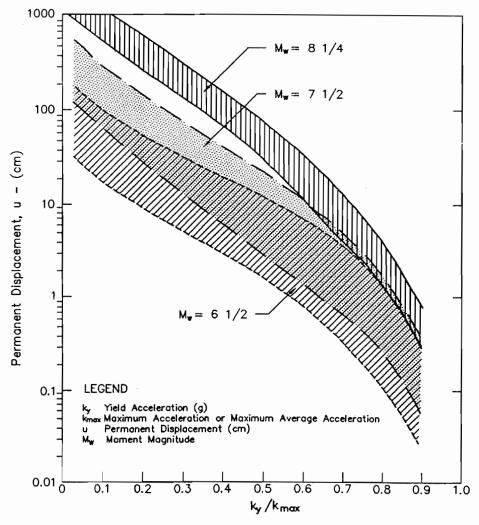
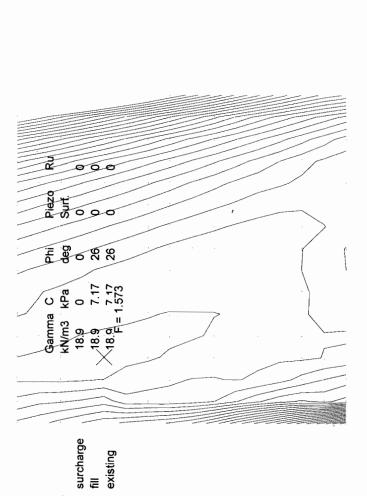
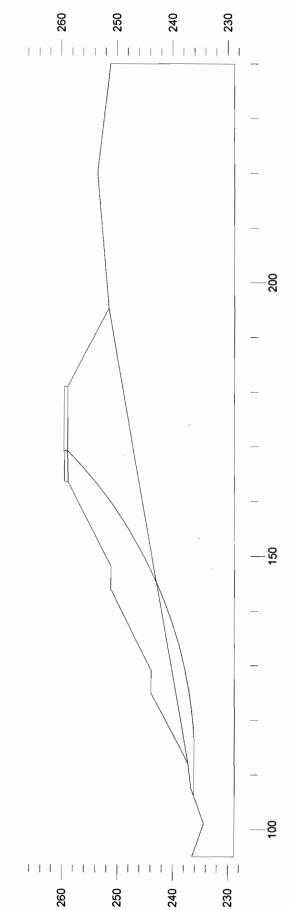


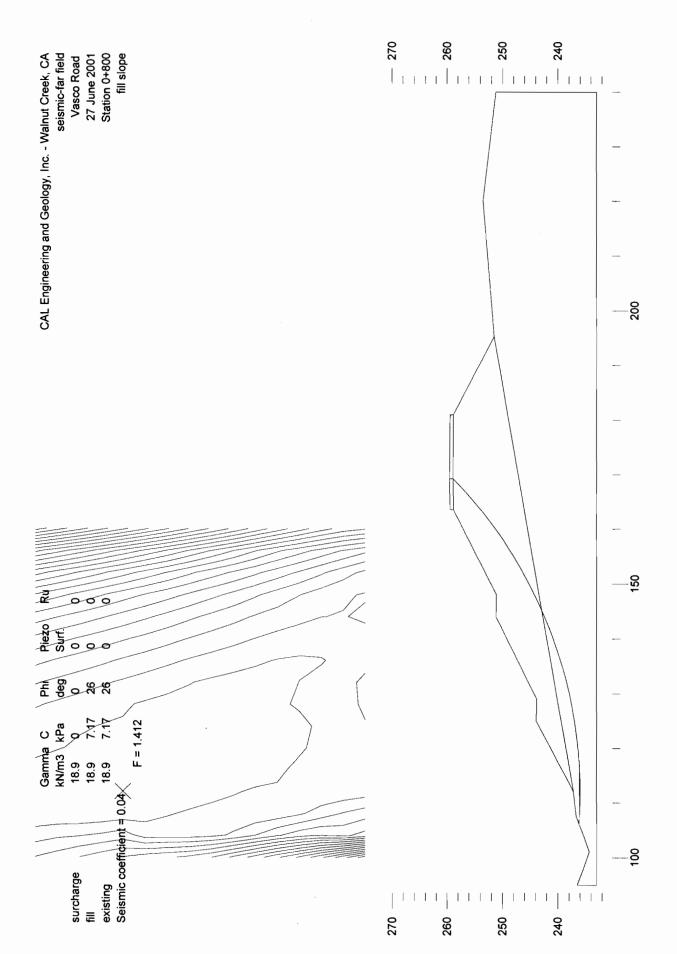
Figure 53. Permanent displacement versus normalized yield acceleration for embankments (after Makdisi and Seed, 1978, reprinted by permission of ASCE).

7.5 ADDITIONAL CONSIDERATIONS

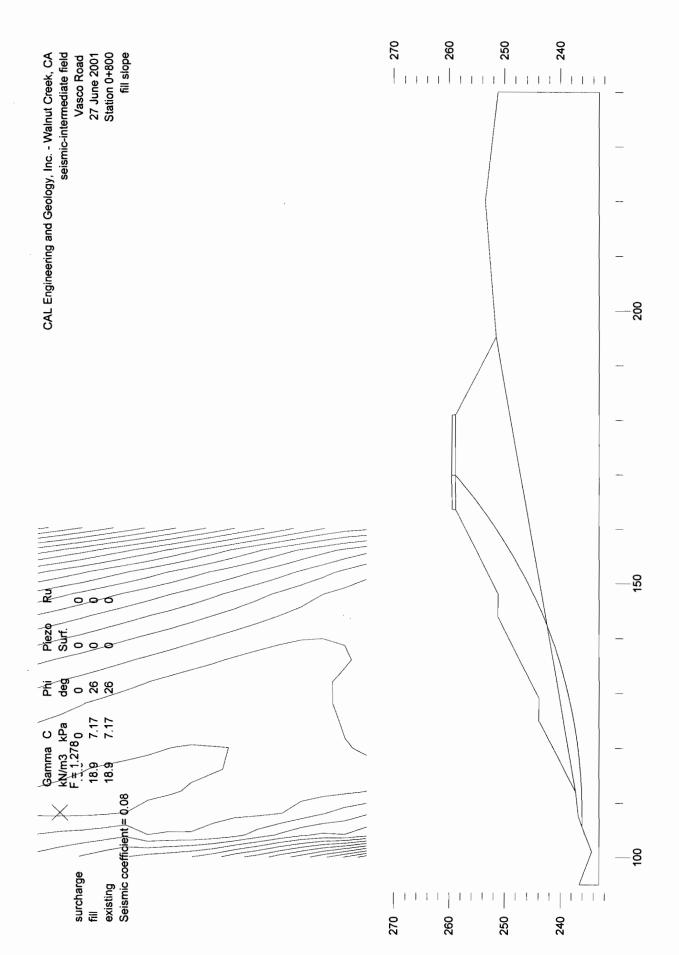

Stability of the underlying foundation soil is an important consideration in evaluating the overall performance of the embankment, particularly if a layer (or layers) in the foundation is susceptible to liquefaction. The potential for a liquefaction-induced flow failure may be analyzed using limit equilibrium analyses by employing residual shear strengths in the potentially liquefiable zones. In this type of post-earthquake stability assessment, the seismic coefficient should be set equal to zero (Marcuson et al., 1990). If the residual shear strength is conservatively assessed using minimum values of SPT blow counts (or CPT tip resistance) within the potentially liquefiable layer(s), a factor of safety of 1.1 may be considered as acceptable. Evaluation of residual shear strength for post-liquefaction stability analyses is discussed in chapter 8.

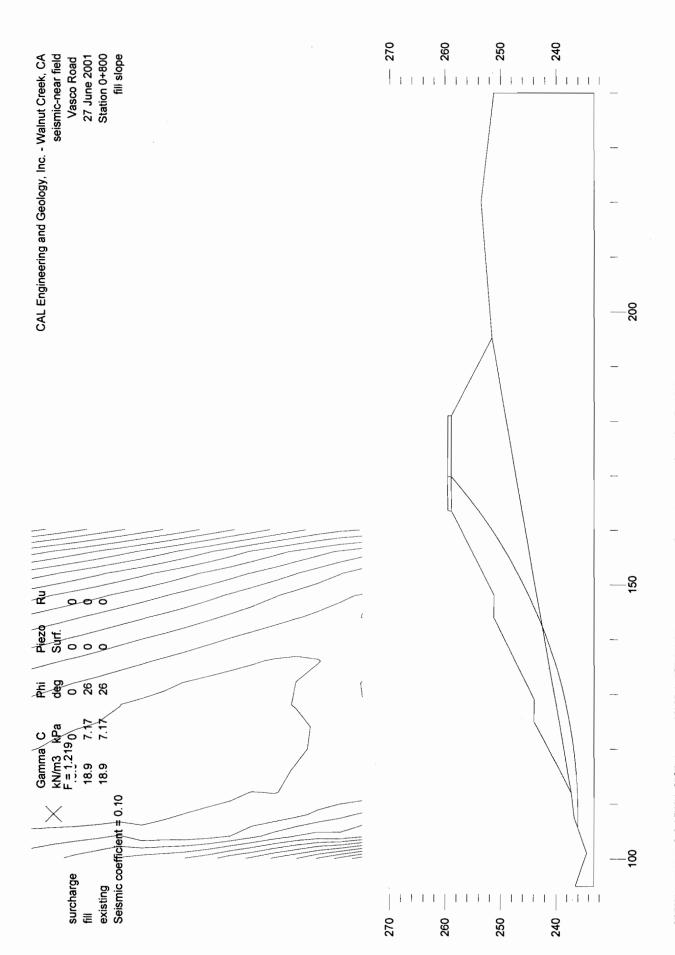

FILL SLOPE ANALYSES

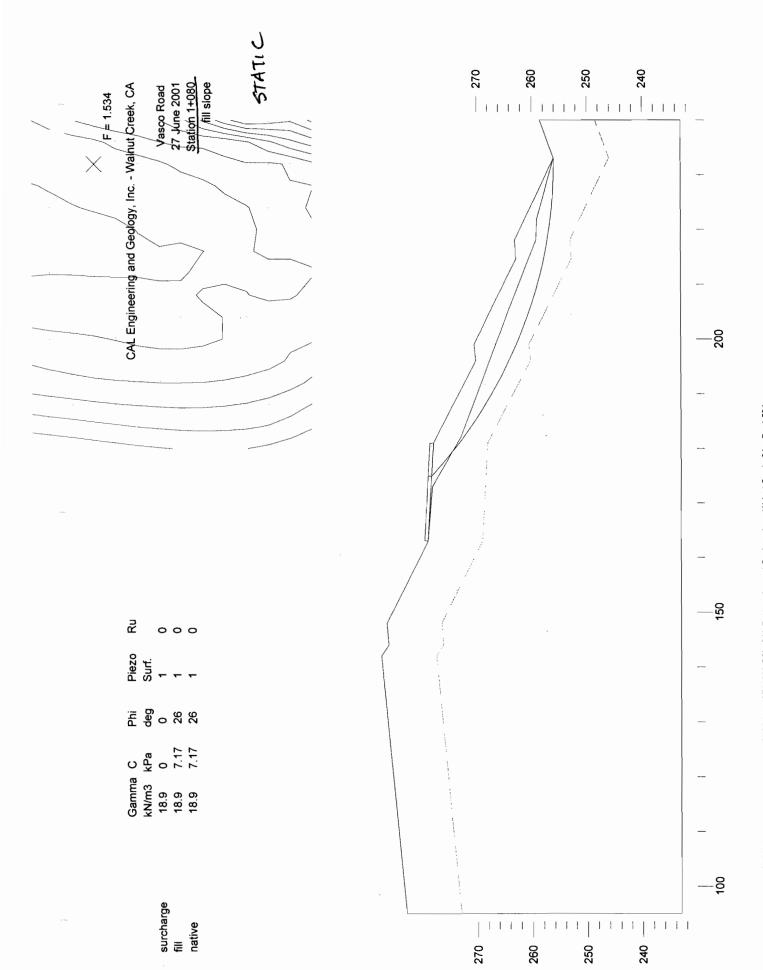
CAL Engineering and Geology, Inc. - Walnut Creek, CA

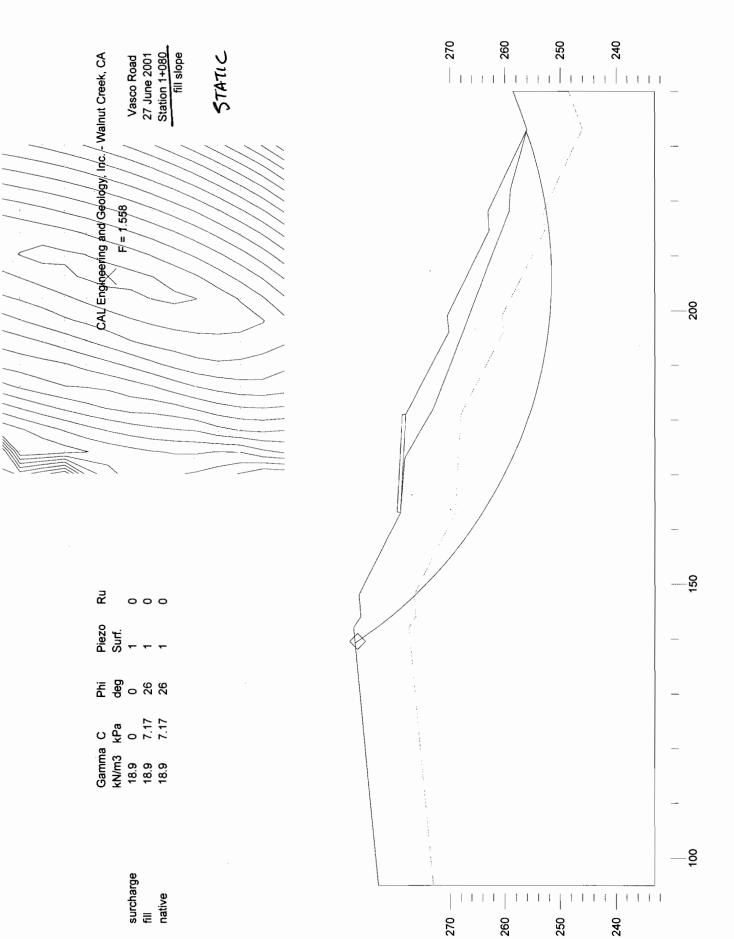

Vasco Road 27 June 2001 Station 0+800 fill slope

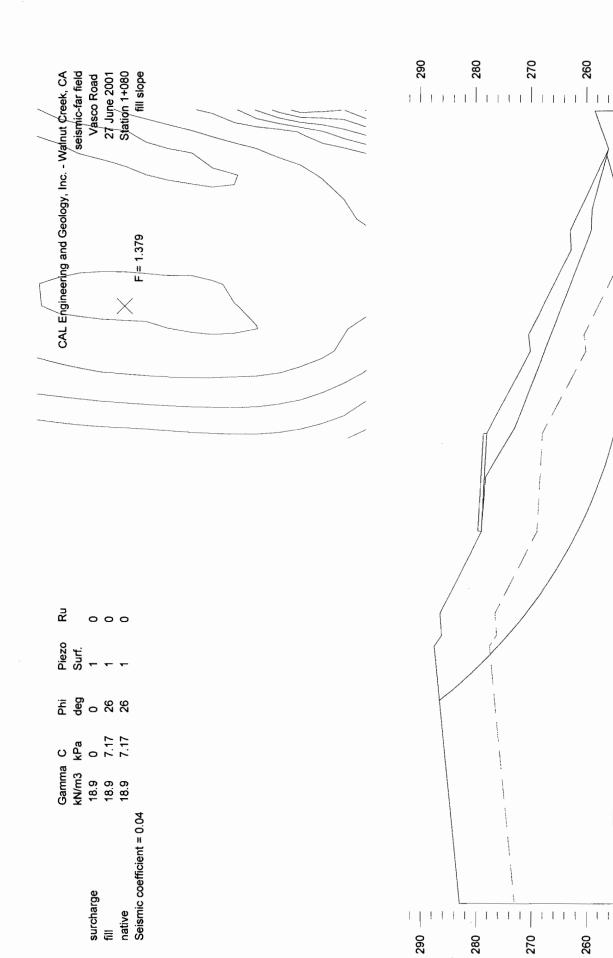
STATI C




627/2001 3:12:55 PM C:\CALENG\A_GEOT-1\001860-1\GLOBAL-1\STA800.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.573

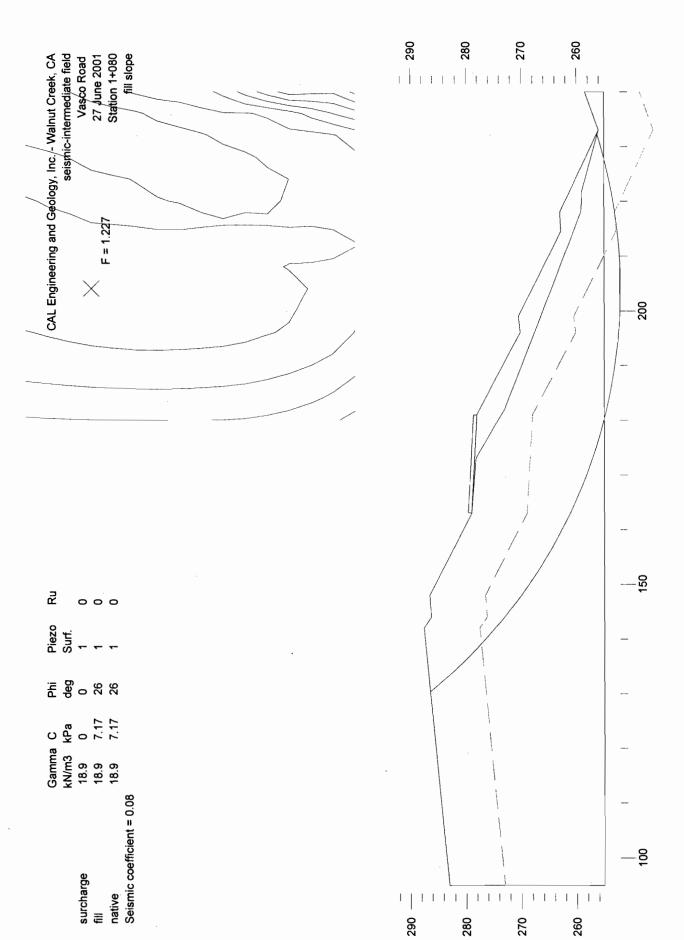

8/2/2001 11:24:22 AM C:\CALENG\A_GEOT~1\001860~1\GLOBAL~1\STA800.GSL CAL Engineering and Geology, Inc. - Wainut Creek, CA F = 1.412


8/2/2001 11:24:58 AM C:\CALENG\w_GEOT~1\001860~1\GLOBAL~1\STA800.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.278

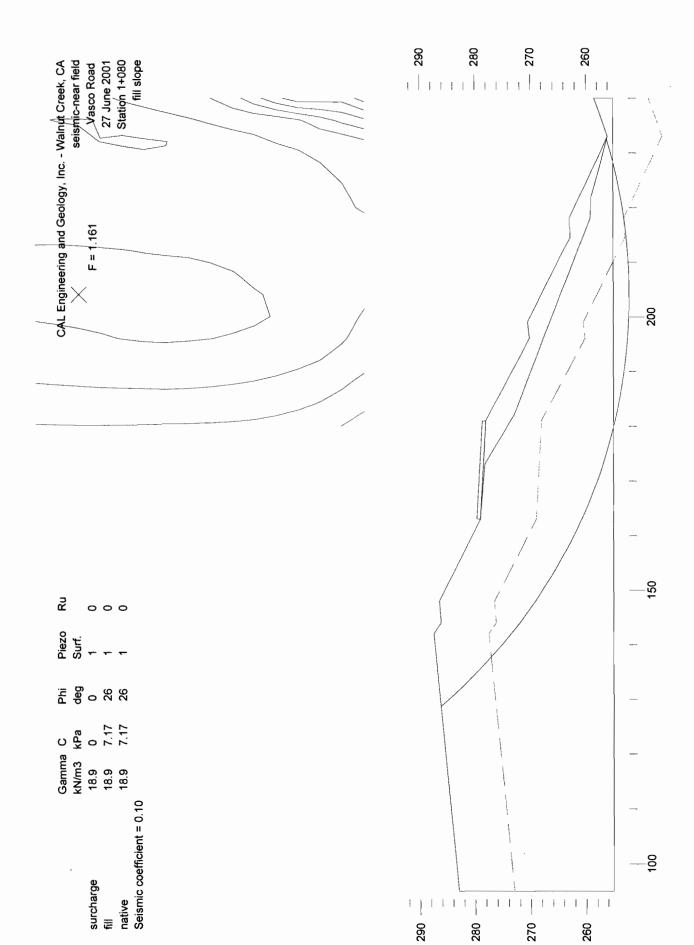

8/2/2001 11:25:36 AM C:\CALENG\A_GEOT~1\001860~1\GLOBAL~1\STA800.GSL CAL Engineering and Geology, Inc. - Wainut Creek, CA F = 1.219

6/29/2001 4:16:39 PM C:ICALENGIA_GEOT~1/001860~1/GLOBAL~1/STA1080.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.534

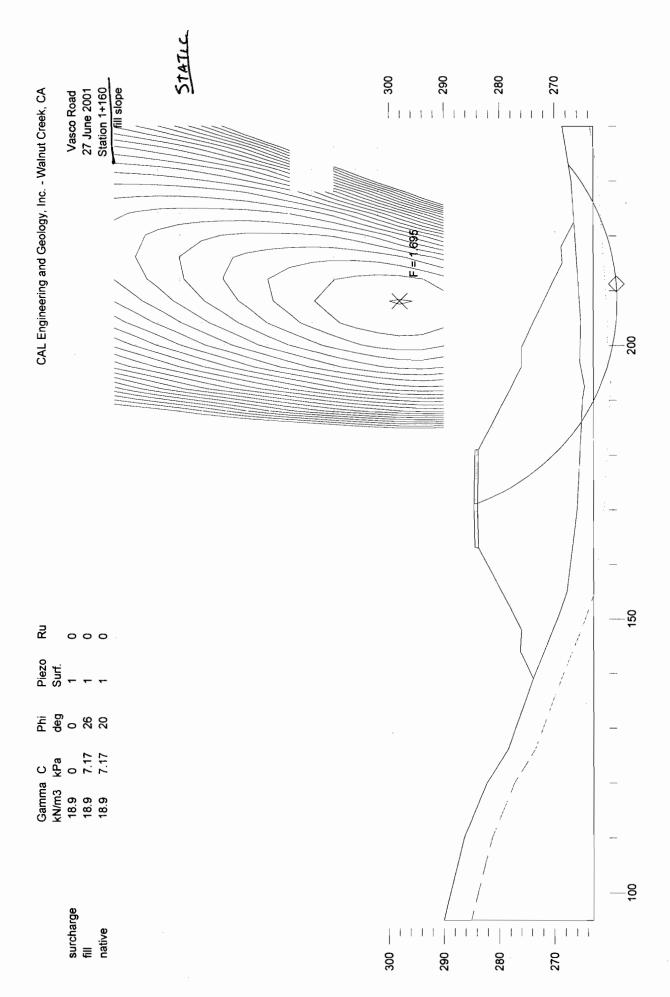
6/mm001 4/12:53 PM CNCALENGW_GEOT~1/001860~1/GLOBAL~1/STA1080 GSL CAL Engineering and Geologniff with United Ref. F = 1.558

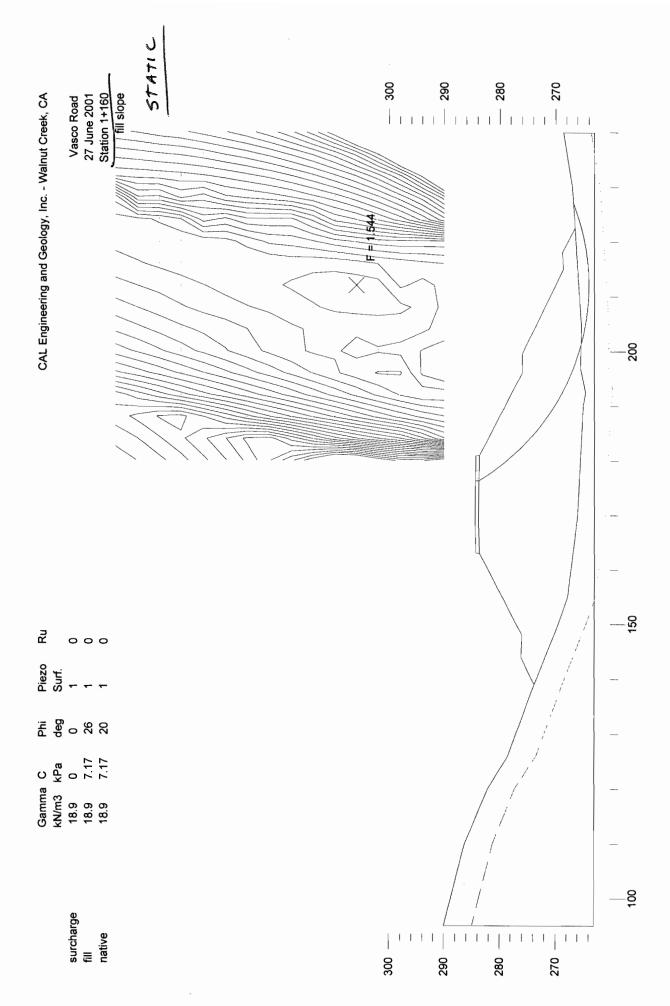


8/2/2001 11:27:42 AM C:\CALENG\(\text{GEOT}\)-1\001860\(\text{-1\00180}\)GLOBAL\(\text{-1\00180}\)GSL\(\text{GAL Engineering and Geology, Inc.\)-Walnut Creek, CA\\ F = 1.379


200

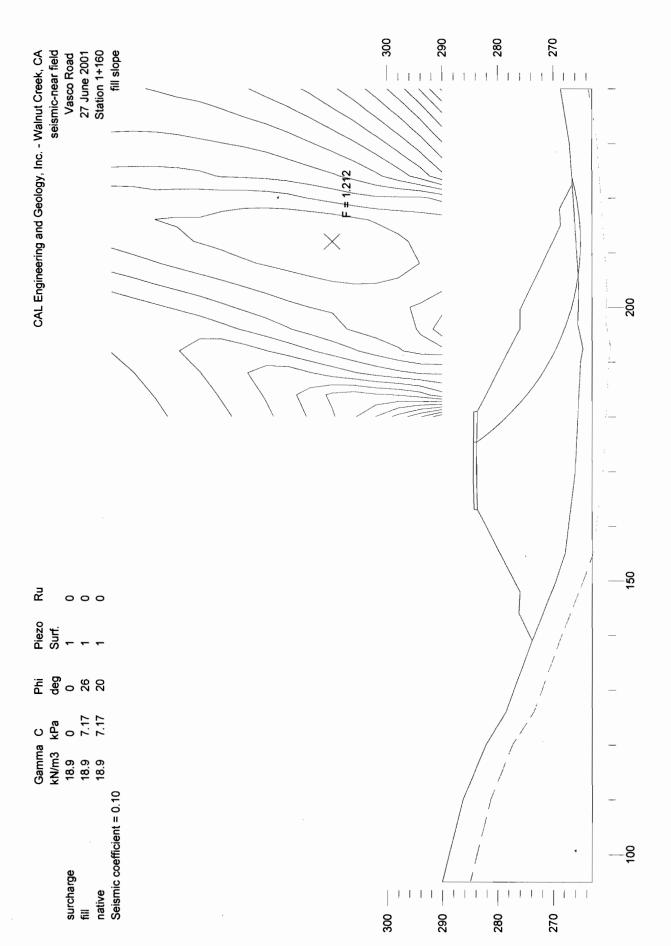
150


---5


8/2/2001 11:27:11 AM C:ICALENGIA_GEOT~1/001860~1/GLOBAL~1/STA1080.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.227

8/2/2001 11:26:34 AM C./CALENGA_GEOT~1/001860~1/GLOBAL~1/3/TA1080.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA. F = 1.161

6/29/2001 4:57:44 PM C:\CALENGW_GEOT~1\001880~1\GLOBAL~1\STA1160.GSL CAL Engineering and Geology Inc. - Walnut Creek, CA F = 1.695


629/2001 4:56:27 PM C:ICALENGIA_GEOT~1/001860~1/GLOBAL~1/STA1160.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.544

8/2/2001 11:28:35 AM C:ICALENGIA_GEOT~1/001860~1/GLOBAL~1/STA1160.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.399

8/2/2001 11:29:23 AM C:/CALENG/A_GEOT~1/001960~1/GLOBAL~1/8/T41/60,GSL CAL Engineering and Geology, Inc. - Wahrut Creek, CA F = 1.269

8/27/001 11:30:07 AM C:\CALENG\(\text{CALENG\(\text{GA}\)} \) CALENG\(\text{CALENG\(\t

PROJECT LOCATION...

P. JECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 0.15 m

TEST SAMPLE NO....VR1

OPERATOR.....

TEST DATE.....

MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 1140 , WATER = 0 , SOIL = 1140

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS
SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

	CSP HICK	GALV. 57 g	GALV.+ BIT COAT.	GALV.+ BIT COAT &	GALV.+ BIT COAT	GALV.+ POLYMER
Gage	e & mm		(WATER SIDE)	PAVED INV.	(SOIL SIDE)	90 DEG
~				(ABRASION)		INVERT
18	1.3	13	21	28	38	63
16	1.6	17	25	32	42	67
14	2.0	21	29	36	46	71
12	2.8	29	37	44	54	79
10	3.5	37	45	52	62	87
3	4.3	4 5	53	60	70	9 5

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

PROJECT LOCATION...

P. JECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 7.62 m

TEST SAMPLE NO....VR2

OPERATOR.......

TEST DATE.....

******* A DATA VALUE OF ZERO INDICATES NO DATA INPUT *********** CSP SITE pH = 6.5 , WATER pH = 0.0 , SOIL pH = 6.5 MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 1520 , WATER = 0 , SOIL = 1520

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

GALV.+ GALV.+ GALV.+ GALV.+
BIT COAT. BIT COAT & BIT COAT POLYMER
(WATER SIDE) PAVED INV. (SOIL SIDE) 90 DEG GALV. CSP 57 g THICK Gage & mm (ABRASION) INVERT 22 39 18 1.3 14 29 64 18 23 16 1.6 26 33 43 68 2.0 14 31 38 48 73 12 2.8 31 39 46 56 81 10 ~ 3.5 48 55 40 65 90 4.3 99

4.3 | 49 57 64 74 FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES) CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01 MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, MAY BE USED IF ABRASIVE CONDITIONS DO NOT EXIST SITE CONDITIONS MEET CORROSION REQUIREMENTS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, MAY BE USED SITE CONDITIONS MEET CORROSION REQUIREMENTS

PROJECT LOCATION...

Ph JECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 9.60 m

TEST SAMPLE NO.....VR3

OPERATOR.....

TEST DATE.....

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS | SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

GALV.+ GALV.+ CSP GALV. GALV.+ GALV.+ BIT COAT. BIT COAT & BIT COAT (WATER SIDE) PAVED INV. (SOIL SIDE) 57 g POLYMER THICK 90 DEG Gage & mm (ABRASION) INVERT 18 1.3 15 23 30 40 65 16 1.6 20 28 35 45 70 2.0 25 33 40 50 75 14 3**4** 2.8 42 59 12 49 84 10 ~ 3.5 4452 59 69 94 4.3 | 54 69 62 104

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

PROJECT LOCATION...

P. LECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 13.41 m

TEST SAMPLE NO....VR4

OPERATOR......

TEST DATE.....

MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 1520 , WATER = 0 , SOIL = 1520

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

	CSP HICK & mm	GALV. 57 g	GALV.+ BIT COAT. (WATER SIDE)	GALV.+ BIT COAT & PAVED INV.	GALV.+ BIT COAT (SOIL SIDE)	GALV.+ POLYMER 90 DEG
				(ABRASION)		INVERT
18	1.3	15	23	30	40	65
16	1.6	20	28	35	45	70
14	2.0	25	33	40	50	75
12	2.8	34	42	49	59	84
10	3.5	44	52	59	69	94
8	4.3	53	61	68	78	103

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, MAY BE USED IF ABRASIVE CONDITIONS DO NOT EXIST SITE CONDITIONS MEET CORROSION REQUIREMENTS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, MAY BE USED SITE CONDITIONS MEET CORROSION REQUIREMENTS

PROJECT LOCATION...

L.JECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 21.18 m

TEST SAMPLE NO....VR5

OPERATOR.....

TEST DATE.....

MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 1020 , WATER = 0 , SOIL = 1020

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

						
	CSP HICK	GALV. 57 g	GALV.+ BIT COAT.	GALV.+ BIT COAT &	GALV.+ BIT COAT	GALV.+ POLYMER
Gage	& mm		(WATER SIDE)	PAVED INV.	(SOIL SIDE)	90 DEG
3			,	(ABRASION)	,	INVERT
18	1.3	11	19	26	36	61
16	1.6	14	22	29	39	64
14	2.0	18	26	33	43	68
12	2.8	25	33	40	50	75
10	3.5	32	40	47	57	82
i.	4.3	38	46	53	63	88

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

PROJECT LOCATION...

F.JJECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 24.08

TEST SAMPLE NO.....VR6

OPERATOR.....

TEST DATE.....

SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

CSP GALV. GALV.+ GALV.+ GALV.+ GALV.+
THICK 57 g BIT COAT. BIT COAT & BIT COAT POLYMETER STORY (WATER SIDE) PAVED INV. (SOIL SIDE) 90 DEG

C	SP	GALIV.	GALIV. +	GALV.+	GALIV. T	GALIV. +
TH	ICK	57 g	BIT COAT.	BIT COAT &	BIT COAT	POLYMER
Gage	& mm		(WATER SIDE)	PAVED INV.	(SOIL SIDE)	90 DEG
				(ABRASION)		INVERT
18	1.3	7	15	22	32	57
16	1.6	9	17	24	34	59
14	2.0	11	19	26	36	61
12	2.8	15	23	30	40	65
1	3.5	19	27	34	44	69
8	4.3	24	32	39	49	74

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

FOR SULFATE RESISTANT CONCRETE AND RCP
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPECS. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

PROJECT LOCATION...

PLJECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 24.84 m

TEST SAMPLE NO....VR7

OPERATOR.....

TEST DATE.....

******* A DATA VALUE OF ZERO INDICATES NO DATA INPUT ************ CSP SITE pH = 6.0, WATER pH = 0.0, SOIL pH = 6.0MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 943 , WATER = 0 , SOIL = 943 CHLORIDES, PPM... 7 , SULFATES, PPM... 1860

************************ ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS

SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850 GALV.+ GALV.+ GALV.+ GALV.+
BIT COAT. BIT COAT & BIT COAT POLYMER
(WATER SIDE) PAVED INV. (SOIL SIDE) 90 DEG CSP GALV. THICK 57 g (ABRASION)

Gage & mm INVERT 8 18 1.3 16 23 33 58 16 1.6 14 2.0 10 25 18 35 60 13 38 21 28 63 18 12 - 2.8 26 33 43 68 1 C 3.5 23 31 38 48 73 8 4.3 | 28 36 43 53 FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES) 78

CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

FOR SULFATE RESISTANT CONCRETE AND RCP TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT MINIMUM REQUIRED BY CALTRANS STD. SPECS. 90-1.01 MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

PROJECT LOCATION...

JECT ACCOUNT NO.001860

SAMPLE LOCATION....B-5 @ 25.76 m

TEST SAMPLE NO....VR8

OPERATOR.....

TEST DATE.....

MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 2020 , WATER = 0 , SOIL = 2020

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

						
TH	SP IICK	GALV. 57 g	GALV.+ BIT COAT.	GALV.+ BIT COAT &	GALV.+ BIT COAT	GALV.+ POLYMER
Gage	& mm		(WATER SIDE)	PAVED INV.	(SOIL SIDE)	90 DEG
3			,	(ABRASION)	, ,	INVERT
18	1.3	11	19	26	36	61
16	1.6	15	23	30	40	65
14	2.0	18	26	33	43	68
12	2.8	26	34	41	51	76
10	3.5	33	41	48	58	83
<i>{</i>	4.3	40	48	55	65	90

LOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, MAY BE USED IF ABRASIVE CONDITIONS DO NOT EXIST SITE CONDITIONS MEET CORROSION REQUIREMENTS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, MAY BE USED SITE CONDITIONS MEET CORROSION REQUIREMENTS

CABIFORNIA COBVERT CRITERIA AND COBVERTA.EME, (RELEADE BRIE 04 10 90)

PROJECT LOCATION...Vasco

PASJECT ACCOUNT NO.001860

SAMPLE LOCATION....B-6 @ 6.5'

TEST SAMPLE NO....VR9

OPERATOR.....RRS

TEST DATE.....03-12-01

MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 1690 , WATER = 0 , SOIL = 1690

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

				- 		
TH	CSP HICK	GALV. 57 g	GALV.+ BIT COAT.	GALV.+ BIT COAT &	GALV.+ BIT COAT	GALV.+ POLYMER
Gage	e & mm		(WATER SIDE)	PAVED INV.	(SOIL SIDE)	90 D E G
				(ABRASION)		INVERT
18	1.3	21	29	36	46	71
16	1.6	27	35	42	52	77
14	2.0	34	42	49	59	84
12	2.8	46	54	61	71	96
10 ~	3.5	59	67	74	84	109
3	4.3	72	80	87	97	122

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPECS. 90-1.01

A CORRUGATED ALUMINUM PIPE, CAP, MAY BE USED IF ABRASIVE CONDITIONS DO NOT EXIST SITE CONDITIONS MEET CORROSION REQUIREMENTS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, MAY BE USED SITE CONDITIONS MEET CORROSION REQUIREMENTS

PROJECT LOCATION...Vasco

PAUJECT ACCOUNT NO.001860

SAMPLE LOCATION....B-6 @ 18.5'

TEST SAMPLE NO....VR10

OPERATOR.....RRS

TEST DATE.....03-12-01

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

		DEE GIETIGE	3 0		, , ,	
TH	SP	GALV. 57 g	GALV.+ BIT COAT.	GALV.+ BIT COAT &	GALV.+ BIT COAT	GALV.+ POLYMER
Gage	& mm		(WATER SIDE)	PAVED INV. (ABRASION)	(SOIL SIDE)	90 DEG I NVE RT
18	1.3	17	25	32	42	67
16	1.6	23	31	38	48	73
14	2.0	28	36	43	53	78
12	2.8	39	47	54	64	89
10 ~	3.5	49	57	64	74	99
	43	60	68	75	Ω5	110

4.3 | 60 68 /5 60 50 110 FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES) CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, MAY BE USED IF ABRASIVE CONDITIONS DO NOT EXIST SITE CONDITIONS MEET CORROSION REQUIREMENTS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, MAY BE USED SITE CONDITIONS MEET CORROSION REQUIREMENTS

PROJECT LOCATION...Vasco

PRUJECT ACCOUNT NO.001860

SAMPLE LOCATION....B-13 @ 5'

TEST SAMPLE NO....VR11

OPERATOR..........RRS

TEST DATE.........03-12-01

******* A DATA VALUE OF ZERO INDICATES NO DATA INPUT ************ CSP SITE pH = 3.0 , WATER pH = 0.0 , SOIL pH = 3.0 MINIMUM RESISTIVITY, OHM-CM: CSP SITE = 3310 , WATER = 0 , SOIL = 3310

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS | SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

CSP THICK Gage & 1	GALV. 57 g	GALV.+ BIT COAT. (WATER SIDE)	GALV.+ BIT COAT & PAVED INV.	GALV.+ BIT COAT (SOIL SIDE)	GALV.+ POLYMER 90 DEG
		1.5	(ABRASION)	2.0	INVERT
18 1.	3 7	15	22	32	57
16 1.	6 9	17	24	34	59
14 2.	0 11	19	26	36	61
12 2.	8 16	24	31	41	66
10 ~ 3.	5 20	28	35	45	70
8 4.	3 25	33	40	50	75

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES) CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH TYPE II MODIFIED CEMENT OR TYPE V CEMENT 400 kg/m3 WITH 25% MINERAL ADMIXTURE REPLACEMENT (BY WEIGHT) AND A MAXIMUM WATER-TO-CEMENTITIOUS RATIO OF 0.40

A CORRUGATED ALUMINUM PIPE, CAP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

PROJECT LOCATION...Vasco

Ph.JECT ACCOUNT NO.001860

SAMPLE LOCATION....TP-1 @ 2-65'

TEST SAMPLE NO....VR12

OPERATOR......RRS

TEST DATE.....03-12-01

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS
SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

TH	SP IICK & mm	GALV. 57 g	GALV.+ BIT COAT. (WATER SIDE)	GALV.+ BIT COAT & PAVED INV. (ABRASION)	GALV.+ BIT COAT (SOIL SIDE)	GALV.+ POLYMER 90 DEG INVERT
18	1.3	16	24	31	41	66
16	1.6	22	30	37	47	72
14	2.0	27	35	42	52	77
12	2.8	37	4 5	52	62	87
10 -	3.5	47	55	62	72	97
8	4.3	57	65	72	82	107

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE IP (MS) MODIFIED CEMENT OR TYPE II MODIFIED CEMENT
MINIMUM REQUIRED BY CALTRANS STD. SPEC. 90-1.01
MAXIMUM W/C RATIO OF 0.45

A CORRUGATED ALUMINUM PIPE, CAP, MAY BE USED IF ABRASIVE CONDITIONS DO NOT EXIST SITE CONDITIONS MEET CORROSION REQUIREMENTS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, MAY BE USED SITE CONDITIONS MEET CORROSION REQUIREMENTS

MAINTENANCE-FREE SERVICE DESIGN ESTIMATES FOR DRAINAGE FACILITIES USING: CALIFORNIA CULVERT CRITERIA AND CULVERT4.EXE, (RELEASE DATE 04-16-98)

PROJECT LOCATION...Vasco

PhJECT ACCOUNT NO.001860

SAMPLE LOCATION....TP-5 @ 0-4'

TEST SAMPLE NO....VR13

OPERATOR.....RRS

TEST DATE.....03-12-01

ESTIMATED SERVICE LIFE OF CSP CULVERTS, YEARS | SEE CALTRANS HIGHWAY DESIGN MANUAL CHAPTER 850

	CSP HICK & mm	GALV. 57 g	GALV.+ BIT COAT. (WATER SIDE)	GALV.+ BIT COAT & PAVED INV.	GALV.+ BIT COAT (SOIL SIDE)	GALV.+ POLYMER 90 DEG
				(ABRASION)		INVERT
18	1.3	11	19	26	36	61
16	1.6	14	22	29	39	64
14	2.0	18	26	33	43	68
12	2.8	25	33	40	50	7 5
10	3.5	32	40	47	5 7	82
8	4.3	39	47	54	64	89

FLOW VEL. <1.5 m/s WITH NON-ABRASIVE CONDITIONS, (DEFAULT VALUES)
CAP, 18 GAGE (1.3 mm) CSP AND CASP MAY BE USED WITH THESE FLOW VELOCITIES

STANDARD REINFORCED CONCRETE PIPE DESIGN SHOULD BE SUITABLE FOR THIS USER DEFINED LEVEL OF CHLORIDES

CONCRETE AND RCP MITIGATION MEASURES FOR pH
TYPE II MODIFIED CEMENT OR TYPE V CEMENT
400 kg/m3 WITH 25% MINERAL ADMIXTURE REPLACEMENT (BY WEIGHT)
AND A MAXIMUM WATER-TO-CEMENTITIOUS RATIO OF 0.40

A CORRUGATED ALUMINUM PIPE, CAP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

A CORRUGATED ALUMINIZED STEEL PIPE, CASP, SHOULD NOT BE USED DUE TO CORROSIVE CONDITIONS

PLASTIC PIPE IS APPROVED FOR 50 YEARS SERVICE LIFE FOR CORROSIVE CONDITIONS. ABRASION MUST BE EVALUATED. ALSO, CONSIDER CONCRETE HEADWALLS AND CONCRETE OR METAL END TREATMENT WHERE HIGH FIRE POTENTIAL EXISTS.

PAVEMENT STRUCTURAL SECTION DESIGN

Basement Soil R-Value Testing and Results

Selected samples of soil and bedrock materials recovered during our subsurface exploration operations were tested to determine their Resistance Value (R-value). A total of three (3) samples were tested by Cooper Testing Laboratories in Mountain View, California. The approximate locations of the samples and the results of the R-value determinations are presented in the table below. The laboratory R-value test sheets are included at the end of this appendix. A description of the samples tested and a summary of the test results are presented in Table K-1 below. The samples were tested in accordance with the procedures presented in the California Test 301, March 2000.

TABLE K-1 SUMMARY OF R-VALUE TEST RESULTS						
SAMPLE LOCATION	SAMPLE DESCRIPTION	R-VALUE	EXPANSION PRESSURE (MPa)			
TP-2 0.0 - 0.6m	Brown clayey sand	25	0.86			
TP-4 0.0 - 0.6m	Brown silty sand, slightly clayey (weathered sandstone)	55	0.14			
TP-5 0.0 - 0.6m	Brown clayey sand with gravel	23	0.00			

The samples selected for R-value determination from the middle and southern portions of the alignment consisted of Tertiary marine arkosic sandstone with pebble conglomerate (Tmss). The R-values of the two samples taken from this area are 23 and 55. Additional R-value tests should be performed during construction do determine the representative R-value of the as-built basement soil along the alignment and the pavement sections designed accordingly.

The sample from the northern portion of the alignment consisted of arkosic sandstone with interbedded shale and claystone belonging to the Panoche Formation (Kps). The R-value of this sample was 25. It should be noted that R-values of materials generated from the shale and claystone bedrock can be significantly lower than materials generated from the sandstone bedrock. Additional R-value tests should be performed during construction do determine the representative R-value of the as-built basement soil along the alignment and the pavement sections designed accordingly.

Discussion

Section 606.2(3) of the HDM recommends that as part of a subsurface drainage system, an asphalt treated permeable base (ATPB) layer should be placed immediately below the ACP to intercept surface water seeping through the structural section. The drainage layer can be eliminated from the structural section if the mean annual rainfall is less than 125 mm or the permeability of the basement soil is $\geq 3.53 \times 10^{-4}$ m/s. The mean annual rainfall in the area typically ranges from approximately 200 mm to 450 mm. Based upon our analysis of samples recovered from our

subsurface exploration operations, we estimate that the Tmss material (sandstone and pebble conglomerate) has a relatively high permeability on the order of 5×10^{-4} m/s, and the Kps material (sandstone with intebedded claystone and shale) has a relatively lower permeability on the order of 1×10^{-7} m/s. We anticipate that compacted fill consisting of the Tmss material (provided it has not been mixed with other materials) will have a permeability $\geq 3.53 \times 10^{-4}$ m/s. In general, we recommend that all pavement structural sections should include a drainage layer consisting of at least 75 mm of ATPB placed immediately below the ACP and connect to a subsurface drainage system, as specified in Section 606.2 of the HDM. However, pavement structural sections constructed on basement soil derived from the Tmss material may consist of a section which does not include a drainage layer of ATPB, provided the permeability is $\geq 3.53 \times 10^{-4}$ m/s.

Analysis

It is anticipated that basement soil consisting of import material will have an R-value between 5 and 50. Although there is no specified minimum R-value for Selected Material, it would be prudent to evaluate the impact of using a low R-value basement soil on the cost of the pavement structural section prior to use.

The design Traffic Index for the project, supplied to us by Alameda County, is 10.5. This index is based on traffic studies performed on the existing Vasco Road.

The software program NEWCOM90 was used to calculate the various pavement section combinations. The structural section materials assumed in the analysis were plant-mixed Type A asphalt concrete (AC), Class 2 aggregate base (AB), and Class 2 aggregate subbase (AS). Layer thicknesses were converted from values in feet produced by the program and rounded in accordance with section 608.4(3)(g) of the HDM. The estimated pavement section cost in \$/m² shown in the tables below are for relative cost comparisons only. The values were converted from values in \$/yd² produced by the program given assumed costs of \$95.00/yd³ (\$124.26/m³) for AC, \$80/yd³ (\$104.64/m³) for TPB, \$30/yd³ (\$39.24/m³) for AB, and \$25/yd³ (\$32.70/m³) for AS. The actual cost of pavement section layers could vary substantially from the values indicated and should be determined with current local costs and factors.

The following four alternatives present our the range of pavement sections for the anticipated range of R-values, site drainage conditions, and a Traffic Index of 10.5. As stated in section 608.4(3)(g) of the HDM, the minimum allowable thickness of AC "may be increased when appropriate to minimize construction costs, reduce construction time, match layer placement with existing ... [sections], reduce the number of layers, etc., provided minimum GE and construction requirements are satisfied." Therefore, we have included several structural section designs for combinations of R-values and each alternative. Additional section configurations for intermediate R-values may be determined by interpolation.

TABLE K-2 PAVEMENT STRUCTURAL SECTIONS, ALTERNATIVE 1

For Areas Where Basement Soil is Not Free Draining							
R-VALUE	AC _{Type A} (mm)	ATPB (mm)	AB _{Class 2} (mm)	Residual GE [†]	Relative Cost (\$/m²)		
5	165 ^{††}	75	525	0	49.13		
5	195	75	450	6	50.53		
5	225	75	375	3	51.33		
5	300	75	180	-6	53.02		
5	345	75	105	46	55.71		
10	165 ^{††}	75	465	0	47.34		
10	195	75	405	9	48.74		
10	225	75	330	3	49.54		
10	300	75	135	-6	51.22		
10	330	75	105	49	53.82		
20	165 ^{††}	75	375	3	43.75		
20	195	75	300	-6	44.55		
20	225	75	240	3	45.95		
20	300	75	105	64	50.03		
30	165 ^{††}	75	285	6	40.16		
30	195	75	210	-6	40.96		
30	225	75	150	6	42.36		
30	255	75	105	37	44.35		
40	165 ^{††}	75	195	6	36.57		
40	195	75	120	-3	37.37		
40	225	75	105	58	40.57		
50	165 ^{††}	75	105	9	32.99		
50	195	75	105	82	36.78		
60	165 ^{††}	75	105	110	32.99		

 A positive Residual GE value indicates over design. Use of a section with a Residual GE value >30 mm must be justified and approved prior to use.
 Section having the lowest cost per m². Notes:

TABLE K-3 **PAVEMENT STRUCTURAL SECTIONS, ALTERNATIVE 2**

For Areas Where Basement Soil is Not Free Draining

R-value	AC _{Type A} (mm)	ATPB (mm)	AB _{Class 2} (mm)	AS _{Class 2} (mm)	Residual GE [†]	Relative Cost (\$/m²)
5	165 ^{††}	75	150	390	-6	47.74
5	195	75	105	375	-3	49.24
5	225	75	105	300	6	50.53
5	300	75	105	105	. 15	53.52
10	165 ^{††}	75	150	345	0	46.25
10	195	75	105	315	-6	47.24
10	225	75	105	255	-6	48.53
10	300	75	105	105	67	53.52
20	165 ^{††}	75	150	240	-3	42.76
20	195	75	105	225	3	44.25
20	225	75	105	150	6	45.54
20	255	75	105	105	43	47.84
30	165 ^{††}	75	150	150	6	39.77
30	195	75	105	120	0	40.76
30	225	75	105	105	64	44.05
40	165 ^{††}	75	150	105	64	38.27

Notes:

† A positive Residual GE value indicates over design. Use of a section with a Residual GE value >30 mm must be justified and approved prior to use.

†† Section having the lowest cost per m².

	·		SECTIONS, ALTE ing (Permeability ≥ 3.53	
R-VALUE	AC _{Type A} (mm)	AB _{Class 2} (mm)	Residual GE [†]	Relative Cos
5	165 ^{††}	615	-6	44.75
5	195	555	0	46.14
5	225	465	-3	46.94
5	300	285	4	49.24
5	375	105	30	51.52
10	165 ^{††}	570	-6	42.96
10	195	510	3	44.35
10	225	420	-3	45.15
10	300	240	6	47.44
10	360	105	37	49.63
20	165 ^{††}	465	-3	39.37
20	195	405	3	40.76
20	225	330	-3	41.56
20	300	150	. 6	43.86
20	330	105	46	45.84
30	165 ^{††}	375	0	35.78
30	195	315	6	37.17
30	225	240	0	37.97
30	285	105	15	40.16
40	165 ^{††}	285	0	32.20
40	195	225	9	33.58
40	225	165	3	34.39
40	255	105	34	36.38
50	165 ^{††}	195	3	28.61
50	195	120	-6	29.40
50	225	105	55	32.59
60	165 ^{††}	105	3	25.02
60	195	105	79	28.08

 A positive Residual GE value indicates over design. Use of a section with a Residual GE value >30 mm must be justified and approved prior to use.
 Section having the lowest cost per m². Notes:

TABLE K-5 PAVEMENT STRUCTURAL SECTIONS, ALTERNATIVE 4

For Areas Where Basement Soil (BS) is Free Draining (Permeability $\ge 3.53 \times 10^{-4} \text{ m/s}$)

R-value	AC _{Type A} (mm)	AB _{Class 2} (mm)	AS _{Class 2} (mm)	Residual GE [†] (mm)	Relative Cost (\$/m²)
5	165 ^{††}	240	405	3	43.86
5	195	180	390	-6	44.75
5	225	105	405	6	46.05
5	300	105	195	0 .	48.53
5	345	105	105	46	51.22
10	165 ^{††}	240	345	-6	41.86
10	195	180	345	0	43.26
10	225	105	345	-6	44.05
10	300	105	150	-6	47.04
10	300	105	105	49	49.33
20	· 165 ^{††}	240	255	6	38.87
20	195	180	240	-3	39.77
20	225	105	255	6	41.06
20	285	105	105	18	43.65
30	165 ^{††}	240	150	0	35.38
30	195	180	150	6	36.78
30	225	105	150	3	37.58
30	255	105	105	37	39.86
40	165 ^{††}	240	105	58	33.88

Notes:

† A positive Residual GE value indicates over design. Use of a section with a Residual GE value >30 mm must be justified and approved prior to use.

†† Section having the lowest cost per m².

DCM/Joyal Engineering

David C. Mathy Norman A. Joyal Robert A. Kahl Dru R. Nielson Brian R. Dodge Mark D. Sinclair Marc M. Gelinas

June 28, 2002 File: J-4286-13

Mr. Moses Tsang County of Alameda Public Works Agency 399 Elmhurst Street Hayward, CA 94544-1395

Subject:

Geotechnical Engineering Peer Review of Reference A

Vasco Road Safety Improvement Project (Phase 1)

Between Mile Posts 3.4 and 4.3 Alameda County, California

Reference A: Responses to Peer Review Comments - Vasco Road

Safety Improvement Project By: Cal Engineering & Geology

Dated: June 25, 2002

Reference B: Geotechnical Engineering Peer Review

Vasco Road Safety Improvement Project (Phase 1)

Between Mile Posts 3.4 and 4.3 Alameda County, California By: DCM/Joyal Engineering

Dated: May 16, 2002

Dear Moses,

This geotechnical peer review wrap-up report contains our comments to written response by Cal Engineering & Geology (Reference A) to our earlier peer review (Reference B) of Cal Engineering documents for the proposed Vasco Road Safety Improvement Project in Alameda County, California. Bibliographic references of these documents were provided in Reference B.

Our services for this geotechnical peer review wrap-up report were provided in accordance with the Alameda County Public Works Agency's Engineering and Road Construction Department's request for Geological and Geotechnical Review, dated April 11, 2002, and are based on the scope of work outlined by DCM/Joyal Engineering in a proposal letter dated April 8, 2002. Our scope of work for this peer review wrap-up report did not include independent research, data gathering, testing or geotechnical analysis.

File: J-4286-13

Page 2

PEER REVIEW WRAP-UP COMMENTS

Most of Cal Engineering's responses (Reference A) to our original peer review comments (Reference B) are favorable acknowledgements to our comments with a commitment to appropriately revise, incorporate, modify, or reconcile the Final Geotechnical Design and Materials Report (e.g., following additional testing for rebound of claystone cuts). There were, however, several Cal Engineering responses that require the following additional peer review wrap-up comments.

1. As we indicated in our original peer review comments (page 3, and paragraph 1 of page 4, Reference B), a large part of this project will consist of making significant excavation cuts and placing significant embankment fills. These cuts will be made in a structurally complex geologic setting that includes an active fault zone cutting through regionally mapped, southwest down dipping sedimentary bedrock that is described as pervasively fractured/sheared/shattered. Consequently, geologic instabilities are bound to be exposed in the proposed slope cuts. The performance of portions of Vasco Road recently improved as part of the Los Vagueros Reservoir project could serve as a benchmark for performance of proposed cut and fill slopes for As such, it is important that Cal Engineering review/discuss the earthwork "construction failures" that occurred as part of that road realignment improvement project. In each case, the controlling mechanism of failure should be reviewed (presuming investigations were undertaken to evaluate the causation and repair of earthwork failures), and any backcalculated slope strength data should be compared with the rock strengths used by Cal Engineering in their stability analyses. The intent should be to have this project learn from past history and not repeat it. As such, final cut slope recommendations should be predicated upon a review of slope failures (i.e., construction precedence) which occurred during construction of other nearby areas of Vasco Road (e.g., in Contra Costa County).

Cal Engineering indicated that they "will review and summarize information regarding these failures that may be available" (page 2, paragraph 1, Reference A). We recommend that the County of Alameda Public Works Agency obtain these related documents from the appropriate departments of Contra Costa County and provide them to Cal Engineering for use as we have recommended.

- 2. Page 3, paragraph 2, Reference A indicates, "Specific locations for access roads and ingress and egress points will be determined during final design and will not be shown or called-out in the Final Report". We concur that the Final Report is not the appropriate stage to call out the specific locations of ingress and egress access roads for slope maintenance. However, as a reminder to the project designers, the Final Report is the appropriate stage of design to recommend that ingress and egress access roads for slope maintenance be incorporated in the final project design.
- 3. In our original peer review (page 8, last paragraph, and page 9 paragraph 1 and 2, Reference B) we inquired as to the basis for the Maximum Probable Magnitudes used in Cal Engineering's

Mr. Moses Tsang County of Alameda Public Works Agency

June 28, 2002 File: J-4286-13

Page 3

design, indicating that the Maximum Probable Magnitude of the Greenville fault should be at least as large as known historic earthquakes (e.g., the Maximum Probable Magnitude of the Greenville Fault should intuitively at least reflect the January 24, 1980, Magnitude 5.8 carthquake cited by Cal Engineering from Bonilla, et al., 1980). Cal Engineering's recommendation in Section 7.4.1 of their draft report stated that design should anticipate future surface rupture of a similar magnitude to that which occurred in 1980 [right-lateral and dip slips on the order of 2 to 4 cm] during the operational life of the roadway.

Cal Engineering's response was that, "The data in Table 4-1 were based on data included in California Division of Mines and Geology (1996) and were checked against California Division of Mines and Geology (1998)" (page 8, last paragraph, Reference A). Furthermore, Cal Engineering indicated that "The maximum probable earthquake (MPE) for the Greenville fault that was reported on Table 4-1 was based on the earthquake magnitude associated with an approximate 100-year return period" (page 9, paragraph 3, Reference A). We find no reference to an MPE of 5.2 for the Greenville fault in any of these references or in any other reference that we are aware of. We recommend that Cal Engineering discuss the rational behind their recommended MPE of 5.2 on the Greenville fault (e.g., reference sources and/or statistical calculations).

Note: The U.S. Geological Survey reports that the overall probability of an earthquake of magnitude equal to or greater than 6.7 happening before the year 2030 somewhere on the Greenville fault is 6 percent (U.S. Geological Survey OFR 99-517). Also note that in addition to the magnitude 5.8 earthquake on the Greenville fault mentioned above, a magnitude 6.25 earthquake was believed to have occurred near the north end of the Greenville fault in 1889 (113 years ago) and a magnitude 6.0 earthquake was believed to have occurred near the south end of the Greenville fault in 1881 (121 years ago; U.S. Geological Survey OFR 96-705).

4. We indicated in our original peer review that regional structural data should be used in cross-section and stability analysis where not superseded by site specific data from Cal Engineering fieldwork (page 9, Part F, Item 1, Reference B).

In response Cal Engineering stated that, "Most of the regional structural data cited by DCM/J is shown for areas on either side of the Greenville fault and little to no published structural data are available for the areas between the main and eastern strands of the Greenville fault as shown in Figure 4-4. Because of the sheared and generally chaotic nature of the bedrock (as evidenced by the rock exposed in the test trenches) in this area, it is our opinion that applying data from outlying areas may not be representative of actual site conditions in the area of maximum cut" (page 10, Part F, Item 1 Response, Reference A).

We agree that this is possible, but we also point out that (1) since the Greenville faults are reportedly nearly vertical, and (2) since they are reportedly associated with right-lateral strikeslip movement, they will not tend to cause major inter-fault block rotations and hence will tend to generally preserve regional structural trends. Hence, slope stability analyses that include a

Mr. Moses Tsang County of Alameda Public Works Agency June 28, 2002 File: J-4286-13

Page 4

scenario based on an assumption that regional bedding of applicable fractured and sheared bedrock (e.g., Panoche, Cierbo, etc.) is preserved, would be appropriate.

5. We indicated in our original peer review (page 16, paragraph 3, Reference B) that in Subsection 11.1.2 of the draft report, Cal Engineering warns that "the complex geology and presence of the Greenville fault traces create the potential for localized adverse geologic conditions within the design excavations." They go on to note that "A moderately inclined (IV:2H) excavation made at the nearby landfill reportedly failed several days after originally being cut." In the context of the discussion in this section of the report, Cal Engineering cautions about the short-term stability of 1V:2II excavations cuts, and the need to plan excavation cuts so that there is no inadvertent oversteepening of cut slopes. As such, in one section of the report, Cal Engineering discusses the vulnerability of 1V:2II slopes, yet 1V:2H slopes are included as part of the recommendations (see Table 12-1 of the draft report). This transition from warning to recommendation occurs without any supporting documentation that indicates 1V:2H slopes will be more stable on this project than they were on the adjacent landfill site. Therefore, slope stability evaluations should be completed for the recommended 1V:2II cut slopes utilizing material strength properties and groundwater conditions that model the cut slopes.

Cal Engineering's reply to our foregoing review comments was that "The IV:2II cut slope recommendations included in Table 12-1 were for cuts in Cierbo Formation sandstone and conglomerate that are above the water table" (page 19, paragraph 4, Reference A). Does this imply, as described above by Cal Engineering, that both (1) the localized adverse geologic conditions within the design excavations, and (2) the moderately inclined (1V:2H) excavation made at the nearby landfill which reportedly failed several days after originally being cut, do not apply to the Cierbo Formation? The presumption is that the landfill failure did not occur in the Cierbo Formation but in some other formation. Perhaps Cal Engineering, in support of their recommendations for IV:2H cut slopes, could augment their discussion of the landfill failure by identifying the formation and the circumstances under which the failure occurred. Again, the "lessons learned" from past construction precedence, whether favorable or adverse to this project, should be discussed in detail, if possible, and used in support of the design recommendations presented in the Final Report.

Mr. Moses Tsang County of Alameda Public Works Agency

June 28, 2002 File: J-4286-13

Page 5

CLOSURE

We appreciate the opportunity to be of service to the Alameda County Public Works Agency's Engineering and Road Construction Department on this project and trust that this geotechnical peer review wrap-up report provides the information you need at this time. Please call us if you have any questions regarding this letter or the comments presented herein.

Very truly yours,

DCM/JOVAL ENGINEERING

Norman A. Joyal / Principal Engineer

C.E. 31821

G.E. 449

Dru R. Nielson

Senior Geologist

R.G. 5651 C.E.G. 1854

1870 Olympic Blvd. Suite 100 Walnut Creek California 94596

Tel: (925) 935-9771 Fax: (925) 935-9773 www.caleng.com

25 June 2002

Mr. Moses Tsang County of Alameda Public Works Agency 399 Elmhurst Street Hayward, California 94544-1395

RE: Responses to Peer Review Comments - Vasco Road Safety Improvement Project

Dear Mr. Tsang:

This letter summarizes Cal Engineering and Geology's (CEG) response to the peer review comments that were provided in the May 16, 2002 DCM/Joyal Engineering (DCM/J) letter to the County of Alameda Public Works Agency.\(^1\) The DCM/J letter included geologic and geotechnical review comments regarding the Draft Geotechnical Design and Materials Report that was completed to support design and construction of the proposed Vasco Road Safety Improvement Project in Alameda County, California. This project includes the realignment and straightening of approximately 1.6 km of Vasco Road north of State Highway 580 in Alameda County, California. The improvement project will require cut and fill earthwork, retaining structures, and surface and subsurface drainage provisions. Responses to specific DCM/J comments are summarized below. As applicable, the DCM/J comments are referenced by page and paragraph number or item number and are summarized in *italics* type for clarity.

A. General Geologic Review Comments

Page 4, Paragraph 1

.....final cut slope recommendations should be predicated upon a review of slope failures (i.e., construction precedence) which occurred during construction of other nearby areas of Vasco Road (e.g., in Contra Costa County).

CEG is aware of several failures that occurred during the Vasco Road realignment work that was completed as part of the Los Vaqueros Reservoir project. In preparation of the Draft report for Alameda County's current realignment project, we reviewed the Materials Report prepared by

¹DCM/Joyal Engineering, 2002, Geotechnical Engineering Peer Review, Vasco Road Safety Improvement Project (Phase I), Between Mile Posts 3.4 and 4.3, Alameda County, California; letter to Mr. Moses Tsang, County of Alameda Public Works Agency, May 16.

Woodward-Clyde Consultants for the Los Vaqueros project. However, we did not obtain nor review information specifically related to the landslides which occurred during construction. Accordingly, we will review and summarize information regarding these failures that may be available. Particular data that will be reviewed will include the Project Plan Record Drawings for the Relocation of Vasco Road (Segment B) that was prepared by Woodward-Clyde Consultants. Applicable information from the review will be summarized, included in the Final Geotechnical Design and Materials Report, and applied as one of the bases for determination of final cut slope recommendations.

Page 4, Paragraph 2

Even through no bedrock structure (strike and dip) could be measured during field work along the alignment by Cal Engineering, there is sufficient information in the geologic literature with respect to regionally mapped strike and dip. Based on regional geology, west-facing excavations into bedrock will tend to be more unstable (due to bedrock bedding) than east-facing excavations. This aspect of the regional geology could potentially control slope stability and this should be addressed in more detail in the final or update reports.

DCM/J correctly notes that only limited bedrock structure could be measured in the field. However, we note that regionally mapped strike and dip may not be representative of conditions between the eastern and main strands of the Greenville fault (test pits indicated sheared and variably discontinuity orientations in this area). It is likely that localized discontinuities which do not reflect regional trends and bedding are present. Nonetheless, aspects of regional geology that potentially could influence or control slope stability will be further evaluated and addressed in the Final Geotechnical Design and Materials Report.

In addition to further evaluating the possible influence of regional bedding on the cut slope stability, the final report will also include more specific recommendations regarding the use of geologic mapping of excavations made during construction to identify any localized discontinuities or other anomalies which might adversely affect stability of the cut slopes.

B. General Geotechnical Review Comments

Page 5, Paragraph 1

....the use of hydraugers for slope dewatering do require periodic maintenance, such as high pressure hydroflushing to maintain their effectiveness. As such, the design should contemplate provisions (i.e., access road, and ingress and egress points) for equipment access to the hydraugers for the periodic maintenance, especially those installed on slope benches above the road bed. Hydrauger maintenance should be included in a routine maintenance program for this segment of the roadway. In

addition, because weathering of the cut slopes is anticipated (Subsection 8.2.5), the maintenance program should include yearly inspections of the slopes and drainage improvements.

We strongly agree with this comment regarding the need for regular maintenance of the hydraugers and for inspections of the cut slopes and drainage improvements. Maintenance and inspection of the slopes will be addressed as a specific section in the Final Geotechnical Design and Materials Report. The minimum cut slope bench widths recommended in the Draft Report are intended to reflect the need to access the cut slopes for future maintenance. Specific locations for access roads and ingress and egress points will be determined during final design and will not be shown or called-out in the Final Report. It is also planned that during development of the grading plans for cut slopes, we will review the plans and provide input regarding cut slope configurations as they pertain to maintenance requirements.

C. Specific Review Comments

Item 1

In Section 6.0, Geotechnical Testing, Figure 6-2 (1 of 2 and 2 of 2), the depth of the test is referenced in feet which is not consistent with the metric report format.

The units will be converted to metric in the Final Geotechnical Design and Materials Report.

Item 2

In Section 7.0, Subsection 7.1.3 Landslides, reference is made to two landslides within the project area not shown on a landslide map (Figure 7-1) and those two landslides are referenced as landslides LS-1 and LS-2. However, on the Map of Geologic Features, Figure 4-3, there are four landslides and their identification nomenclature is either QLS 1, QLS-2, or QLS.

Figure 7-1 is a reproduction of a published regional landslide map and provides indication of local large-scale regional landslides mapped by others.² As a result, this map is not intended to illustrate site-specific landslides mapped as part of this project. The text of Subsection 7.1.3 will be revised to address this distinction. The site-specific landslide nomenclature in the report text and in the report figures will be reconciled in the Final Geotechnical Design and Materials Report.

²Nilsen, T.H., 1975, Preliminary Photointerpretation Map of Landslide and Other Surficial Deposits of the Byron Hot Springs 7-1/2' Quadrangle, Contra Costa and Alameda Counties, California; U.S. Geological Survey Open File Map 75-277-9, scale 1:24,000.

In the Landslide discussion of this subsection, reference is made to Boring B-7 being located within LS-1; however, in Figure 4-3, Boring B-7 is located within an unnumbered landslide identified only as QLS. Near the end of the discussions in this subsection, reference is made to "two landslides (LS-3 and LS-4)" as being located within the main and eastern strand of the Greenville Fault. However, on Plate 4-3, these two landslides are identified as QLS-1 and QLS-2. Although the landslide discussion appears to be correct, the landslide numbering and report text references are in conflict.

Landslide numbering and report test references will be reconciled in the Final Geotechnical Design and Materials Report.

Item 3

In Section 7.3, Subsection 7.3.2 Groundwater, reference is made to the highest groundwater level shown on Figure 4-3. This appears to be an inaccurate reference and the correct reference should be to Figure 4-4.

The correct reference should be Figure 4-4 and the text will be modified accordingly in the Final Geotechnical Design and Materials Report.

Item 4

The geotechnical issues of importance for the relocation are the location of the new line and the type of backfill used for the pipe embedment material. Where granular embedment material is used, the material can and often acts as a collector and/or conduit for subsurface water, and this can potentially result in unstable conditions. As such, if the gas pipe line relocation consists of an overland route that is within or skirts the project cuts and fills, the physical location and the type of backfill material used needs to be given special consideration to avoid having the pipeline, in its relocated environment, from possibly contributing to an unstable condition.

The location of the pipeline in its new position relative to the proposed realignment cuts and fills is not known at this time, nor are PG&E's design parameters for the type of backfill. However, the DCM point is well-taken and the text of Subsection 11.2.3 of the Final Geotechnical Design and Materials Report will be revised to highlight the need for attention given to the physical location of the pipeline and the type of backfill material used to avoid contributing to an unstable condition.

Item 5

In Appendix C, Log of Test Borings, on Sheet C7, there is a misidentification of the boring elevations for Boring B-5. For example, the boring is reported to have been terminated at Elevation 285.6 m, yet the elevation scale on the right side noted near the bottom of the boring is Elevation 275 m. The elevation scale on the left side of Boring B-3 appears to be the correct scale.

Elevation scales on the Logs of Test Borings included in Appendix C will be checked and revised as necessary in the Final Geotechnical Design and Materials Report.

Item 6

In Appendix D, Trench Logs, the format for the trench log scales is feet. For report consistency, the trench log scales should reflect the metric format.

The trench logs will be revised to show metric units in the Final Geotechnical Design and Materials Report.

D. <u>Section 4 - Physical Setting Review Comments</u>

Item 1

In Section 4.0, Physical Setting, Figure 4-3 could be enhanced by showing the location of the seismic refraction lines completed for the project. This would visually delineate the location of the seismic refraction lines with respect to the geologic sections without having to reference the geophysical data in Appendix E for the location of the seismic refraction lines.

Figure 4-3 will be modified in the Final Geotechnical Design and Materials Report to show the seismic refraction lines.

Item 2

In Section 4.0, Physical Setting, Figure 4-4, the P-wave velocity identified in the figure is presented in terms of feet per second, which contrasts the metric report format and Section 8.2.2, Rippability, which discusses the P-wave velocity data in a metric format.

Also on Figure 4-4, the data presented for "Layer 2 ($V_p = 6900-9100$ fps)" should be corrected to identify this as Layer 3.

Figure 4-4 will be modified in the Final Geotechnical Design and Materials report to present P-wave velocities in metric format and to re-label the lowest seismic layer ($V_p = 6900-9100$ fps) as "Layer 3."

Item 3

In Section 4.4.1, no reference is made to geologic maps of Contra Costa County (e.g., Crane, 1995, and Graymer and others, 1996) that post-date maps cited by Cal Engineering (i.e., Majmundar, 1991).

The Crane (1995) and Graymer and others (1996) have now been reviewed and compared with the Majmundar (1991) information included in the Draft Report. The text of the report will be revised and the more recent information will be referenced in the Final Geotechnical Design and Materials Report as applicable.

Figure 4-2

A legend, scale, north arrow, and box indicating the mapped area shown on Figure 4-3 should be added. Part of the legend can be handled by indicating that mapped units are as described in Section 4.4.1 of the report.

Figure 4-3 will be revised as recommended and included in the Final Geotechnical Design and Materials Report.

Figure 4-3

Approx. Stationing 22+00 to 24+00 is shown on Figure 4-2 to be Kps but shown on Figure 4-3 to be Tmss

Figure 4-3 will be revised as necessary and included in the Final Geotechnical Design and Materials Report.

Dots indicative of concealed faulting should be differentiated from those indicative of resistant pebble conglomerate and sandstone outcrops.

Figure 4-3 is a color figure that shows concealed faulting dots in red and the resistant pebble conglomerate dots in light brown (these colors are shown in the legend to the figure). To avoid confusion when the report is reproduced in black and white, we will modify the symbols in the Final Geotechnical Design and Materials Report.

Orientation of fault movement (inferred if not know) should be shown (e.g. per Section 7.4.1).

Arrows showing relative fault movement will be added to Figure 4-3.

Slide motion vectors indicated for Qls-2 near Station 22+00 are consistent with a cross-fault extrapolation of a down-dip direction of movement (parallel to the dip of nearby bedrock bedding). Direct downslope movement slide vectors would be perpendicular to topographic contours (i.e., a southwest direction for slide Qls-2). Are the directions of the slide motion vectors accurately shown? If so, this observation of discontinuity controlled sliding (e.g., bedding plane slip) should be addressed in slope stability analysis for the project.

As discussed in the Draft Report text and in the legend of Figure 4-3, evidence for landslide Qls-2 was based on interpretation of aerial photographs and is very indistinct. However, the topographic evidence inferred from the photographs suggests movement towards the northwest-southeast trending drainage channel approximately as shown in Figure 4-3. Although regional bedding suggests the potential for down dip movement along bedding, our field investigation indicated bedding between the two strands of the Greenville fault did not follow a consistent pattern in any particular direction. Accordingly, it is our opinion that there is no compelling evidence the landslide Qls-2 (if present) was controlled by sliding along discontinuities. Nonetheless, and as discussed in more detail in our response to Comment 4 on Page 14 of the DCM letter, additional stability analyses have been performed to assess the stability of a landslide (should one occur) in this area. These analyses indicated the landslide material or potential failure surface would have to have very low strength (a friction angle on the order of six degrees) to result in failure. Moreover, these analyses also indicated the proposed roadway re-alignment embankment in this area will buttress landslide Qls-2.

Landslides indicated by Majmundar (1991) should be shown (see comments for Section 7.1.3.

The regional landslides indicated by Majmundar are outside of the mapped area shown in Figure 4-3. The landslides indicated by Majmundar are shown in Figure 4-2.

Figure 4-4

Sections lines shown on Figure 4-3 should be equivalent to the limits of the cross-sections shown on Figure 4-4.

The lengths of the section lines in Figure 4-3 will revised to be consistent with the length of cross-section shown in Figure 4-4.

Structural data provided on Figure 4-3 should be expressed in the cross-sections of Figure 4-4 (i.e., apparent dips). We anticipate that this would show that cut slopes would expose soutwestwardly down-dipping bedrock (adversely oriented for cut slopes east of the centerline of the proposed alignment - i.e., westward-facing cut slopes).

The bedding orientation measured in the road cut immediately north of Section A-A' will be added to the section.

What is the basis for the orientation of the Greenville fault shown at depth? Relative fault displacement directions should be shown per Section 7.4.1

The near-surface orientation of the Greenville fault shown in Figure 4-3 is an approximation based on information that the fault is a near-vertical feature. Accordingly, the actual orientation of the fault in section may vary from that shown in the figure. Relative fault direction vectors will be added to Section A-A' and Section B-B' based on this information presented in Bonilla et al. (1980).³

Table 4-1

What is the basis for the given Maximum Credible and Maximum Probable Magnitudes? Maximum Magnitudes on faults to be used with the 1997 UBC, and justifications for their use are provide in the 1998 publication by the California Division of Mines and Geology. Maximum Credible Magnitudes suggested by Caltrans for use in deterministic designs are provided by Mualchin (1996). A database of potential sources for earthquakes larger than Magnitude 6 in Northern California is provided with estimated magnitudes by the Working Group on Northern California Earthquake Potential (1999). These reputable sources post-date sources cited by Cal Engineering.

The data in Table 4-1 were based on data included in California Division of Mines and Geology (1996)⁴ and were checked against California Division of Mines and Geology (1998). Following the DCM/J comment, we will check this information against information included in the Working Group

³Bonilla, M.G., Lienkaemper, J.J. and J.C. Tinsley, 1980, Surface Faulting Near Livermore, California Associated with the January 1980 Earthquakes; U.S. Geological Survey Open File Report 80-523.

⁴California Division of Mines and Geology, 1996, *Probabilistic Seismic Hazard Assessment* for the State of California; California Division of Mines and Geology, DMG Open File Report 96-08, Sacramento, California, April.

on Northern California Earthquake Potential (1999) and Table 4-1 will be revised and/or annotated as appropriate.

Maximum Probable Magnitudes should be at least as large as known historic earthquakes (e.g., the Maximum Probable Magnitude of the Greenville Fault should at least reflect the January 24, 1980, Magnitude 5.8 earthquake city by Cal Engineering from Bonilla et al., 1980). This is consistent with Cal Engineering's recommendation in Section 7.4.2 stating the design should anticipate future surface rupture of a similar magnitude to that which occurred in 1980 [right-lateral and dip slips on the order of 2 to 4 cm] during the operational life of the roadway. Such an occurrence should be considered during design of the roadway and during development of maintenance and operation plans (Cal Engineering's Maximum Probable Magnitude for the Greenville Fault is indicated as 5.2 in Reference A).

The maximum probable earthquake (MPE) for the Greenville fault that was reported in Table 4-1 was based on the earthquake magnitude associated with an approximate 100-year return period. In our opinion, use of a published and generally accepted definition of the MPE is more appropriate than applying a subjective interpretation of the MPE as "at least as large as known historic earthquakes." Nonetheless, a note can be added to Table 4-1 indicating that an earthquake of magnitude 5.8 occurred on the Greenville fault in 1980. The Draft Report notes that design and maintenance of the roadway should anticipate fault rupture during the operational life of the roadway.

E. Section 5 - Field Explorations

Item 1

In Section 5.2, the source and date of the aerial photographs reviewed should be referenced.

References to sources and dates or the aerial photographs are provided in the Draft Report in Section 3 on page 3-1.5

⁵Pacific Aerial Surveys photographs AV-253-33-29, AV-253-33-30, and AV-253-33-31 dated May 22, 1957 at a scale of 1:12,000 and photographs AV-6100-135-26, AV-6100-135-27, and AV-6100-135-28 dated August 17, 1998 at a scale of 1:12,000.

Item 2

In Section 5.3, the text refers to two seismic refraction lines that were 800 feet long. For report consistency, this reference should be in metric.

Cal Engineering should discuss their extrapolation of results from the seismic refraction lines to cross-sections as shown on Figure 4-4 in consideration of the fact that the seismic refraction lines run perpendicular to the cross-section.

Section 5.3 of the Final Geotechnical Design and Materials Report will be revised to include metric distances for the seismic refraction lines. Section 5.3 will also be revised to reference Figure 4-4 and to note that the seismic refraction data shown in this figure is extrapolated from refraction lines that were laid out normal to the cross section locations.

F. Section 7 - Geotechnical Conditions

Item 1

Regional structural data (e.g. provided by Dibblee, 1980, Crane 1995, Majmundar, 1991, and Graymer and others, 1996) should be used in cross-section (Figure 4-4) and stability analysis where not superceded by site specific data from Cal Engineering fieldwork.

Most of the regional structural data cited by DCM/J is shown for areas on either side of the Greenville fault and little to no published structural data are available for the areas between the main and eastern strands of the Greenville fault as shown in Figure 4-4. Because of the sheared and generally chaotic nature of the bedrock (as evidenced by the rock exposed in the test trenches) in this area, it is our opinion that applying data from outlying areas may not be representative of actual site conditions in the area of maximum cut. As discussed in the Draft Report, stability analyses were based on lower-bound interpretation of laboratory test data for samples that were biased towards the weakest materials recovered from the borings and on an assessment of overall strength of the rock mass as a whole.

Item 2

In Section 7.1.3, The Nilsen (1975) base map for Figure 7-1 should be replaced with more recent maps by Majmundar (1991; particularly Maps 27A and 27B) which show landslides along the alignment not indicated by Nilsen. Majmundar (1991) indicates on Map 27A that most of the slopes along the alignment are "naturally unstable and subject to failure even in the absence of the activities of man." A legend, scale, north arrow, and box indicating mapped area shown on Figure 4-3

should be added. Landslides identified along or near the alignment by Majmundar (1991) should also be shown on Figure 4-3.

The Majmundar (1991) maps will be reviewed and the figures included in the Final Geotechnical Design and Materials Report will be revised accordingly. The final landslide figure will include a legend, scale, and north arrow, and will box the area mapped for the re-alignment investigation.

Item 3

In Section 7.1.4, uniaxial compressive strengths are discussed for the Panoche formation materials, but not for Tmss (Cierbo) materials.

Laboratory tests were performed on samples collected from borings located within the proposed area of maximum excavation. As a results laboratory tests were not performed on samples from the Cierbo Formation.

Given the number of possible kinematically unfavorable orientations, the discontinuity orientation factor assumed for the evaluation could easily be assumed to be unfavorable (-50) to very unfavorable (-60), with the rock mass underlying the proposed expansion area (including in Borings B-2, B-3, B-4, and B-5 on Table 7-2) being classified as very poor rock (Class V).

Assigning a discontinuity spacing, condition, and orientation factors to the rock mass was somewhat subjective and was based on conditions observed in the test trenches, information inferred from samples recovered from the borings, and on the preliminary orientations of the cuts planned for this project. In our opinion, classifying the rock in the area of the proposed cut slopes as poor to very poor is consistent with the observed conditions.

Item 4

Governing shear strength properties for the project cut slopes will most likely be along discontinuities (e.g. bedding planes and fractures). Precedent failure/repair studies by others pertaining to prior instabilities along nearby reaches of Vasco Road would be useful to establish shear strength properties along geologic discontinuities typical of the area.

As summarized previously, we are aware of several failures that occurred during Vasco Road realignment work that was completed as part of the Los Vaqueros Reservoir project and we will review and summarize information regarding these failures that may be available. Strength values used for analysis will also be checked against relevant information obtained from this review. Additionally, to better assess the potential for failure along bedrock discontinuity surfaces, we will

perform additional stability analyses that assume multiple block or wedge surfaces. The results of these analyses will be included in Appendix I of the Final Geotechnical Design and Materials Report. Modifications for cut slope recommendations will be revised in the Final Report, as appropriate.

Figure 7-2

A legend describing the numbered geomorphic features would be helpful.

Figure 7-2 will be revised to include a legend describing the geomorphic features that are called out in the figure.

G. Section 8 - Geotechnical Analysis and Design

1. General Editorial Comments

Item 1

In Section 8.0, Subsection 8.1.1 Seismic Parameters Used in Analysis, reference is made to a U.S. Department of Transportation design guidance which allows the seismic coefficient for use in pseudo static analyses to be one-half ($\frac{1}{2}$) of the peak horizontal ground acceleration of the applicable fault source. As an example, for the near-field source seismic event (Greenville Fault) Cal Engineering states that for "....a design PHGA of 0.27g, a seismic coefficient of 0.14 was assumed....." However, in the tables summarizing the slope stability data (Appendix I, Slope Stability Analyses), the seismic coefficient ($\frac{1}{2}$) used in analysis for the near-field source is 0.10 with a footnote in regards to its reduction from 0.14 to 0.10. This reduction in seismic coefficient should also be made a part of the text discussion in Subsection 8.1.1 Seismic Parameters Used in Analysis.

The seismic coefficient reduction was based on recommendations included in Seed (1979) for earthquakes with $M_w < 6.5$. The information included in Appendix I (Slope Stability Analyses) and the text of the Draft Report will be reviewed and revised as necessary.

The discussions in this section need to reflect comments in Section 4 (particularly with regard to selecting the Maximum Probable Earthquakes). The selection of appropriate MPE's will affect PHGA and seismic coefficients pursuant to reported U.S. Department of Transportation guidance (1997). Seismic coefficients are generally linked to recommended pseudo-static factors of safety. Many state and local agencies in California require the use of a seismic coefficient of 0.15, and a

minimum computed psuedo-static factor of safety of 1.0 to 1.2 for analysis of natural, cut, and fill slopes (CDMG 1997).

As discussed previously, the MPE and associated PHGA for the Greenville fault were based on the earthquake magnitude associated with an approximate 100-year return period. We do not disagree that more generalized pseudo-static coefficients are often used to evaluate seismic slope stability. Accordingly, we will complete additional analyses using a pseudo-static coefficient of 0.15 and include the results in the Final Report. If required, we will also complete additional seismic displacement analyses. The results of the analyses and modifications to our recommendations will be included in the Final Report, as appropriate.

Regional structural data (e.g., provided by Dibblee, 1980; Crane, 1995; Majmundar, 1991; and Graymer and others, 1996) should be used in stability analyses where not superceded by site specific data from Cal Engineering fieldwork.

As described previously, most of the regional structural data cited by DCM/J is shown for areas on either side of the Greenville fault and little to no published structural data are available for the areas between the main and eastern strands of the Greenville fault as shown in Figure 4-4. Because of the sheared and generally chaotic nature of the bedrock (as evidenced by the rock exposed in the test trenches) in this area, it is our opinion that applying data from outlying areas may not be representative of actual site conditions in the area of maximum cut. As discussed in the Draft Report, stability analyses were based on lower-bound interpretation of laboratory test data for samples that were biased towards the weakest materials recovered from the borings and on an assessment of overall strength of the rock mass as a whole.

Item 2

In Section 8.0, Subsection 8.2.1.7 Results of Analyses, the report states that "Pseudo static safety factors were less than 1 for all conditions analyzed." However, this contradicts Table 8-1 in which all of the reported pseudo static safety factors are greater than 1.0. In the same subsection, the "potential seismic displacements" are reported to be less than 30 cm for the slope conditions analyzed. This is inconsistent with Table 8-1 in which the maximum displacements are reported to be less than 1 cm.

Subsection 8.2.1.7, Table 8-1, and Appendix I (Slope Stability Analyses) will be reviewed and reconciled prior to completing the Final Geotechnical Design and Materials report.

Item 3

In Section 8.0, Subsection 8.3.1.4 Shear Strength Assumed for Stability Analyses, there is a discrepancy between what was reportedly used for analyses ("....cohesion intercept of 7.7 kPa and a friction angle of 26 degrees") as discussed in Section 8.3.1.4, and what was actually used in analyses (cross sections used in the embankment slope analyses reports the fill strength used to be 7.17 kPa with a friction angle of 26 degrees).

The values described in Section 8.1.3.4 will be compared with the values shown in the stability analysis cross sections and reconciled before completing the Final Geotechnical Design and Materials Report.

Item 4

In Section 8.0, Subsection 8.3.1.6 Results of Stability Analyses, the report states that in Table 8-2 the "...static safety factors that range from about 1.5 to 1.7 for the different conditions that were analyzed." However, in Table 8-2, the static safety factors reported are between 1.53 and 1.57. As such, there is a discrepancy between the text discussion and the tabulated data.

In this same subsection, the report states that "Pseudo static safety factors were less than 1 for all conditions analyzed." However, in Table 8-2, the tabulated data for the pseudo static safety factors are all greater than 1.16, thus the report text is not consistent with the tabulated data.

Static and seismic analysis results summarized in the text and shown in the tables of the report will be reviewed and reconciled before completing the Final Geotechnical Design and Materials Report.

Item 5

In Section 8.0, Subsection 8.3.2 Post-Construction Embankment Movements, recommendations are provided for "zoning and fill control measures." The issue of concern is that there is no upper bound limit on moisture content (i.e., "+4% or +2% of optimum or greater," respectively) for the "uppermost 5m" and the "midembankment" fill material. The "or greater" qualification potentially allows the contractor to incorporate very high moisture contents in the fill material while still meeting the report recommendations. Compacting material with very high moisture contents could result in an unstable subgrade (i.e., pumping subgrade) which is not desirable for an embankment fill.

We agree with this comment. The Final Geotechnical Design and Materials Report will be revised to include an upper bound limit on moisture content.

Item 6

Section 8.5 Culverts, discusses the corrosion potential of the soils and bedrock for steel and concrete structures. This section could be augmented by a discussion of the corrosion problems Contra Costa County encountered in some of their culvert crossings during construction of the Vasco Road realignment as part of the Los Vaqueros project. During construction, at least one local newspaper reported that accelerated failure occurred in some of the culvert crossings because backfill materials used around the culvert crossings were highly corrosive. The "lessons learned" from these prior culvert failures should be applied to this project to prevent a repetition.

We are aware of the problems experienced by Contra Costa County with highly corrosive backfill for the steel culverts utilized on their project. It is our understanding that the problems encountered on that project were due to highly corrosive imported backfill sand and not from local sources. Section 8.5 of the Final Geotechnical Design and Materials Report will be revised to note to failures that occurred in some of the culvert crossings because of the corrosive backfill that was used during construction. The culvert recommendations will be revised to include recommendations for specifying backfill materials to avoid the use of corrosive soils. We will also highlight the corrosion testing that was performed as part of our investigation and that is included in Appendix G of the report.

2. <u>Comments Pertaining to Geotechnical Analysis and Design</u>

Comment 1

In Subsection 8.3.1.4 Shear Strength Assumed for Stability Analyses, the report states that "...where the embankment will be underlain by the weaker Panoche formation materials, the strength parameters discussed in Section 8.2.1.5 were assumed for those materials." The strength reported in Section 8.2.1.5 for the Panoche Formation includes a cohesion intercept of 2.39 kPa and a friction angle of 20 degrees. However, on the slope stability embankment cross sections at Station 1+160 where the material is identified as "native" (which we presume is the native Panoche formation material), the reported strength used in analyses includes a cohesion intercept of 7.17 kPa and a friction angle of 20 degrees. The strength parameters associate a cohesion intercept of 2.39 kPa with a friction angle of 20 degrees for the Panoche Formation (Subsection 8.2.1.5), and a cohesion intercept of 7.7 [7.17?] with a friction angle of 26 degrees for the Cierbo Formation

(Subsection 8.3.1.4). As such, there is an apparent commingling of the reported strength properties for the slope stability analyses that involves the Panoche formation. The slope cross section that involves the Panoche formation should be analyzed with the appropriate material strengths discussed in the report.

As summarized above, strength properties summarized in the text of the report, shown in the report tables, and shown in the stability analysis cross sections will be reviewed and reconciled prior to finalizing the report. The results of analyses which are affected by the reconciliation will be reported in the Final Report and recommendations presented therein will be modified to reflect the results of the stability analyses.

Comment 2

...we question the use of a free swell test on a core sample of claystone bedrock to model elastic rebound. Performing a free swell test is one way of modeling the behavior of claystone when subjected to free water and to assess the magnitude of swelling that could be anticipated. Therefore, performing a free swell test on a claystone sample is more a measure of the swelling magnitude than it is elastic rebound. That being the case, the reported magnitudes of rebound/heave (100 mm to 400 mm) could be significant if most of the measure is associated with swelling heave and the fact that swelling heave is a time-dependent behavior. Therefore, the roadbed could become significantly distorted over time resulting in an adverse impact on the roadway improvements (i.e., pavement section, drainage gradients, etc.). The impacts could be significantly magnified in the case where the claystone is interbedded with low or non-expansive bedrock materials resulting in abrupt changes in the roadbed profile.

We concur with the DCM/J comment. Our testing completed to date primarily addresses the possible moisture induced expansion of the claystone bedrock. Determination of the magnitude and time-dependence of bedrock rebound (as compared to moisture controlled expansion) should also be completed. Modeling of this heave mechanism is very difficult. At this time, we intend to model this condition as closely as possible by taking one or more core samples from the approximate elevation of the base of the cut, re-confining the samples to pressures equivalent to a pre-cut condition, and them allowing the samples to elastically rebound at a constant moisture. The amount of rebound will be measured periodically. The rebound will be plotted against time to determine the time-dependency of the rebound. Depending on the results of the tests, we will provide recommendations regarding mitigation of the affects of elastic rebound which may occur following excavation into the claystone. We expect that our testing will indicate that the great majority of elastic rebound will occur immediately following excavation as the unloading of the rock occurs. However, should our testing show otherwise, we will develop and present remedial

	•			
	•			
			ŧ	
-				

recommendations for addressing the potential hazards resulting from long-term rebound of the claystone bedrock.

We also agree with DCM/J that interbedding of the claystone could result in variations in the both elastic rebound and moisture induced expansion along the base of the excavations. Because of the sheared nature of the materials within the strands of the Greenville Fault, identification of the expansive and non-expansive beds will not be possible until the excavations are made. Therefore, as discussed above, in the Final Report we will include additional recommendations regarding the need to map all excavations during construction so that modifications and/or additions to the remedial measures recommended can be developed and implemented, as necessary.

Comment 3

With respect to the major cut slope on this project, Cal Engineering modeled the major cut slope as a uniform rock mass slope for the full depth of the cut and beyond, and reasonable strength parameters were assigned for the rock mass. However, the engineering data (shear strength data and shear wave velocity) summarized on the geologic cross section on Figure 4-4 indicates a marked difference in the bedrock between Elevations 295 m and 300 m at Cross Section B-B'. According to the data summarized on Cross Section B-B', the shear strength data and the shear wave velocities are several orders of magnitude greater than the bedrock materials above it resulting in a "resistant bedrock layer." This marked change in the bedrock daylights in the cut slope a few meters above the roadbed at the report stationing of about 23+50 (Figure 4-3). Because bedrock strength and shear wave velocity data suggests this geologic condition could control slope stability, this geologic condition should be modeled in a slope stability cross section to evaluate the impact a "resistant bedrock layer" might have on slope stability and the resulting safety factor.

Following the DCM/J comment, we have run additional stability analyses (included in Attachment 1) assuming that the resistant bedrock layer may be represented by a friction angle of 25 degrees and a cohesion intercept of 7.5 kPa. Using these higher rock strength values increases the static safety factor of deep failure surfaces by about 24 percent to 34 percent. The increased strength does not affect the safety factor for shallow failure surfaces above the resistant layer.

Comment 4

From a geotechnical engineering point of view, placing an embankment fill on the toe of a "questionable" landslide or "zones of relatively weaker bedrock" is a condition that can result in hillside instability and warrants further evaluations. As such, the existence or non-existence of a "questionable" landslide or "zones of

relatively weaker bedrock" identified as QLS-2 needs further evaluations and/or assessment to ascertain where or not it exists. If it does exist, the impact of placing a roadway embankment fill at the toe of the instability feature needs to be evaluated through slope stability analyses. Depending on the results of such evaluations and assessments, recommendations may be necessary to address this geologic and embankment slope condition in order to accommodate the roadway embankment fill. For example, significant project grading costs could be incurred if the landslide toe has to be removed and replaced as engineered fill to accommodate the roadway embankment fill. In any case, this geologic condition warrants further review and evaluations to accommodate the roadway embankment fill.

In response to this comment, we have conservatively assumed that the landslide exists and performed additional analysis to assess the relative impacts placing embankment fill in this area could have on overall stability of the landslide (and the fill). This analysis is included in Attachment 2 and included: (1) back-calculating the strength required for a safety factor of 1.0 against sliding of the landslide mass; (2) adding the embankment fill to the cross-section; and (3) evaluating the resultant safety factor using the back-calculated shear strength for the landslide materials. The results of this analysis indicated a friction angle on the order of 6 degrees would result in a safety factor on the order of 1.0 for the landslide mass. Using this strength value and adding the embankment fill increases the safety factor from 1.0 to 2.4 because the embankment buttresses the area of the landslide.

H. Section 12 - Recommendations and Specifications

1. General Report Discussion Comments

Item 1

It is unclear if the "very weak rock" discussed in this section is any weaker or has substantially less strength than that anticipated for the very poor to poor rock discussed in Subsection 7.1.4. Because constructing buttress fills could be a substantial project expense, guidelines should be presented or discussed on how "very weak rock" can be distinguished or identified from the other very poor to poor rock anticipated in the project excavations. The need for buttress fills should be based on measurable and identifiable differences in the bedrock materials from that anticipated or assumed in the evaluations and calculations.

As part of the Final Geotechnical Design and Materials Report, we will clarify and provide guidelines regarding the identification of very weak rock in excavations. These guidelines will include criteria for overall rock mass quality, discontinuity characteristics, discontinuity frequency,

discontinuity orientation with respect to the excavation, and evidence for the presence or absence of groundwater. It should be noted, however, that identification of very weak rock in the field and the need for buttress fills will likely be somewhat subjective. As result, as discussed above the Final Report will highlight the need for professional observation and mapping of major excavations during construction.

2. <u>Comments Pertaining to Recommendations</u>

Comment 1

In Subsection 12.1.2 Cut Slope Configurations, the excavation design recommendations are contained in Table 12-1. In Table 12-1, recommendations are provided for cut and fill slopes between various stationing points along the project alignment. In light of report discussions pertaining to 1V:2H cut slopes, and in the absence of engineering analyses or other report discussions that support a 1V:2V recommendation, there is an apparent discrepancy between the report discussions and the recommendation for 1V:2H cut slopes

...in one section of the report, Cal Engineering discusses the vulnerability of 1V:2H slopes, yet recommendation occurs without any supporting documentation that indicates 1V:2H slopes will be more stable on this project than they were on the adjacent landfill site. Therefore, slope stability evaluations should be completed for the recommended 1V:2H cut slopes utilizing materials strength properties and groundwater conditions that model the cut slopes.

The 1V:2H cut slope recommendations included in Table 12-1 were for cuts in Cierbo Formation sandstone and conglomerate that are above the water table. Table 12-1 will be revised in the Final Geotechnical Design and Materials Report to show this distinction. The Cierbo Formation materials are primarily granular and are assumed to exhibit greater strength than the sheared, clayey materials that will be exposed in the large excavation between the eastern and main strands of the Greenville fault. Nonetheless, we will complete additional stability analyses for the proposed 1V:2H cuts based on conservative assumptions for the materials that will be exposed in the excavation. Recommendations included in the Final Report will be revised as necessary basedon the results of te additional analyses.

Comment 2

The final or update report should incorporate recommendations for the under drainage systems as needed (i.e., filter material, filter fabric [if any], perforated pipe, cleanouts [if any], discharge outlets, etc.).

This section of the report was inadvertently left out of the Draft Report. The Final Geotechnical Design and Materials Report will include these recommendations. Specific details for under drainage system design will be addressed in subsequent design memorandums which will supplement the Final Report.

CLOSURE

As described in the main body of this letter, we have reviewed DCM/J's comments on the Draft Report and substantially concur with their recommendations. Based on the review comments and recommendations we are completing the above noted additional testing and analyses and are revising the Draft Report accordingly.

We appreciate the opportunity to provide service to the County of Alameda Public Works Agency on such an important project and look forward to working with the County and its representatives to complete the Final Geotechnical Design and Materials Report. If you have questions regarding this letter or if we can be of further assistance, please contact us at your convenience.

Very truly yours,

CAL ENGINEERING & GEOLOGY, INC.

Phillip Gregory, P.E., G.E. Principal Engineer

Attachments (2)

Attachment 1 ADDITIONAL ANALYSES TO ASSESS RESISTANT BEDROCK LAYER

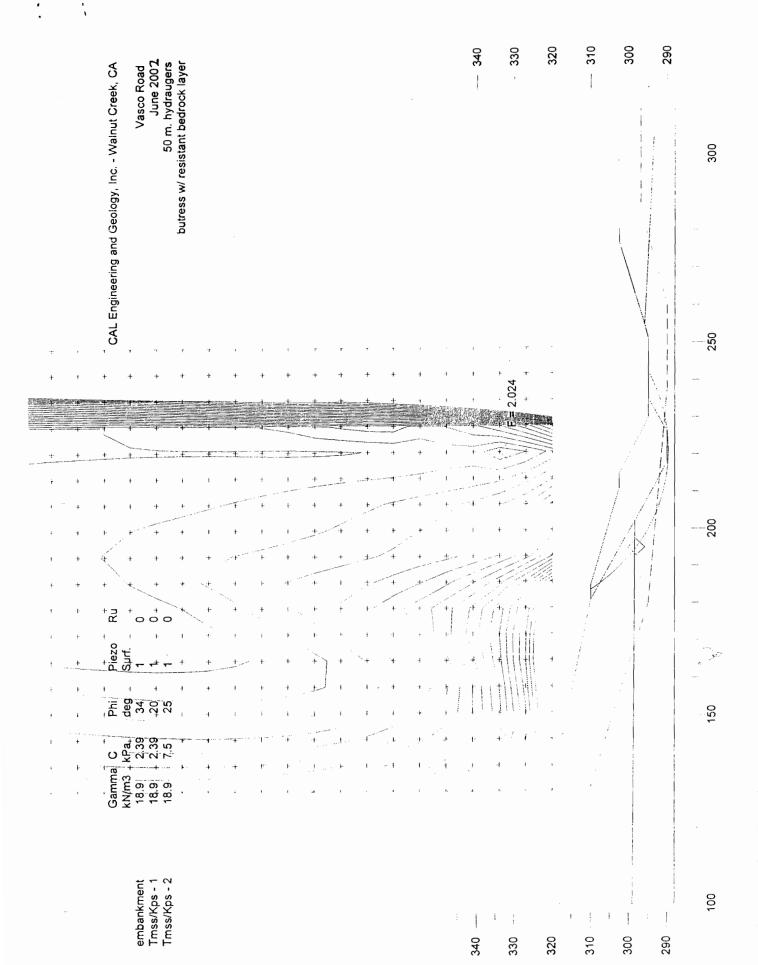
Work - 23% 120 part lay (16 15 thung lay lunch co. th. cad

			Summary of	Summary of Cut Slope Stability Analyses		
	Slope Configuration	Static Factor of Safety	r of Safety	Seismic Factor of Safety-Deep Failure ¹	Pseudostatic Yield	Maximum Displacement (Far/Intermediate/Near
	-	Deep Failure ¹	Shallow Failure³	(Far/Intermediate/Near Field)	Coefficient, k _y	Field²) (cm)
0	Buttress Fill with 50 m long hydraugers	1.51	1.93	1.27 / 1.10 / 1.03	0.11	NA / 1cm / 1cm
s.	3.5:1 (horiz.:vert.) cut with 50 m long hydraugers	1.44	1.694	1.22 / 1.06 / 1.00	0.10	NA/ 1cm / 1cm
٠.	3.5:1 (horizvert.) cut with 70 m long hydraugers	1.55	1.694	1.32 / 1.15 /1.07	0.123	NA/NA/1cm

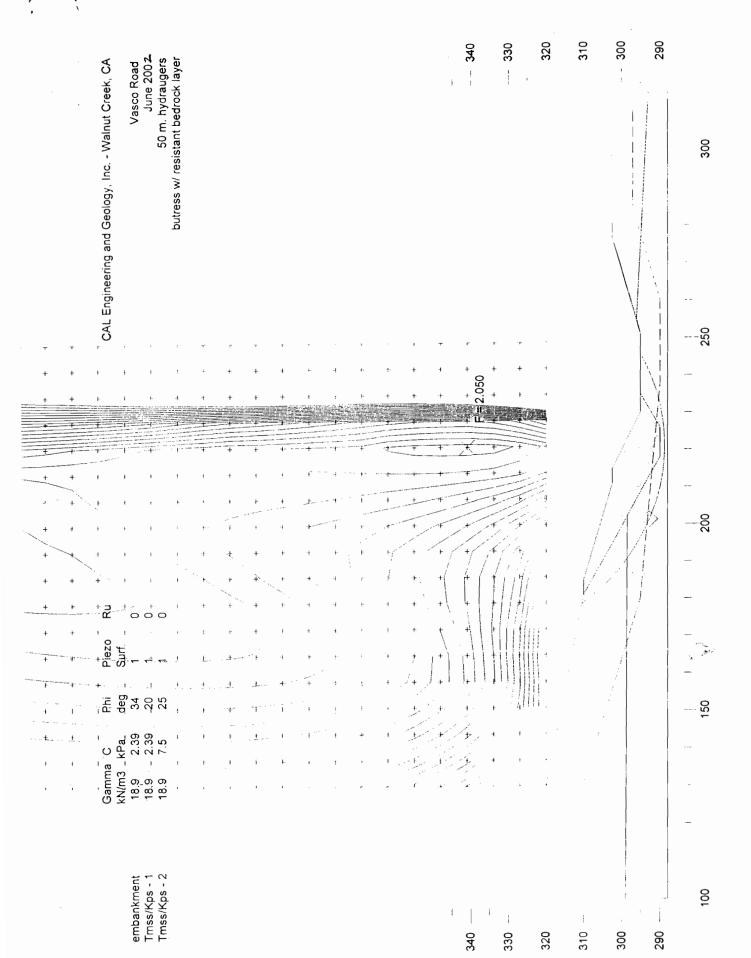
Note.. Displacement analysis is only required for cases where the seismic global stability analysis indicates a factors of safety less than 1.15.

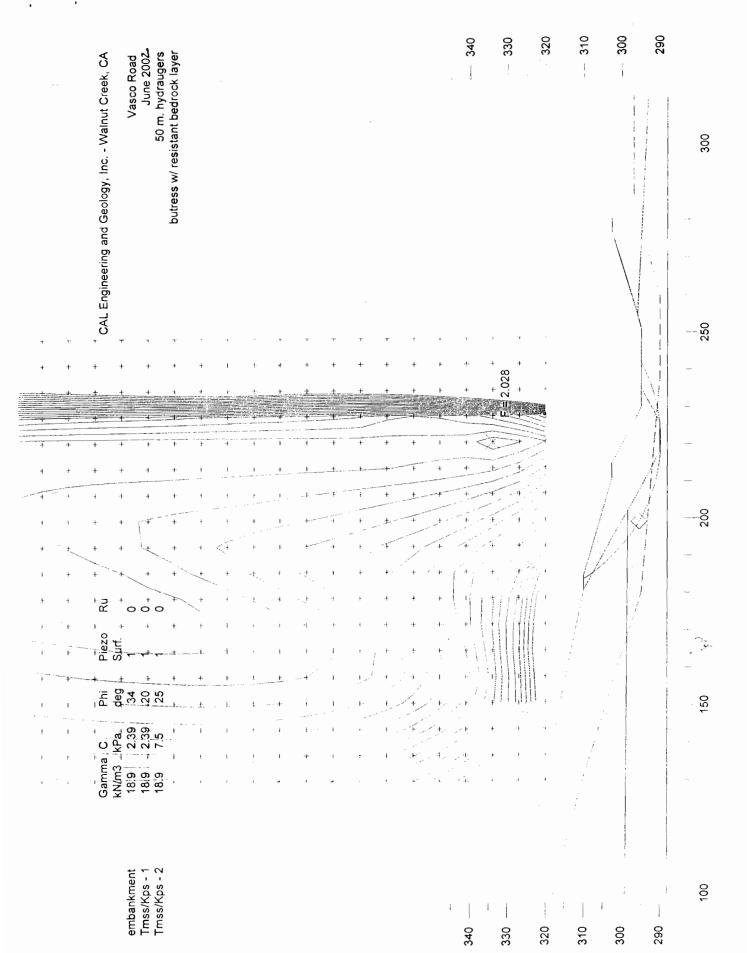
2

t	Basis for Analysis of Seismic Slope Stability Results	Slope Stability Results	
Field (Fault)	Moment Magnitude	Maximum Acceleration	Seismic Coessicient, k,
Near Field (Greenville Fault)	M _w =5.2	A _{max} =0.27g	0.10
Intermediate Field (Calaveras Fault)	M _w =6.3	A _{max} =0.15g	0.08
Far Field (San Andreas Fault)	$M_{w} = 7.3$	$A_{max}=0.08g$	0.04

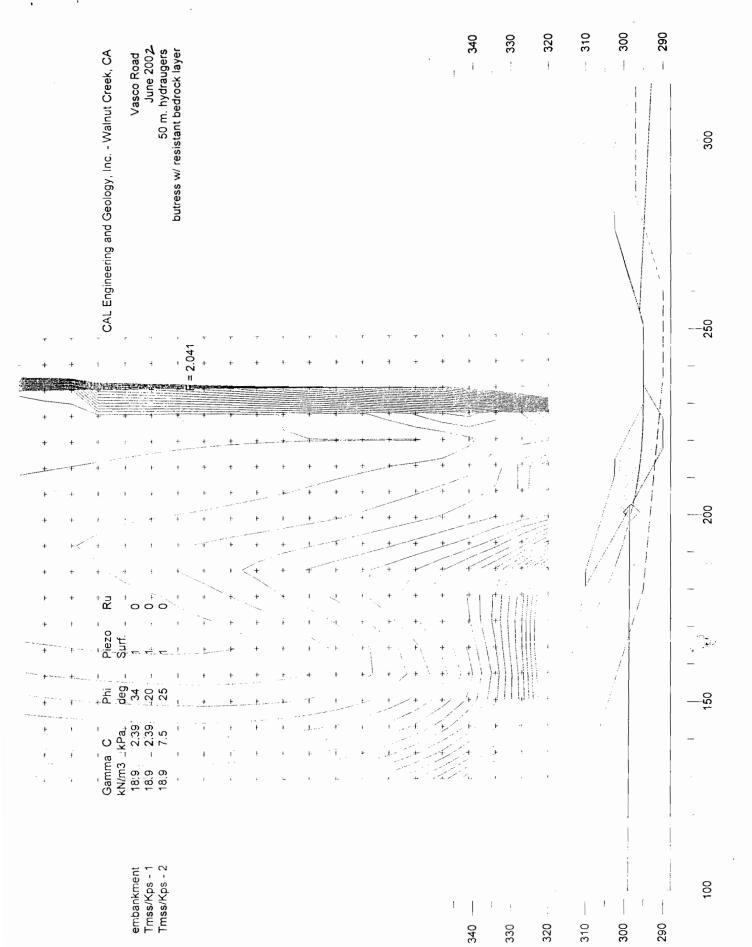

¹ For deep failure analysis, the extent of failure was limited to 45 meters up slope of the main strand of the Greenville fault.

² Modified Newmark analysis based upon Figure 53 of Makdissi and Secd (1978). The analysis assumes that the crest acceleration is the same as A_{max}. Note that by inspection a magnitude 5.2 event is incapable of resulting in displacements of greater than approximately 30 centimeters regardless of the induced acceleration.

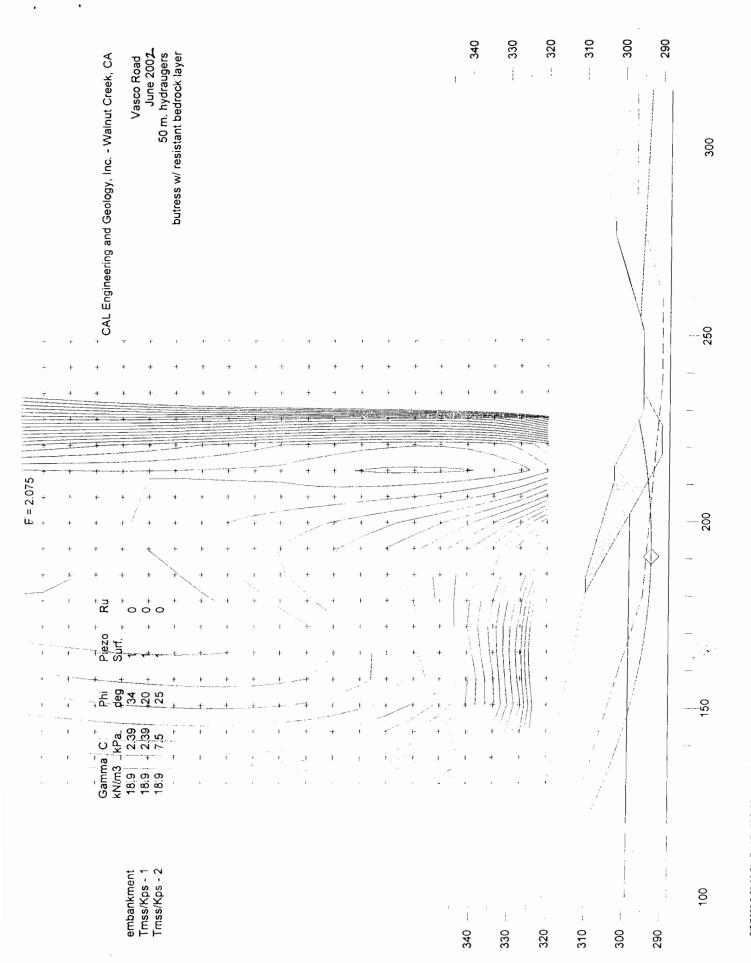

³ It should be noted that the surficial stability reduces to below 1.0 if the slope becomes saturated to the face of the slope. This condition is not modeled in these analyses which assumes hydraugers control the piezometric water level.

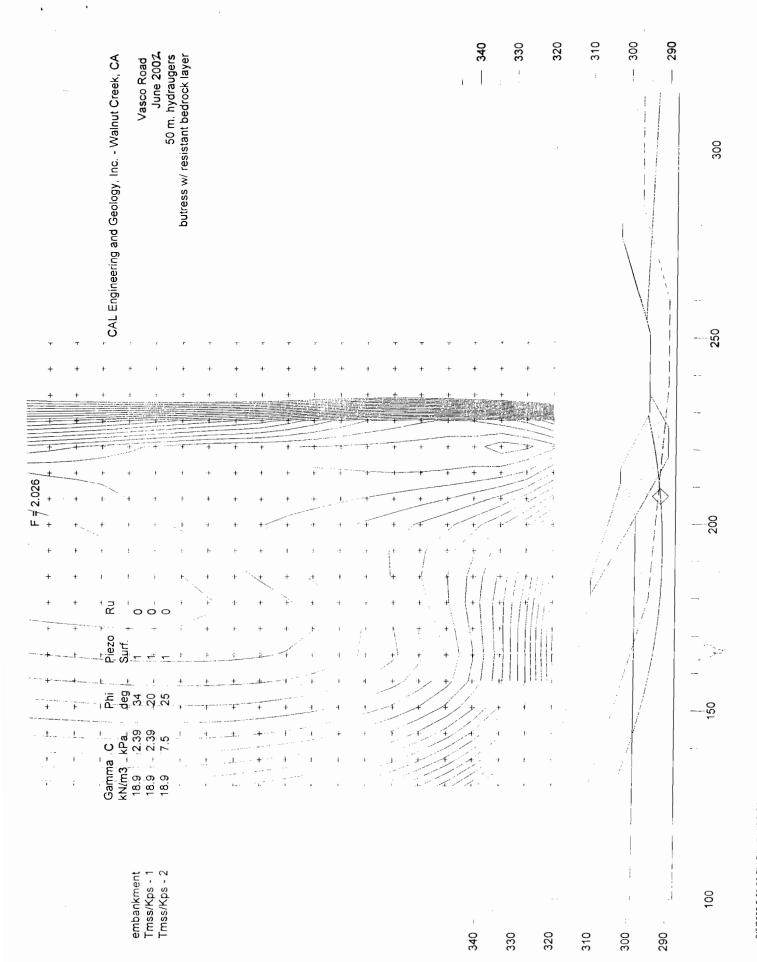

⁴ Shallow Failure analysis is the same for 50m or 70m hydraugers because the failure extends less than 50m into the slope.

 $^{^5}$ Use $k_s = 0.10$ instead of 0.14 per Seed (1979) because M_w <6.5.

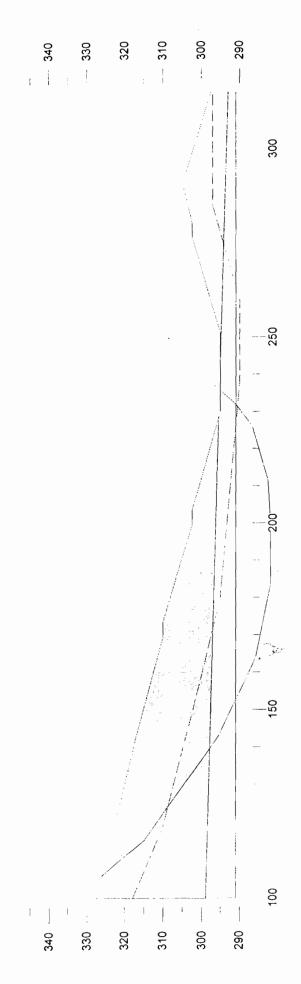


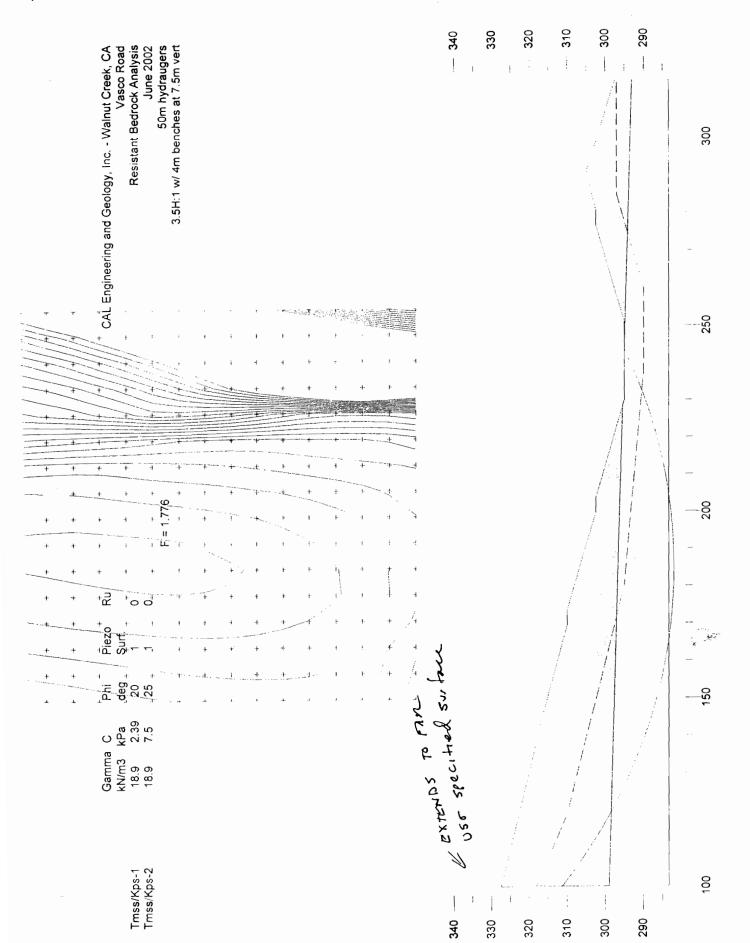
6/5/2002 2:52:27 PM Z:W-BUTRS.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 2.024



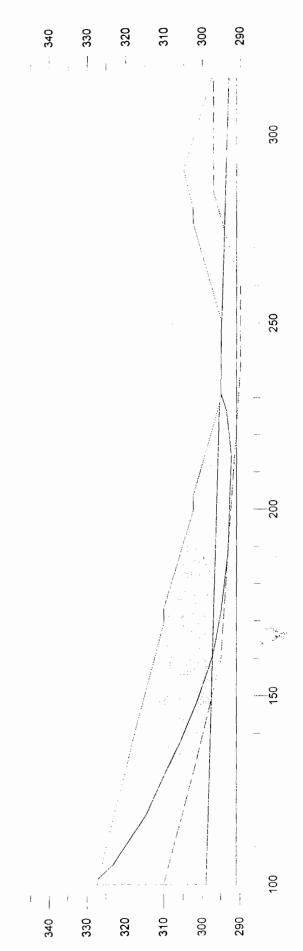

6/5/2002 2:50:37 PM Z:W-BUTRS.GSL_CAL Engineering and Geology, Inc. - Walnut Creek, CA F ≠ 2.028

6/5/2002 2:50:54 PM Z:\V-8UTRS.GSL_CAL Engineering and Geology, Inc. - Wahut Creek, CA = ₹ 2.041

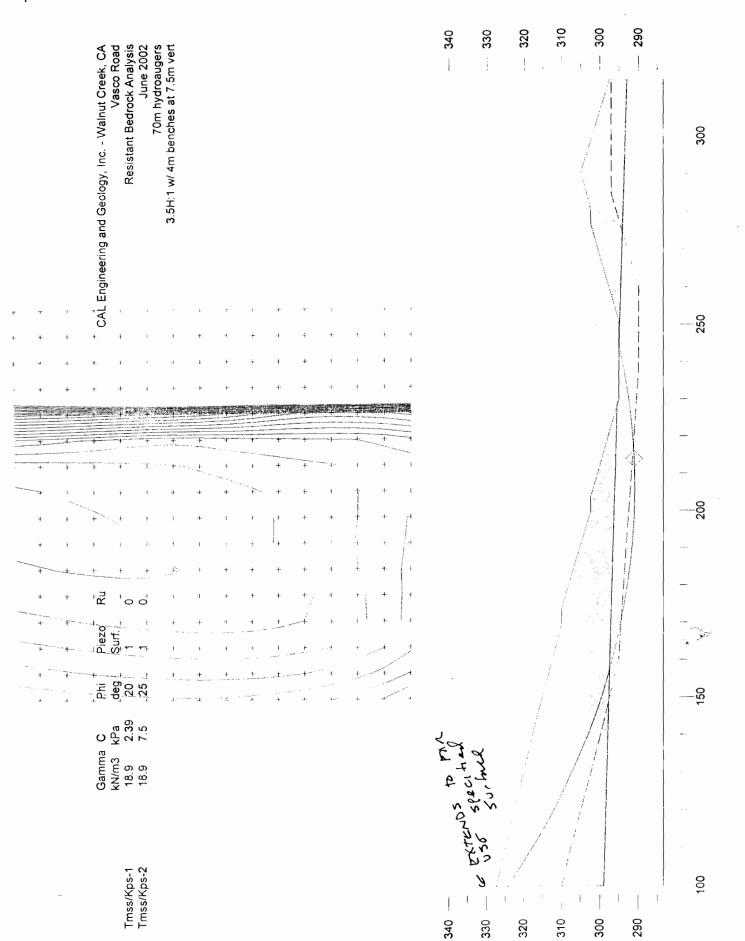

6/5/2002 2:53 33 PM Z:V-BUTRS,GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 2.075


6/5/2002 2:58 26 PM Z:IV-BUTRS,GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 2.026

CAL Engineering and Geology, Inc Walnut Creek, CA	Vasco Road	Resistant Bedrock Analysis	June 2002	50m hydraugers	3.5H:1 w/ 4m benches at 7.5m vert
Ru		0	0		
	urf.	_	_		
		50			
nma C	n3 KP	18.9 2.39	9 7.		
Garr	KN/N		Tmss/Kps-2 18.9		

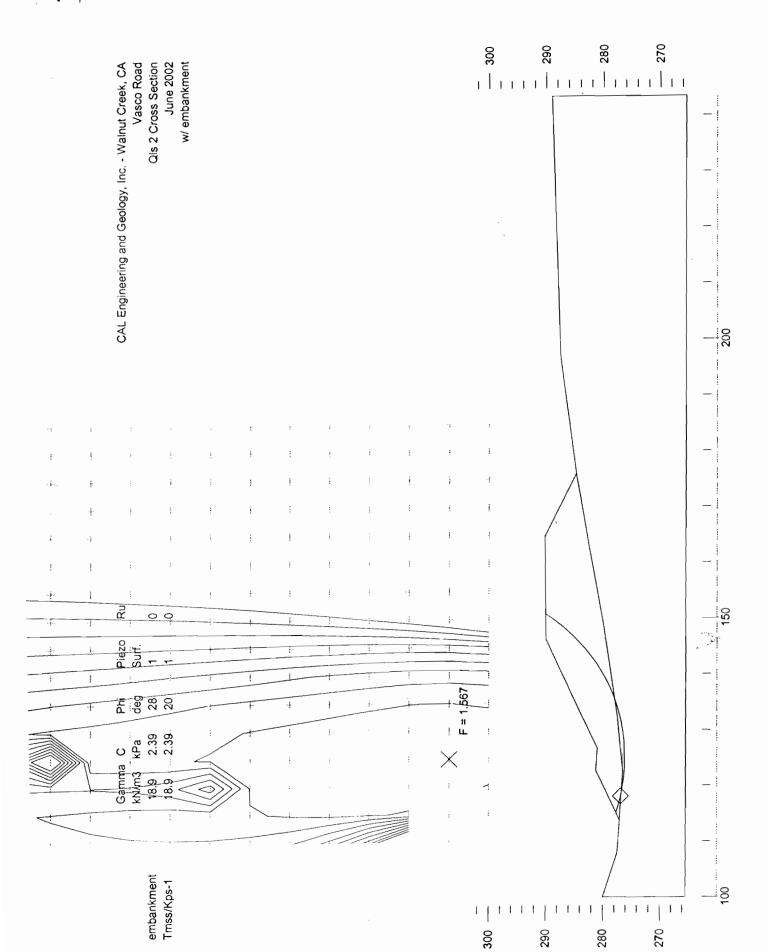


6/5/2002 4:35:36 PM Z:\3TO150M.GSL_CAL Engineering and Geology, Inc. - Walnut Creek, CA | F = 1.847

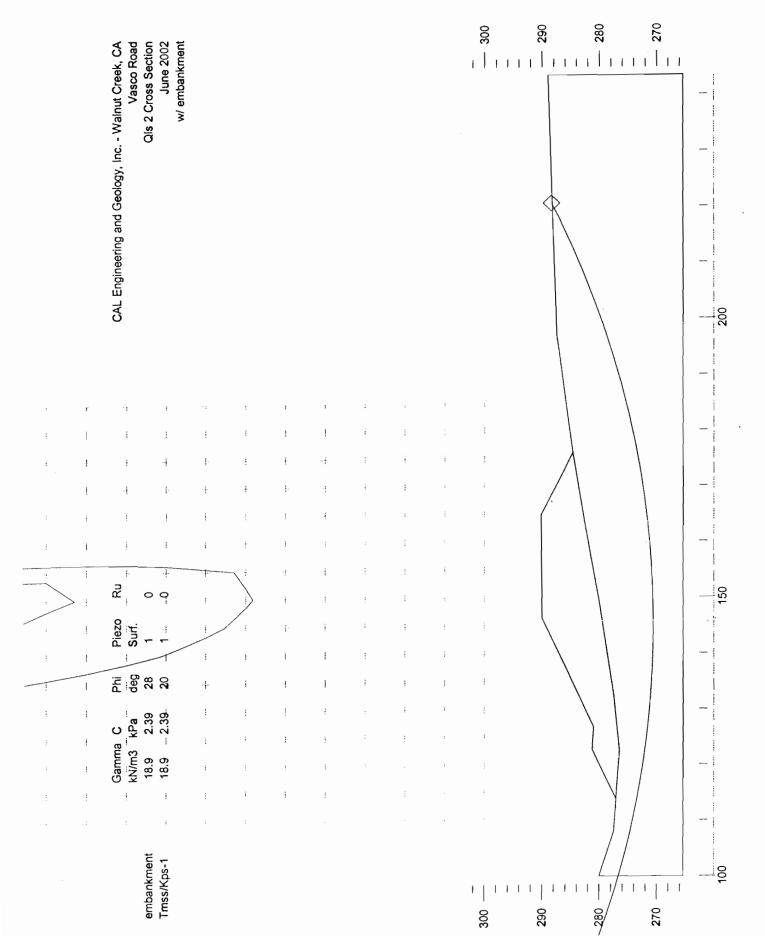


6/5/2002 3.27·16 PM Z:3TO150M.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.776

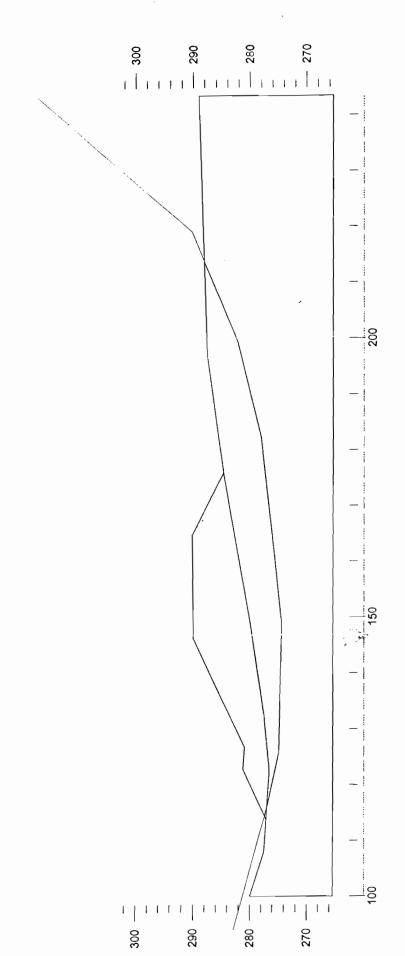
CAL Engineering and Geology, Inc Walnut Creek, CA Vasco Road	Resistant Bedrook Analysis	June 2002	70m hydroaugers	3.5H:1 w/ 4m benches at 7.5m vert
R _c	0	0		
Piezo Surf.	-	-		
Phi deg	20	25		
Ω a	2.39	7.5		
Gamma KN/m3	18.9	18.9		
	Tmss/Kps-1	Tmss/Kps-2		

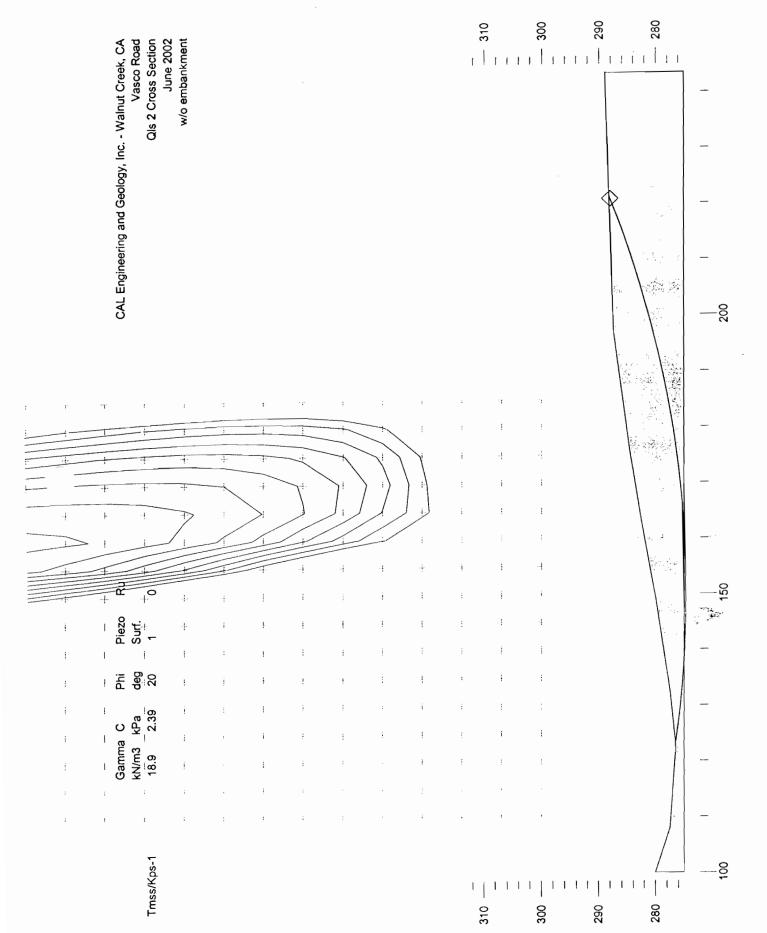


6/5/2002 4:30:24 PM Z:\3T0170M.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.968



6/5/2002 4:08:54 PM 2:\3TO170M.GSL CAL Engineering and Geology, Inc. - Wainut Creek, CA F = 1.970

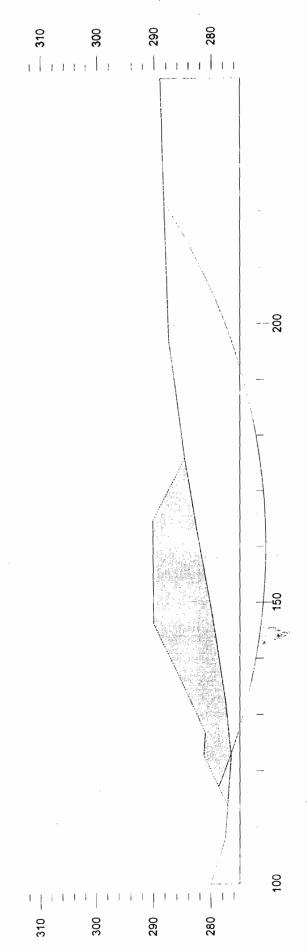

Attachment 2 ADDITIONAL ANALYSES TO ASSESS STABILITY OF EMBANKMENT FILL


6772002 1:44:39 PM 2:1QLS2EMBK.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = 1.567

CAL Engineering and Geology, Inc Walnut Creek, CA	Vasco Road	Qis 2 Cross Section	June 2002	w/ embankment
Ru			0	
			O	
Piezo	Sun	•	•	
Phi	qeg	28	20	
O	ĸРа	2.39	2.39	
Gamma	kN/m3	18.9 2.39	18.9	
		embankment	Tmss/Kps-1	

 $6772002\ 1:47:10\ PM\ Z:ACLSZEMBK.GSL\ CAL$ Engineering and Geology, Inc. - Walnut Creek, CA F=4.644

67/2002 1:48:36 PM Z:\QLSZ:GSL CAL Engineering and Geology, Inc. • Walnut Creek, CA F = 3.014* — —


14 3

677/2002 2:01:00 PM ZNQLS2.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA F = .993------------------

CAL Engineering and Geology, Inc. - Walnut Creek, CA
Vasco Road
Qls 2 Cross Section
June 2002
w/ embankment 2 00 Piezo Surf. P. de de 1. Gamma C kN/m3 kPa 18.9 2.39 18.9 2.39 embankment Tmss/Kps-1

4

FS= 2.4 W p=6.1° when vasco vons sombound

6/7/2002 2:06:11 PM Z:\QLS2EMBK.GSL CAL Engineering and Geology, Inc. - Walnut Creek, CA | F = 2,424 --- -- --

DCM/Joyal Engineering

David C. Mathy Norman A. Joyal Robert A. Kahl Dru R. Nielson Brian R. Dodge Mark D. Sinclair Marc M. Gelinas

May 16, 2002 File: J-4286-13

Mr. Moses Tsang County of Alameda Public Works Agency 399 Elmhurst Street Hayward, CA 94544-1395

Subject:

. C. 1

Geotechnical Engineering Peer Review

Vasco Road Safety Improvement Project (Phase 1)

Between Mile Posts 3.4 and 4.3 Alameda County, California

Dear Moses,

This letter presents our geologic and geotechnical review comments pertaining to the proposed Vasco Road Safety Improvement Project in Alameda County, California. Our services were provided in accordance with the Alameda County Public Works Agency's Engineering and Road Construction Department's request for Geological and Geotechnical Review, dated April 11, 2002. The Alameda County Public Works Agency's request for Geological and Geotechnical Peer Review of the Draft Geotechnical Design and Material Report, Reference A, is based on the scope of work outlined by DCM/Joyal Engineering in a proposal letter dated April 8, 2002.

The Vasco Road Safety Improvement Project (Phase 1) entails the realignment (straightening) of approximately 1.61 km of roadway in northeastern Alameda County between Mile Post (MP) 3.4 and MP 4.3. The improvement project will require extensive cut and fill earthwork, retaining structures, and surface and subsurface drainage provisions. To address the geologic and geotechnical engineering aspects of the roadway improvement project, the County retained Cal Engineering and Geology (Cal Engineering) to complete a Draft Geotechnical Design and Material Report which entailed extensive and detailed geotechnical engineering investigations and evaluations for the proposed project. That draft report has been completed and the County has requested that DCM/Joyal Engineering provide a peer review of the Cal Engineering work completed to date.

I. REVIEW TASKS

As outlined in our proposal letter of April 8, 2002, our review included the following tasks:

May 16, 2002 File: J-4286-13

Page 2

A. Task No. 1 - Document Review

Copies of the documents prepared by Cal Engineering provided for our review are listed in the References at the end of this review letter. In accordance with our proposal letter, we reviewed References A through E. In accordance with the County's request, particular emphasis was made on the following sections of the Draft Geotechnical Design and Material Report:

- ♦ Section 4 Physical Setting
- ♦ Section 8 Geotechnical Analysis and Design
- ♦ Section 12 Recommendations and Specifications

Other than a general comment section, the review comments presented in this letter are generally grouped into these three sections.

B. Task No. 2 - Site Reconnaissance

The document review was supplemented by a walkover reconnaissance of the site on May 13, 2002, by Norman A. Joyal and Dru R. Nielson to assess site conditions with respect to the proposed roadway realignment and the document References A through E.

C. Task No. 3 – Slope Stability Analyses

As part of our review, we completed a spot check review of the Cal Engineering slope stability calculations for selected critical slopes. Our spot check review included independent computer analysis of selected sections analyzed by Cal Engineering, and independent hand calculation methods for verification of the computer analyses.

D. Task No. 4 – Meeting with Cal Engineering and County Staff

Our peer review included a meeting with Cal Engineering and County staff to review the findings presented in this review letter.

E. Task No. 5 - Geologic and Geotechnical Peer Review Letter

This report represents the culmination of our geologic and geotechnical peer review for the Vasco Road Safety Improvements Project (Phase 1) from MP 3.4 to MP 4.3 in Alameda County, California.

Given the complexity, scope and importance of this project and the volume and detail of geotechnical materials generated by Cal Engineering provided for our review, our scope of work only allowed for a general peer review of the documents and information only. Our scope of work did not include independent research, data gathering, testing or detailed geotechnical analysis,

Mr. Moses Tsang County of Alameda Public Works Agency May 16, 2002 File: J-4286-13

Page 3

except for spot checking of the slope stability analyses. Therefore, our review is based on the data gathered and presented by Cal Engineering.

II. PEER REVIEW COMMENTS

A. General Geologic Review Comments

In the report discussions, Cal Engineering does not provide the bibliographic source for many of it's cited references (e.g., Crane 1990, indicated on Figure 4-3, Dibblee, 1980, indicated on page 7-1, and others). Cal Engineering should provide a complete bibliographic list of all references cited and/or viewed (i.e., aerial photographs) as part of their investigation. Cal Engineering does not cite recent geologic and seismic research pertinent to the project area including the following references which are cited in our review comments:

- Crane, R., 1995, Geology of the Byron Hot Springs Quadrangle; Privately published at H & L Hendry in Concord, California, in conjunction with the release of Northern California Geological Society's, Geology of the Mt. Diablo Region, Guidebook-1995.
- ❖ California Division of Mines and Geology, 1998, Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada to be used with the 1997 Uniform Building Code: International Conference of Building Officials.
- California Division of Mines and Geology, 1997, Guidelines for Evaluating and Mitigating Seismic Hazards in California; Special Publication 117.
- Graymer, R.W., Jones, D.L., and Brabb, E.E., Preliminary Geologic Map Emphasizing Bedrock Formations in Alameda County, California: U.S. Geological Survey Open-File Report 96-252.
- Mualchin, L., 1996, California Seismic Hazard Detail Index Map and Technical Report: Caltrans.
- ❖ Working Group on Northern California Earthquake Potential, 1999, Earthquake Probabilities in the San Francisco Bay Region: 2000 to 2030-A Summary of Findings: U.S. Geological Survey Open-File Report 99-517.
- Working Group on Northern California Earthquake Potential, 1996, Database of Potential Sources for Earthquakes Larger than Magnitude 6 in Northern California: U.S. Geological Survey Open-File Report 96-705.

A large part of this project will consist of making significant excavation cuts and placing significant embankment fills. These cuts will be made in a structurally complex geologic setting that includes

DCM/J

File: J-4286-13

Page 4

an active fault zone cutting through regionally mapped, southwest down dipping sedimentary bedrock that is described as pervasively fractured/sheared/shattered. Consequently, geologic instabilities are bound to be exposed in the proposed slope cuts. The performance of portions of Vasco Road recently improved as part of the Los Vaqueros Reservoir project could serve as a benchmark for performance of proposed cut and fill slopes for this project. As such, it is important that Cal Engineering review/discuss the earthwork "construction failures" that occurred as part of that road realignment improvement project. In each case, the controlling mechanism of failure should be reviewed (presuming investigations were undertaken to evaluate the causation and repair of earthwork failures), and any back-calculated slope strength data should be compared with the rock strengths used by Cal Engineering in their stability analyses. The intent should be to have this project learn from past history and not repeat it. As such, final cut slope recommendations should be predicated upon a review of slope failures (i.e., construction precedence) which occurred during construction of other nearby areas of Vasco Road (e.g., in Contra Costa County).

Even though no bedrock structure (strike and dip) could be measured during field work along the alignment by Cal Engineering, there is sufficient information in the geologic literature with respect to regionally mapped bedrock strike and dip. Based on regional geology, west-facing excavations into bedrock will tend to be more unstable (due to bedrock bedding) than east-facing excavations into bedrock. This aspect of the regional geology could potentially control slope stability and this should be addressed in more detail in the final or update reports.

B. General Geotechnical Review Comments

In addition to reviewing the documents listed in the Reference section of this report for consistency and uniformity, the documents were also reviewed for general conformance with generally accepted geotechnical principles and practices.

In consideration of the fact that the Cal Engineering Reference A report is identified as a Draft Report (which Cal Engineering states should be updated and finalized around the 70% design level), from a geotechnical engineering point of view, the field investigations and explorations and the engineering analyses completed to date were performed in general conformance with accepted geotechnical principles and practices. Although some of the comments we present in this review letter may require additional engineering analyses, we consider additional engineering analyses a normal part of the Draft Report process whereby input to the Draft Report is accomplished through a review process with the review comments addressed and/or incorporated in a final or updated report.

In general, the report recommendations for cut and fill slopes, slope dewatering, embankment fill placement, and embankment slope alternatives appear reasonable for the planning stage of the project. Final slope recommendations should be predicated upon a review of the "construction precedence" of already realigned portions of Vasco Road.

May 16, 2002 File: J-4286-13

Page 5

It should be noted that the use of hydraugers for slope dewatering do require periodic maintenance, such as high pressure hydroflushing to maintain their effectiveness. As such, the design should contemplate provisions (i.e., access road, and ingress and egress points) for equipment access to the hydraugers for their periodic maintenance, especially those installed on slope benches above the roadbed. Hydrauger maintenance should be included in a routine maintenance program for this segment of the roadway. In addition, because weathering of the cut slopes is anticipated (Subsection 8.2.5), the maintenance program should include yearly inspections of the slopes and drainage improvements.

The final designs will incorporate subsurface drainage (i.e., under drainage provisions) beneath some of the embankment fills and where reinforced segmental retaining walls or geogrid reinforced slopes are constructed. The final or updated report needs to address specific recommendations for the under drainage systems.

C. Specific Review Comments

Although we were asked to review the documents listed in the References with a particular emphasis on Sections 4, 8 and 12, our services also required a diligent review of all report sections to gain a complete and thorough understanding of the project, and the project designs and analyses. In doing so, we noted some general editorial inconsistencies in the report and figures and/or enhancements that could be incorporated in a final or updated report. In general, the noted inconsistencies are editorial in nature and do not affect the conclusions and recommendations. The following presents our general review comments.

Item 1

In Section 6.0, Geotechnical Testing, Figure 6-2 (1 of 2 and 2 of 2), the depth of the test is referenced in feet which is not consistent with the metric report format.

Item 2

In Section 7.0, Subsection 7.1.3 Landslides, reference is made to two landslides within the project area not shown on a landslide map (Figure 7-1) and those two landslides are referenced as landslides LS-1 and LS-2. However, on the Map of Geologic Features, Figure 4-3, there are four landslides and their identification nomenclature is either QLS ①, QLS ② or QLS. This inconsistency needs to be clarified.

In the Landslide discussion of this subsection, reference is made to Boring B-7 being located within LS-1; however, in Figure 4-3, Boring B-7 is located within an un-numbered landslide identified only as QLS. Near the end of the discussions in this subsection, reference is made to "two landslides (LS-3 and LS-4)" as being located within the main and eastern strand of the Greenville Fault. However, on Plate 4-3, these two landslides are identified as QLS ① and

May 16, 2002 File: J-4286-13

Page 6

QLS ②. Although the landslide discussion appears to be correct, the landslide numbering and report text references are in conflict.

Item 3

In Section 7.3, Subsection 7.3.2 Groundwater, reference is made to the highest groundwater level shown on Figure 4-3. This appears to be an inaccurate reference and the correct reference should be to Figure 4-4.

Item 4

Section 11.2, Subsection 11.2.3 Existing Utilities, discusses the fact that "A large PG&E gas main exists along the design excavations" and that "the excavations would expose the pipeline over significant distance." We understand that PG&E is supposed to inform the County about a relocation decision soon.

The geotechnical issues of importance for the relocation are the location of the new line and the type of backfill used for the pipe embedment material. Where granular embedment material is used, the material can and often acts as a collector and/or conduit for subsurface water, and this can potentially result in unstable conditions. As such, if the gas pipeline relocation consists of an overland route that is within or skirts the project cuts and fills, the physical location and the type of backfill material used needs to be given special consideration to avoid having the pipeline, in its relocated environment, from possibly contributing to an unstable condition.

Item 5

In Appendix C, Log of Test Borings, on Sheet C7, there is a misidentification of the boring elevations for Boring B-5. For example, the boring is reported to have been terminated at Elevation 285.6 m, yet the elevation scale on the right side noted near the bottom of the boring is Elevation 275 m. The elevation scale on the left side of Boring B-3 appears to be the correct scale.

Item 6

In Appendix D, Trench Logs, the format for the trench log scales is feet. For report consistency, the trench log scales should reflect the metric format.

D. Section 4 – Physical Setting Review Comments

In our review of Section 4, some general editorial inconsistencies in the report were noted, and we noted some enhancements that could be incorporated in a final or updated report. In general, most

May 16, 2002 File: J-4286-13

Page 7

of the noted inconsistencies are editorial in nature and do not affect the conclusions and recommendations. The following presents our comments pertaining to the physical setting.

Item 1

In Section 4.0, Physical Setting, Figure 4-3 could be enhanced by showing the location of the seismic refraction lines completed for the project. This would visually delineate the location of the seismic refraction lines with respect to the geologic sections without having to reference the geophysical data in Appendix E for the location of the seismic refraction lines.

Litem 2

In Section 4.0, Physical Setting, Figure 4-4, the P-wave velocity identified in the figure is presented in terms of feet per second which contrasts the metric report format and Section 8.2.2, Rippability, which discusses the P-wave velocity data in a metric format.

Also on Figure 4-4, the data presented for "Layer 2 ($V_p = 6900-9100 \text{ fps}$)" should be corrected to identify this as Layer 3.

Item 3

In Section 4.4.1, no reference is made to geologic maps of Contra Costa County (e.g., Crane, 1995, and Graymer and others, 1996) that post-date maps cited by Cal Engineering (i.e., Majmundar, 1991).

Item 4

In Section 4.4.2, the seismogenic sources described in this section and included on Table 4-1 should also include additional sources recently described by the Working Group on Northern California Earthquake Potential (1996 and 1999; e.g., Mt. Diablo and Great Valley Thrust Systems). In addition, a regional map showing the location of seismic sources described in this section would be helpful.

Figure 4-2

◆ A legend, scale, north arrow, and box indicating mapped area shown on Figure 4-3 should be added. Part of the legend can be handled by indicating that mapping units are as described in Section 4.4.1 of the report.

May 16, 2002 File: J-4286-13

Page 8

Figure 4-3

- ♦ Approx. Stationing 22+00 to 24+00 is shown on Figure 4-2 to be Kps but shown on Figure 4-3 to be Tmss.
- Dots indicative of concealed faulting should be differentiated from those indicative of resistant pebble conglomerate and sandstone outcrops.
- Orientation of fault movement (inferred if not known) should be shown (e.g., per Section 7.4.1).
- ♦ Slide motion vectors indicated for Qls-2 near Station 22+00 are consistent with a cross-fault extrapolation of a down-dip direction of movement (i.e., parallel to the dip of nearby bedrock bedding). Direct downslope movement slide vectors would be perpendicular to topographic contours (i.e., a southwest direction for slide Qls-2). Are the directions of the slide motion vectors accurately shown? If so, this observation of discontinuity controlled sliding (e.g., bedding plane slip) should be addressed in slope stability analysis for the project.
- ◆ Landslides indicated by Majmundar (1991) should be shown (see comments for Section 7.1.3).

Figure 4-4

- Section lines shown on Figure 4-3 should be equivalent to the limits of the cross-sections shown on Figure 4-4.
- ◆ Structural data provided on Figure 4-3 should be expressed in the cross-sections of Figure 4-4 (i.e., apparent dips). We anticipate that this would show that cut slopes would expose southwestwardly down-dipping bedrock (adversely oriented for cutslopes east of the centerline of the proposed alignment—i.e., westward-facing cutslopes).
- ♦ What is basis for the orientation of the Greenville fault shown at depth? Relative fault displacement directions should be shown per Section 7.4.1.

Table 4-1

What is the basis for the given Maximum Credible and Maximum Probable Magnitudes? Maximum Magnitudes on faults to be used with the 1997 UBC, and justifications for their use, are provided in the 1998 publication by the California Division of Mines and Geology. Maximum Credible Magnitudes suggested by Caltrans for use in deterministic designs are provided by Mualchin (1996). A database of potential sources for earthquakes larger than Magnitude 6 in Northern California is provided with estimated magnitudes by

File: J-4286-13

Page 9

the Working Group on Northern California Earthquake Potential (1999). These reputable sources post-date sources cited by Cal Engineering.

◆ Maximum Probable Magnitudes should be at least as large as known historic earthquakes (e.g., the Maximum Probable Magnitude of the Greenville Fault should at least reflect the January 24, 1980, Magnitude 5.8 earthquake cited by Cal Engineering from Bonilla, et al., 1980). This is consistent with Cal Engineering's recommendation in Section 7.4.1 stating the design should anticipate future surface rupture of a similar magnitude to that which occurred in 1980 [right-lateral and dip slips on the order of 2 to 4 cm] during the operational life of the roadway. Such an occurrence should be considered during design of the roadway and during development of maintenance and operation plans (Cal Engineering's Maximum Probable Magnitude for the Greenville Fault is indicated as 5.2 in Reference A).

E. <u>Section 5 – Field Explorations</u>

Item 1

In Section 5.2, the source and date of aerial photographs reviewed should be referenced.

Item 2

In Section 5.3, the text refers to two seismic refraction lines that were 800 feet long. For report consistency, this reference should be in metric.

Cal Engineering should discuss their extrapolation of results from the seismic refraction lines to cross-sections as shown on Figure 4-4 in consideration of the fact that the seismic lines run perpendicular to the cross-section.

F. Section 7 - Geotechnical Conditions

Item 1

Regional structural data (e.g., provided by Dibblee, 1980, Crane 1995, Majmundar, 1991, and Graymer and others, 1996) should be used in cross-sections (Figure 4-4) and stability analysis where not superseded by site specific data from Cal Engineering fieldwork.

Item 2

In Section 7.1.3, the Nilsen (1975) base map for Figure 7-1 should be replaced with more recent maps by Majmundar (1991; particularly Maps 27A and 27B) which show landslides along the alignment not indicated by Nilsen. Majmundar (1991) indicates on Map 27A that most of the slopes along the alignment are "naturally unstable and subject to failure even in

May 16, 2002 File: J-4286-13

Page 10

the absence of the activities of man." A legend, scale, north arrow, and box indicating mapped area shown on Figure 4-3 should be added. Landslides identified along or near the alignment by Majmundar (1991) should also be shown on Figure 4-3.

Item 3

In Section 7.1.4, uniaxial compressive strengths are discussed for the Panoche formation materials, but not for Tmss (Cierbo) materials.

Given the number of possible kinematically unfavorable orientations, the discontinuity orientation factor assumed for the evaluation could easily be assumed to be unfavorable (-50) to very unfavorable (-60), with the rock mass underlying the proposed expansion area (including in Borings B-2, B-3, B-4, and B-5 on Table 7-2) being classified as very poor rock (Class V).

Item 4

Governing shear strength properties for the project cut slopes will most likely be along discontinuities (e.g., bedding planes and fractures). Precedent failure/repair studies by others pertaining to prior instabilities along nearby reaches of Vasco Road would be useful to establish shear strength properties along geologic discontinuities typical of the area.

Figure 7-2

A legend describing the numbered geomorphic features would be helpful.

G. Section 8 - Geotechnical Analysis and Design

In our review of Section 8, we again noted some general editorial inconsistencies in the report and we noted some report discussions that could be augmented to provide additional information and/or clarifications in a final or updated report. In general, most of the noted inconsistencies are editorial in nature and do not affect the conclusions and recommendations. However, some aspects of the analysis and design were noted that may affect the conclusions and recommendations. The following presents the editorial inconsistencies followed by our specific comments pertaining to geotechnical analysis and design.

1. General Editorial Comments

Item 1

In Section 8.0, Subsection 8.1.1 Seismic Parameters Used in Analysis, reference is made to a U.S. Department of Transportation design guidance which allows the seismic coefficient for use in pseudo static analyses to be one-half (1/2) of the peak horizontal ground acceleration of

May 16, 2002 File: J-4286-13

Page 11

the applicable fault source. As an example, for the near-field source seismic event (Greenville Fault) Cal Engineering states that for "...a design PHGA of 0.27g, a seismic coefficient of 0.14 was assumed..." However, in the tables summarizing the slope stability data (Appendix I, Slope Stability Analyses), the seismic coefficient (k_s) used in analyses for the near-field source is 0.10 with a footnote in regards to its reduction from 0.14 to 0.10. This reduction in seismic coefficient should also be made a part of the text discussion in Subsection 8.1.1 Seismic Parameters Used in Analysis.

The discussions in this section need to reflect comments in Section 4 (particularly with regard to selecting Maximum Probable Earthquakes). The selection of appropriate MPE's will affect PHGA and seismic coefficients pursuant to reported U.S. Department of Transportation guidance (1997). Seismic coefficients are generally linked to recommended pseudo-static factors of safety. Many state and local agencies in California require the use of a seismic coefficient of 0.15, and a minimum computed pseudo-static factor of safety of 1.0 to 1.2 for analysis of natural, cut, and fill slopes (CDMG 1997).

Regional structural data (e.g., provided by Dibblee, 1980; Crane, 1995; Majmundar, 1991; and Graymer and others, 1996) should be used in stability analysis where not superseded by site specific data from Cal Engineering fieldwork.

Item 2

In Section 8.0, Subsection 8.2.1.7 Results of Analyses, the report states that "Pseudo static safety factors were less than 1 for all conditions analyzed." However, this contradicts Table 8-1 in which all of the reported pseudo static safety factors are greater than 1.0. In the same subsection, the "potential seismic displacements" are reported to be less that 30 cm for the slope conditions analyzed. This is inconsistent with Table 8-1 in which the maximum displacements are reported to be less than 1 cm.

Item 3

In Section 8.0, Subsection 8.3.1.4 Shear Strength Assumed for Stability Analyses, there is a discrepancy between what was reportedly used for analyses ("...cohesion intercept of 7.7 kPa and a friction angle of 26 degrees") as discussed in Section 8.3.1.4, and what was actually used in analyses (cross sections used in the embankment slope analyses reports the fill strength used to be 7.17 kPa with a friction angle of 26 degrees).

Item 4

In Section 8.0, Subsection 8.3.1.6 Results of Stability Analyses, the report states that in Table 8-2 the "...static safety factors that range from about 1.5 to 1.7 for the different conditions that were analyzed." However, in Table 8-2, the static safety factors reported are between

May 16, 2002 File: J-4286-13

Page 12

1.53 and 1.57. As such, there is a discrepancy between the text discussion and the tabulated data.

In this same subsection, the report states that "Pseudo static safety factors were less than 1 for all conditions analyzed." However, in Table 8-2, the tabulated data for the pseudo static safety factors are all greater that 1.16, thus the report text is not consistent with the tabulated data.

Item 5

In Section 8.0, Subsection 8.3.2 Post-Construction Embankment Movements, recommendations are provided for "zoning and fill control measures." The issue of concern is that there is no upper bound limit on moisture content (i.e., "+4% or +2% of optimum or greater", respectively) for the "uppermost 5m" and the "mid-embankment" fill material. The "or greater" qualification potentially allows the contractor to incorporate very high moisture contents in the fill material while still meeting the report recommendations. Compacting material with very high moisture contents could result in an unstable subgrade (i.e., pumping subgrade) which is not desirable for an embankment fill.

Item 6

Section 8.5 Culverts, discusses the corrosion potential of the soils and bedrock for steel and concrete structures. This section could be augmented by a discussion of the corrosion problems Contra Costa County encountered in some of their culvert crossings during construction of the Vasco Road realignment as part of the Los Vaqueros project. During construction, at least one local newspaper reported that accelerated failure occurred in some of the culvert crossings because backfill materials used around the culvert crossings were highly corrosive. The "lessons learned" from these prior culvert failures should be applied to this project to prevent a repetition.

2. Comments Pertaining to Geotechnical Analysis and Design

Comment 1

In Subsection 8.3.1.4 Shear Strength Assumed for Stability Analyses, the report states that "... where the embankment will be underlain by the weaker Panoche formation materials, the strength parameters discussed in Section 8.2.1.5 were assumed for those materials." The strength reported in Section 8.2.1.5 for the Panoche Formation includes a cohesion intercept of 2.39 kPa and a friction angle of 20 degrees. However, on the slope stability embankment cross sections at Station 1+160 where the material is identified as "native" (which we presume is the native Panoche formation material), the reported strength used in analyses includes a cohesion intercept of 7.17 kPa and a friction angle of 20 degrees. The strength parameters associate a cohesion intercept of 2.39 kPa with a friction angle of 20 degrees for the Panoche

File: J-4286-13

Page 13

Formation (Subsection 8.2.1.5), and a cohesion intercept of 7.7 [7.17?] with a friction angle of 26 degrees for the Cierbo Formation (Subsection 8.3.1.4). As such, there is an apparent commingling of the reported strengths properties for the slope stability analyses that involves the Panoche formation. The slope cross section that involves the Panoche formation should be analyzed with the appropriate material strengths discussed in the report.

Comment 2

In Subsection 8.2.4 Rebound/Swell of Excavation, the report generally addresses elastic rebound of the bedrock and swelling of the bedrock as events that will occur after bedrock overburden is removed from the roadbed subgrade level. However, in Cal Engineering's discussion of the analyses employed to evaluate these conditions, their discussion is weighted toward elastic rebound of the claystone and swelling of the claystone is lumped in with the elastic rebound discussion.

We concur with Cal Engineering that elastic rebound and swelling of the claystone bedrock will occur. For the most part, these two events will occur separately and they will be characterized as time-dependent events. Elastic rebound will occur at the time of, or shortly after, overburden load is removed. Because overburden removal is also a time-dependent event, elastic rebound of the bedrock will probably be an imperceptible event. On the other hand, swelling of the claystone bedrock is a long-term event (month to years) that is controlled by the availability of free water being absorbed in the claystone fabric. These two separate events have to be correctly modeled by laboratory tests in order to obtain meaningful data. As such, we question the use of a free swell test on a core sample of claystone bedrock to model elastic rebound. Performing a free swell test is one way of modeling the behavior of claystone when subjected to free water and to assess the magnitude of swelling that could be anticipated. Therefore, performing a free swell test on a claystone sample is more a measure of the swelling magnitude than it is elastic rebound. That being the case, the reported magnitudes of rebound/heave (100 mm to 400 mm) could be significant if most of the measure is associated with swelling heave and the fact that swelling heave is a time-dependent behavior. Therefore, the roadbed could become significantly distorted over time resulting in an adverse impact on the roadway improvements (i.e., pavement section, drainage gradients, etc.). The impacts could be significantly magnified in the case where the claystone is interbedded with low or non-expansive bedrock materials resulting in abrupt changes in the roadbed profile.

Comment 3

Based on our review of the stability analyses performed by Cal Engineering for the major cut and fill slopes on this project, and performing our own analyses utilizing hand calculations and independent computer modeling to spot check the Cal Engineering calculations for selected critical sections, the static safety factors calculated by Cal Engineering for the cut and fill slopes appear to be reasonable. Additionally, the slope strength parameters used in the

File: J-4286-13

Page 14

stability analyses appear to be reasonable based on the laboratory testing and the discussion presented with respect to the Rock Mass Strength in Subsection 7.1.4. in the case of cut slopes, and Subsection 8.3.1.4 Shear Strength Assumed for Stability Analyses in the case of the embankment fill material.

With the respect to the major cut slope on this project, Cal Engineering modeled the major cut slope as a uniform rock mass slope for the full depth of the cut and beyond, and reasonable strength parameters were assigned for the rock mass. However, the engineering data (shear strength data and shear wave velocity) summarized on the geologic cross section on Figure 4-4 indicates a marked difference in the bedrock between Elevations 295 m and 300 m at Cross Section B-B'. According to the data summarized on Cross Section B-B', the shear strength data and the shear wave velocities are several orders of magnitude greater than the bedrock materials above it resulting in a "resistant bedrock layer". This marked change in the bedrock daylights in the cut slope a few meters above the roadbed at the report stationing of about 23+50 (Figure 4-3). Because bedrock strength and shear wave velocity data suggests this geologic condition could control slope stability, this geologic condition should be modeled in a slope stability cross section to evaluate the impact a "resistant bedrock layer" might have on slope stability and the resulting safety factor.

Comment 4

One of the documents provided for our review (Reference E) which was not prepared by Cal Engineering is a plan map of what is identified as the Modified High Alignment. Among other things, the map delineates the location where cuts and fills will be made for this particular alignment. This map was used as a base map upon which we transferred the locations of the subsurface explorations and the geologic features presented on Figure 4-3. This aided visualization of the cut and fill locations with respect to the reported geologic conditions.

In doing so, one aspect of the reported geologic conditions stands out with respect to the cut and fill slopes. The geologic condition that stands out is the relatively large landslide mapped on Plate 4-3 (identified as QLS ② on the plate), and the slope condition that stands out is the roadway embankment fill that will be placed on the toe of this mapped landslide.

In the Reference A report, this landslide is addressed in Subsection 7.1.3 Landslides in the last paragraph of that subsection. The report states that "...two landslides (LS-3 and LS-4) were tentatively located between the main and eastern strands of the Greenville fault." [Note: Plate 4-3 actually identifies these two landslides as QLS ① and QLS ②. The landslide of concern is QLS ②.] Cal Engineering further states that "The presence of these landslides is questionable because definitive geomorphic evidence of landsliding was not apparent on the ground surface and clear evidence of sliding was not noted in the borings or test trenches in this area." However, Cal Engineering further states that "... evaluation of aerial photographs provides some indistinct evidence of past slides in this area. These slides, if present, are likely

File: J-4286-13

Page 15

very old features that developed in the Panoche or Cierbo Formations and may represent zones of relatively weaker bedrock..."

From a geotechnical engineering point of view, placing an embankment fill on the toe of a "questionable" landslide or "zones of relatively weaker bedrock" is a condition that can result in hillside instability and warrants further evaluations. As such, the existence or non-existence of a "questionable" landslide or "zones of relatively weaker bedrock" identified as QLS @ needs further evaluations and/or assessment to ascertain whether or not it exists. If it does exist, the impact of placing a roadway embankment fill at the toe of the instability feature needs to be evaluated through slope stability analyses. Depending on the results of such evaluations and assessments, recommendations may be necessary to address this geologic and embankment slope condition in order to accommodate the roadway embankment fill. For example, significant project grading costs could be incurred if the landslide toe has to be removed and replaced as engineered fill to accommodate the roadway embankment fill. In any case, this geologic condition warrants further review and evaluations to accommodate the roadway embankment fill.

H. Section 12 - Recommendations and Specifications

Much like Sections 8 and 12, in our review of Section 12, we noted some general report discussions that could be augmented to provide additional information and/or clarifications in a final or updated report. In general, the noted discussions that could be augmented would not necessarily affect the conclusions and recommendations. However, our specific comments pertaining to the report recommendations may affect the final conclusions and recommendations. The following presents the general report discussion comments followed by our specific comments pertaining to recommendations.

1. General Report Discussion Comments

Item 1

Section 12, Subsection 12.1.4 Stability Fills, the need for stability fills is unclear with respect to where "very weak rock" is exposed by the design excavations. For example, the Rock Mass Strength discussed in Subsection 7.1.4 generally identifies the rock in the major project excavations as very poor to poor rock. As such, it could be interpreted that stability fills could be required along a significant portion of the major excavation cuts resulting in a significant project expense. Adverse geologic conditions within design excavations is probable based on: (1) regional geologic structure; (2) descriptions of bedrock provided in Section 7; and (3) nearby construction precedence during the Vasco Road realignment associated with the Los Vaqueros Reservoir.

It is unclear if the "very weak rock" discussed in this section is any weaker or has substantially less strength than that anticipated for the very poor to poor rock discussed in

May 16, 2002 File: J-4286-13

Page 16

Subsection 7.1.4. Because constructing buttress fills could be a substantial project expense, guidelines should be presented or discussed on how "very weak rock" can be distinguished or identified from the other very poor to poor rock anticipated in the project excavations. The need for buttress fills should be based on measurable and identifiable differences in the bedrock materials from that anticipated or assumed in the evaluations and calculations.

2. Comments Pertaining to Recommendations

Comment 1

In Subsection 12.1.2 Cut Slope Configurations, the excavation design recommendations are contained in Table 12-1. In Table 12-1, recommendations are provided for cut and fill slopes between various stationing points along the project alignment. In light of report discussions pertaining to 1V:2H cut slopes, and in the absence of engineering analyses or other report discussions that support a 1V:2H recommendation, there is an apparent discrepancy between the report discussions and the recommendation for 1V:2H cut slopes.

In Subsection 11.1.2 Sheared and Weak Rock, Cal Engineering warns that "the complex geology and presence of the Greenville fault traces create the potential for localized adverse geologic conditions within the design excavations." They go on to note that "A moderately inclined (1V:2H) excavation made at the nearby landfill reportedly failed several days after originally being cut." In the context of the discussion in this section of the report, Cal Engineering cautions about the short-term stability of 1V:2H excavations cuts, and the need to plan excavation cuts so that there is no inadvertent oversteepening of cut slopes. As such, in one section of the report, Cal Engineering discusses the vulnerability of 1V:2H slopes, yet 1V:2H slopes are included as part of the recommendations. This transition from warning to recommendation occurs without any supporting documentation that indicates 1V:2H slopes will be more stable on this project than they were on the adjacent landfill site. Therefore, slope stability evaluations should be completed for the recommended 1V:2H cut slopes utilizing material strength properties and groundwater conditions that model the cut slopes.

Where cut slopes are configured to be steeper than the natural slopes, the possibility greatly increases that they may become candidates for buttress fill stabilization due to instabilities related to unfavorable bedrock discontinuities (e.g., bedding, fractures, faulting).

Comment 2

Subsection 8.3.1 Stability Analyses, discusses the design assumption of incorporating under drain provisions beneath embankment fills. In addenda subsequent to the Draft Report, under drainage provisions are also recommended for the reinforced segmental retaining walls, geogrid reinforced embankment, and pile and lagging wall alternatives. The final or update report should incorporate recommendations for the under drainage systems as needed (i.e., filter material, filter fabric [if any], perforated pipe, cleanouts [if any], discharge outlets, etc.).

May 16, 2002 File: J-4286-13

Page 17

III. CLOSURE

In its current version, the Cal Engineering report fulfills its role as a "Draft Report" with sufficient design information and recommendations for the designers to prepare a preliminary design of the roadway realignment. The report now needs to be updated in context of the preliminary designs put forth, and to respond to the geotechnical concerns and issues addressed in the body of this review letter. To accelerate the response process and afford Cal Engineering an opportunity of discussing our review comments in productive dialogue, we met with Cal Engineering and County staff to review and discuss the geotechnical concerns and issues in advance of publishing this letter review.

We appreciate the opportunity to be of service to the Alameda County Public Works Agency's Engineering and Road Construction Department on this project and trust that this review letter provides the information you need at this time. Please call us if you have any questions regarding this review letter or the comments presented herein.

RED GEOLOG

DRU RAY NIELSON

NO. 5651

Very truly yours,

DCM/JOYAL ENGINEERING

Norman A. Joyal

Principal Engineer C.E. 31821

G.E. 449

Dru R. Nielson Senior Geologist

R.G. 5651 C.E.G. 1854

NAJ/J-4286-13 Peer Review Letter_Vasco Road Safety Improvement Project

				!	
		•			

REFERENCES

Reference A: Draft Geotechnical Design and Materials Report

Dated: August 8, 2001 By: Cal Engineering

Reference B: Draft Geotechnical Design and Materials Report

Appendices A-F, Volume 1 Dated: August 8, 2001 By: Cal Engineering

Reference C: Draft Geotechnical Design and Materials Report

Appendices G-K, Volume 2
Dated: August 8, 2001
By: Cal Engineering

Reference D: Design Memorandum No. 1

Design Memorandum No. 2
Design Memorandum No. 3
Dated: January 18, 2002
By: Cal Engineering

Reference E: Preliminary Design

Modified High Alignment

Dated: July 2001

By: Author Not Attributed